
BioMed CentralBMC Systems Biology

ss
Open AcceResearch article
Non-linear dimensionality reduction of signaling networks
Sergii Ivakhno*1,2 and J Douglas Armstrong2

Address: 1Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and 2School of Informatics, 5 
Forrest Hill, University of Edinburgh, Edinburgh EH1 2QL, UK

Email: Sergii Ivakhno* - s0567096@sms.ed.ac.uk; J Douglas Armstrong - jda@inf.ed.ac.uk

* Corresponding author    

Abstract
Background: Systems wide modeling and analysis of signaling networks is essential for understanding
complex cellular behaviors, such as the biphasic responses to different combinations of cytokines and
growth factors. For example, tumor necrosis factor (TNF) can act as a proapoptotic or prosurvival factor
depending on its concentration, the current state of signaling network and the presence of other
cytokines. To understand combinatorial regulation in such systems, new computational approaches are
required that can take into account non-linear interactions in signaling networks and provide tools for
clustering, visualization and predictive modeling.

Results: Here we extended and applied an unsupervised non-linear dimensionality reduction approach,
Isomap, to find clusters of similar treatment conditions in two cell signaling networks: (I) apoptosis
signaling network in human epithelial cancer cells treated with different combinations of TNF, epidermal
growth factor (EGF) and insulin and (II) combination of signal transduction pathways stimulated by 21
different ligands based on AfCS double ligand screen data. For the analysis of the apoptosis signaling
network we used the Cytokine compendium dataset where activity and concentration of 19 intracellular
signaling molecules were measured to characterise apoptotic response to TNF, EGF and insulin. By
projecting the original 19-dimensional space of intracellular signals into a low-dimensional space, Isomap
was able to reconstruct clusters corresponding to different cytokine treatments that were identified with
graph-based clustering. In comparison, Principal Component Analysis (PCA) and Partial Least Squares –
Discriminant analysis (PLS-DA) were unable to find biologically meaningful clusters. We also showed that
by using Isomap components for supervised classification with k-nearest neighbor (k-NN) and quadratic
discriminant analysis (QDA), apoptosis intensity can be predicted for different combinations of TNF, EGF
and insulin. Prediction accuracy was highest when early activation time points in the apoptosis signaling
network were used to predict apoptosis rates at later time points. Extended Isomap also outperformed
PCA on the AfCS double ligand screen data. Isomap identified more functionally coherent clusters than
PCA and captured more information in the first two-components. The Isomap projection performs slightly
worse when more signaling networks are analyzed; suggesting that the mapping function between cues and
responses becomes increasingly non-linear when large signaling pathways are considered.

Conclusion: We developed and applied extended Isomap approach for the analysis of cell signaling
networks. Potential biological applications of this method include characterization, visualization and
clustering of different treatment conditions (i.e. low and high doses of TNF) in terms of changes in
intracellular signaling they induce.
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Background
A major challenge for systems biology is to understand the
combinatorial regulation in signaling cascades and tran-
scription initiation mechanisms that underlie complex
cellular behaviors. Signaling pathways regulate essential
processes in living cells and determine cellular responses
to external stimuli. Traditional biochemical and molecu-
lar biology approaches focus on functional contributions
of individual molecules and often overlook that activa-
tion of multiple signaling molecules determines cellular
response to external stimuli. Such information will be cru-
cial for constructing predictive and descriptive models of
cell decision processes and identifying how pathological
conditions such as uncontrollable cellular proliferation
arise from abnormalities in signaling networks. In con-
trast to transcriptional regulatory networks for which
high-throughput technologies such as DNA microarrays,
genome-wide knockouts/RNAi and chromatin-immuno-
precipitation are available for profiling network activities,
the analysis of signaling networks at the biochemical/
molecular level has been hindered by the absence of sen-
sitive high-throughput approaches. Recently, several such
methodologies have been described that use either multi-
parameter flow cytometry with causal (Bayesian) net-
works [1,2] or combinations of protein signaling assays
with Bayesian networks [3], Principal Components Anal-
ysis (PCA) [4], and Partial Least-Squares Regression
(PLSR) [5].

The typical approach for studying cellular signaling in
such experiments is based on the notion of cues – signals
– responses paradigm and involves several steps in exper-
imental design and computational modeling (Figure 1A)
[6]. First, one or several signal transduction cascades are
chosen depending on the questions that are addressed.
For example, the apoptosis signaling network can be
selected to study different rates of apoptosis in cancer
cells. Since even a small number of signaling cascades may
include hundreds of proteins and other signaling mole-
cules, this step also involves selection of the smaller subset
of signaling proteins, "signals", which are believed to be
the most relevant for the regulation of a signaling network
(based on the background biological knowledge and
availability of appropriate high-throughput technology).
As a final step in this design phase, the choice for specific
perturbations – "cues" – is made to induce changes in the
information flow through the signaling network and a
number of specific cellular responses are assayed to ana-
lyze output of the network. For example, in the apoptosis
signaling networks, different combinations of cytokines
and growth factors can act as cues and assays measuring
apoptosis intensity can act as responses.

In the second step the activity and concentration of sign-
aling molecules as well as corresponding cellular

responses are measured experimentally across different
cues/treatment conditions. Possible experimental
approaches include western blotting, high-throughput
kinase activity assays and protein microarrays [7]. Assays
for quantification of cellular responses vary depending on
the specific application and may include measurements of
cell migration, overall cell integrity or secretion of specific
ligands.

The third and final step involves data analysis that
addresses issues of building predictive and descriptive
models of signaling networks. For instance, principal
component analysis has been used to find how different
cues and treatment conditions are positioned in the low-
dimensional subspace of intracellular signals [4]. Alterna-
tively, information on the activity and amount of intracel-
lular signaling molecules was used to build PLSR model
for prediction of cellular responses and selection of the
most informative for classification subset of signals (fea-
ture selection) [5]. It should be noted that three steps of
the systems biology methodology outlined above can be
extended in various ways, for example the raise in activity
of signaling molecules in response to different cues can be
measured along many time points.

In this study we investigated the relationship between
cues, signals and responses using two different cell signal-
ing networks: apoptosis signaling network in human ade-
nocarcinoma cells and the survey of multiple signaling
pathways in 264.7 macrophages.

To analyze the apoptosis network we considered a previ-
ously published protein signaling dataset known as the
Cytokine compendium [6], for which quantitative west-
ern blotting, high-throughput protein kinase assays and
protein microarrays were used to investigate the combina-
torial effect of tumor necrosis factor (TNF), epidermal
growth factor (EGF) and insulin on apoptosis of human
adenocarcinoma cells. The question addressed in the orig-
inal study was how different combinations of three
cytokines influence cancer cell death or survival. For
example, depending on its concentration and the pres-
ence of other cytokines, TNF can have either a proapop-
totic or prosurvival effect [8]. Consequently, the original
aim was to investigate how the apoptosis signaling net-
work was activated in response to different levels of TNF,
EGF and insulin and how such differential activation con-
tributes to antagonistic cellular decisions, such as cell
death versus survival in cancer cells. By measuring activi-
ties of 19 different intracellular molecular signals (signal-
ing molecules known to be associated with TNF, EGF, or
insulin signaling) during a 24 hour time course and relat-
ing measured activities to apoptotic responses, a highly
effective PLSR model for signals governing apoptosis was
constructed [5] (Figure 1B). The trained model predicted
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Features of the Cytokine Compendium and the cues – signals – responses paradigmFigure 1
Features of the Cytokine Compendium and the cues – signals – responses paradigm. A. Cues – signals – responses 
paradigm for the design and execution of systems biology experiments for the analysis of signaling networks. Cells are exposed 
to perturbations (cues) and molecular signaling molecules and cellular responses are assayed, followed by application of multi-
variate statistical and machine learning data analysis techniques. B. Schematic representation of the apoptosis signaling network 
induced by TNF, EGF and insulin. On the diagram arrows indicate the type of interaction: activation (green), inhibition (red) 
and slow process (blue). The measured proteins (molecular signals) are highlighted in yellow. Red circles, triangles, and rectan-
gles indicate kinase assay, antibody array, and western blotting measurements, respectively. The decomposition of the network 
into different pathways is shown by different colors (reproduced with modifications with permission from [5]). C. Distinction 
between one-to-one and many-to-one mapping functions between signals and responses. In the former case cellular response 
is measured for each time point of a particular treatment condition (cue), in the later – one cellular response is measured after 
several time points of the treatment condition.

T
N
F
R
1

EGF

GAP PI3K

Shc Grb2
Sos

Ras

Shc

Grb2

Sos

PI3K

IRS1

Rac

MEKK1

JNKK

AP-1

AP-1
genes

JNK1

P’ase

S6K

mTOR

Rheb

TSC2

TSC1PTEN

Ptdlns

PDK1

Forkhead
genes

FKHR

AFX

P’ase

Akt

Ins

IR
Y

E
G
F
R

Y S

C P

P

S

S S

S

TNF

TRADD
Caspase

Activation

Pathway

Mitochondrial

Pathway

NFkB

Pathway

p38

pathway

ERK

pathway

JNK

pathway

Akt

pathway

TRADD

TRAF2

RIP

IKK

lkB

NFkB

NFkB
genes

clAPs

XIAP

Grb 2

L-
FLIP

S-
FLIP

RAF

MEK

ERK

Rsk

Sos

p38

MK2

HSP27

MAP3KFADD

Casp.

8

Casp.

3

Bid

Bax

CytoC

Casp.
9

Bcl-2

Bcl-xl Bad

SubG1 DNA

content

Caspase-3 &
cytokeratin
cleavage PS

exposure
Membrane

permeabilization

Apaf

Kinase assay Immunoblot Antibody array

Activation

C: cleaved P: pro S: phospho-S Y: phospho-Y

inactivation Slow

A
JNK

ERK

AKT

p38
NF-kB

Apoptosis

Proliferation

…
…

Cues Signals Responses

Cell migrationCytokines

Growth Factors

Adhesion molecules

…

B

C

signals signals

responses
cues cues

responsestime
time

one-to-one mapping many-to-one mapping



BMC Systems Biology 2007, 1:27 http://www.biomedcentral.com/1752-0509/1/27
with 90% accuracy the apoptotic responses from the test
data with new experimental conditions (perturbations
that partially blocked the apoptosis signaling pathway),
and found major principle components of molecular sig-
nals that contribute most to correct predictions.

However, it may not always be possible to apply a fully-
supervised dimensionality reduction approach to study
how changes in the activity of signaling network influence
cellular responses. For instance, Janes et al [5] used meas-
urements of network activity across multiple early time
points to predict apoptosis outcome at later time points,
whereas in some applications it may be desirable to relate
signals to responses at identical time points [5]. In the
context of the variable and conflicting cellular responses
to the various TNF, EGF, and insulin treatment conditions
noted above it would be useful to understand how differ-
ent treatments are positioned within the resulting space of
intracellular molecular signals.

The second signaling network represented a large-scale
survey of pathway interactions in response to 231 combi-
nations of 21 different ligands (double ligand screen) car-
ried out by the Alliance for Cellular Signaling (AfCS) in
RAW 264.7 macrophages [9]. The phosphorylated states
of 21 proteins were measured after 1, 3, 10, and 30 min-
utes of treatment with ligands two study interactions
between different ligands in terms of intracellular signal-
ing space of phosphoproteins. The ligands were selected
to stimulate a diverse set of signaling pathways through
Toll-like receptors (TLRs), G protein-coupled receptors
(GPCRs), cytokine receptors and tyrosine kinase receptors
[see Additional file 1], many of which are co-activated
during physiological signaling events. Responses included
measurements of secretion of 18 cytokines.

Here we assessed applicability of unsupervised dimen-
sionality reduction techniques for the analysis of these
two signaling networks. Our key aim was to infer connec-
tions between external cues, intracellular molecular sig-
nals and corresponding cellular responses. More
specifically, by using Cytokine signaling data compen-
dium and AfCS double ligand screen we aimed to answer
the following questions:

1. Can different treatment combinations of ligands be
positioned into separate clusters of cues in the low-
dimensional signaling space?

2. What are characteristics of these clusters in the low-
dimensional space (unsupervised learning)?

3. Can low-dimensional embedding be intuitively
explained in terms of original dimensions of molecular
signals?

4. Can the low-dimensional representation of signaling
networks be used for predictive (supervised) modeling of
cellular responses, i.e. apoptosis intensity?

5. Are there any differences in performance between linear
and nonlinear dimensionality reduction techniques in the
case of both supervised and unsupervised learning (i.e.
PCA vs. Isomap)?

To address these questions we applied a non-linear
dimensionality reduction approach Isomap [10]. Isomap
and a similar technique, local linear embedding (LLE)
[10,11] have already been successfully applied as dimen-
sionality reduction approaches for gene networks [12-14]
and many other problems in cognitive sciences and com-
puter vision. These algorithms have been found superior
to PCA and Multidimensional Scaling (MDS) in finding
low-dimensional submanifolds in many cases. For
instance, a modified LLE algorithm Local Context Finder
(LCF) enabled successful reconstruction of a low-dimen-
sional representation of the pathogen induced gene net-
work in Arabidopsis [15].

To apply Isomap specifically in the context of signaling
networks we extended it with graph-based clustering
(questions 2) and neural networks (questions 3) (Figure
2). Finally, we used the low-dimensional embedding
found by Isomap to build a classifier for prediction of
apoptosis intensity (question 5). In our application Iso-
map generates a low-dimensional projection of signaling
networks represented by the activity of molecular signals,
where groups of different cues/treatment conditions
could be easily identified and visualized (henceforce we
refer to such projection as low-dimensional embedding of
the signaling network). Consequently, the main contribu-
tion of this paper is analysis of signaling networks in the
new unsupervised learning context using nonlinear
dimensionality reduction approaches.

Results
Cytokine compendium dataset
The main details of the Cytokine compendium dataset [6]
that are relevant for the present study are as follows. HT-
29 epithelial cancer cells were treated with 10 combina-
tions of saturating or subsaturating concentrations of
TNF, EGF and insulin (0, 0.2, 5, 100 ng/ml TNF and 0, 1,
100 ng/ml EGF or 0, 1, 5, 500 ng/ml insulin respectively),
which collectively represent all the cues used in the study.
19 molecular signals were chosen to characterize changes
in signaling network activity in response to each cue con-
dition [see Additional file 1]. Finally, to incorporate tem-
poral information 13 measurements were made during
the 24 hour time course after treatment with cues (5, 15,
30, 60, 90 min, 2, 4, 8, 12, 16, 20, 24 hr). Each measure-
ment was performed in triplicate to assess reproducibility
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of individual assays. To correlate apoptosis level in HT-29
cells to measured signals in the network, cell-death phe-
notype was measured for each of 10 different cytokine
combinations using four distinct apoptosis assays that
characterized early (phosphatidylserine exposure), mid-
dle (caspase substrate cleavage and membrane permeabil-
ity), and late (nuclear fragmentation) apoptotic
responses.

Data representation and transformation
In our analysis of the Cytokine compendium each meas-
urement comprises a single treatment condition at a dis-
tinct time point (e.g. TNF 100 ng treatment at 5 min). This
representation gives 130 data points in 19 dimensions of
molecular signals and produces a one-to-one mapping
between the apoptosis signaling network and associated
cellular responses. Such data prepossessing is different
from the one used by Janes et al [5] where the whole time
course for 19 molecular signals and additionally derived
metrics were used to predict apoptosis for the 10 distinct
combinations of cytokine treatments (many-to-one map-
ping) (Figure 1C). The approach of Janes et al leads to the
PLRS regression model with only ten data points in 200-
dimensional space, which for leave-one-out cross-valida-
tion (LOOCV) may in some instances lead to the problem

of high variance. Considering each time point as an indi-
vidual measurement here allows us to avoid this problem.
In addition, it allows us to investigate the activity of the
apoptotic signaling network in more detail, in particular
how early and later time points correlate under different
cytokine treatment conditions.

PCA and PLS-DA could not find low dimensional 
embedding of apoptosis signaling networks
First we applied PCA to the Cytokine compendium to
investigate if this linear dimensionality reduction tech-
nique can find meaningful clusters in a low-dimensional
representation of the apoptosis signaling network. PCA
was unable to find an optimal embedding: the first two
leading eigenvalues accounted for just 53% of the vari-
ance (Figure 3A) and the reconstructed two-dimensional
map had broad and unclear patterns and clusters [see
Additional file 1]. Similar results were obtained when
alternative cross-validation technique was applied to find
PCA components (Figure 3A). PCA selects components
that best explain variance in the data, and they may not be
the ones with the strongest predictive power for apoptosis
intensity or/and TNF-EGF-Insulin treatment conditions.
To test if incorporation of class labels information
improves separation of cytokine treatments we used PLS

Schematic representation of the extended Isomap approachFigure 2
Schematic representation of the extended Isomap approach. Extended Isomap approach involves three main steps: 
Isomap algorithm to construct a low dimensional embedding of the apoptosis signaling networks (I), graph-based clustering to 
find clusters in the Isomap space (II) and neural networks ensemble to find meaningful interpretation of the Isomap projection 
(III)
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Discriminant Analysis (PLS-DA), which maximizes sepa-
ration between groups of observation/response variables
by rotating PCA components such that the maximum sep-
aration among different classes is obtained. Two PLS-DA
experiments were performed on the Cytokine compen-
dium. In the first, apoptosis intensity was discretized to
represent class labels for low, medium and high rates of
apoptosis; in the second, class labels were the 10 different
cytokine treatment combinations. With this approach we
were able to test assumptions of linearity both from treat-
ment conditions to intracellular signaling space and from
intracellular signaling space to apoptosis responses. Clas-
sification accuracy obtained via 10 fold cross validation
for PLS-DA + cytokine treatments class labels and PLS-DA
+ apoptosis intensity class labels were 0.17 and 0.445
respectively for the first three principal components (Fig-
ure 3B). These results suggest that both supervised and
unsupervised linear dimensionality reduction may inef-
fectively characterize the apoptosis signaling network
when attempting the one-to-one signals-to-responses
mapping.

We sought to apply our extended Isomap approach to see
if non-linear dimensionality reduction can find the low-
dimensional embedding of the apoptosis signaling net-
work. Extended Isomap approach involves three main
steps: The Isomap algorithm first constructs a low-dimen-
sional embedding of the apoptosis signaling network,
graph-based clustering with multilevel k-way partitioning
then finds clusters in this low-dimensional space and an
ensemble of neural networks are used to find meaningful

interpretation of Isomap components in terms of original
dimensions.

We have extended Isomap with graph-based clustering
specifically to analyze noisy biological data. The original
algorithm and most of its later applications dealt with
high dimensional image and text data, e.g. images of the
same object, shifted by small angles [11], where a low-
dimensional continuous submanifold can be found. Con-
sequently, Isomap projection is often used in machine
vision and text mining for visualization and dimensional-
ity reduction purposes. Such continuity of submanifold is
not an intrinsic feature of signaling networks in cells
treated with different cytokines or growth factors, which
often activate distinct (but overlapping) subsets of pro-
teins. In systems biology applications the detection of
functional subsets within biological networks is of pri-
mary importance, since this allows to find clusters in the
signaling space that correspond to similar cytokine treat-
ment conditions.

After applying Isomap we found that the first three Iso-
map components captured 71% of the variance (62% for
the first two components), suggesting that Isomap was
able to find a low-dimensional embedding of the apopto-
sis signaling network. By using graph-based clustering in
the first two Isomap components we identified distinct
clusters corresponding to different cytokine treatments
(Figure 4). Closer evaluation of the five recovered clusters
indicates that all of them convey information about orig-
inal cytokine treatments. In particular, Isomap found clus-

Performance comparison of Isomap, PCA and PLS Discriminant Analysis on the Cytokine compendium datasetFigure 3
Performance comparison of Isomap, PCA and PLS Discriminant Analysis on the Cytokine compendium data-
set. Panel A shows cumulative residual variance after the application of Isomap and PCA on the Cytokine compendium dataset. 
Panel B shows classification accuracy of PLS Discriminant Analysis with two different choices of class labels.
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ters that reflect high concentration of insulin-TNF, mixed
insulin-TNF and EGF-TNF high/medium treatment condi-
tions. Moreover, the first Isomap component largely
explains changes in the apoptosis network activity from
prosurvival to prodeath. One additional noteworthy
observation is the non-globular shape of most clusters
found by graph-based clustering (k-nearest neighbors dis-
tance). Expectation Maximization based clustering that
uses Euclidian distance and tends to detect globular clus-
ters failed to identify clusters that reflect biologically
meaningful treatment conditions (Figure 5A). This sug-
gests that (I) neighborhood properties for a particular
treatment condition captured by k-nearest neighbors dis-
tance are important for identification of clusters in the Iso-
map space and (II) the apoptosis signaling network tends
to span low-dimensional embedding in a thread-like fash-
ion rather than forming globular subclusters. Since in our

case the network is defined by the different cytokine treat-
ments (combination of EGF, TNF and Insulin) this indi-
cates that changes in cytokine combination and/or time at
which the intracellular signals are measured leads to the
directional changes in the apoptosis network activity,
such as changes from insulin to insulin-TNF cluster.

Features of cytokine clusters found by Isomap
Isomap was able to reconstruct not only the low-dimen-
sional embedding of insulin-induced apoptosis network,
but also captured temporal profiles of network activity,
with early time points occupying far end of the map and
later time points approaching the centre (Figure 4). The
insulin cluster was closely followed by the insulin-TNF
high concentration cluster on the map (Figure 4). This
observation is consistent with current biological under-
standing of the role of insulin in the apoptosis signaling

Two dimensional Isomap projection of the Cytokine compendium datasetFigure 4
Two dimensional Isomap projection of the Cytokine compendium dataset. Clusters were identified using graph-
based clustering with 20-nearest neighbours distance matrix and multilevel k-way partitioning scheme for irregular graphs. High 
concentration Isnulin/Insulin-TNF, EGF and TNF/TNF-EGF clusters are located in the lower part of the map; the general 
change of the apoptosis network activity from prosurvival to prodeath is shown by the line. High concentration Insulin and 
insulin-TNF clusters show temporal evolution of the apoptosis network activity from early to late time points.
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network, where insulin augments AKT (protein kinase B)
activity. Insulin-TNF treatment leads to a rapid increase in
AKT activity during the early time points and sustaines
activation for 24 h, whereas with TNF alone the AKT
response is much smaller in magnitude [6]. For insulin-
TNF treatment, the AKT activity was held high for the first
12 hours and contributed to the decrease in the apoptosis
rate. This indicates that insulin-TNF and insulin-alone
treatments, which are most similar by their activity pro-
files in the Cytokine compendium, were successfully

placed by Isomap in similar location on the low-dimen-
sional embedding. Since AKT is considered to be respon-
sible for a significant portion of prosurvival signaling in
this apoptosis network, we hypothesized that Isomap
grouped time courses with insulin-TNF and insulin alone
due to preferential low-dimensional projection along AKT
dimension. To test this hypothesis we applied Isomap
after removing the AKT signal from the dataset. The dis-
tinct insulin-TNF and insulin-alone clusters disappeared
from the two-dimensional map while other clusters were

Analysis of the Isomap projection of the Cytokine compendium datasetFigure 5
Analysis of the Isomap projection of the Cytokine compendium dataset. On the Panel A the cytokine compendium 
dataset was projected into the low-dimensional subspace using Isomap. Next, clusters were identified using the Expectation 
Maximisation (EM) clustering algorithm with the number of clusters set to 6 (clusters are labelled with different symbols). Pan-
els B-C: Graph-based clustering of the two-dimensional Isomap embedding using the same parameters as for graph-based clus-
tering in Figure 4, but with the expected number of clusters increased from 7 to 9, original clusters remain intact and 
partitioning is made across the super cluster. When the number of clusters is 9 the Insulin/Insulin-TNF high concentration clus-
ter is partitioned in separate Insulin and Insulin-TNF clusters.
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preserved confirming importance of the AKT signal for
low-dimensional projection.

The late TNF/TNF-EGF high concentration cluster was
reflected along horizontal axes to the insulin-TNF/insulin
cluster, occupying the lower left corner on the map. Iso-
map was able to clearly separate these distinct treatments
that operate through different (although overlapping)
pathways in apoptosis. By separating TNF and insulin
clusters, Isomap appropriately found differences in the
signaling network in conjunction with differences in
apoptotic cellular responses. Interestingly, Isomap also
separated TNF-EGF and insulin-TNF time points on the
two-dimensional map, revealing distinct antagonistic
effects of EGF and Insulin on TNF-induced apoptosis
pathway. As was recently suggested, EGF in combination
with TNF directly antagonizes stress pathway signaling
comprising early JNK1 activity, early MK2 activity, and
late cleaved caspase-8. In contrast, insulin in combination
with TNF both antagonizes stress signaling and induces
separate prosurvival signaling pathways through phos-
phorylated AKT, insulin receptor substrate 1 (IRS1), Fork-
head transcription factor (P-FKHR), and procaspase-3
metrics [5].

Another clearly identifiable cluster on the two dimen-
sional map was the EGF-alone treatment cluster, located
in the centre of the map. This cluster was more compact
than the two previously described clusters, which reflects
higher homogeneity between time points after EGF treat-
ment. This particularly applies to middle – later time
points after disappearance of the early transient peaks of
AKT, MEK and ERK activities. We have found that one of
the closest subclusters to the no treatment cluster was the
late high concentration TNF cluster (Figure 4). This may
be caused by the return of measured kinase activities to
their basal state, primarily due to the onset of apoptosis
following TNF treatment. However, further experiments
are required for better understanding of these results.

Although Isomap found clusters in the network corre-
sponding to treatments with high doses of cytokines/
growth factors, it failed to identify most of the clusters
treated with low doses, which formed one supercluster of
several low dose treatment conditions. For instance, low
doses of TNF-EGF and insulin-TNF clusters were almost
inseparable on the Cytokine map. This indicates that the
network was not perturbed sufficiently enough to show
clearly distinct response phenotypes. The only two dis-
tinct clusters corresponding to low concentration treat-
ments are the low TNF/insulin-TNF low concentration
cluster and no treatment cluster. Interestingly, when the
number of expected clusters in the graph-based clustering
is increased from 6 to 9, all original clusters remain intact
and partitioning is made across the super cluster (Figure

5B–D). However, even by increasing the number of clus-
ters we were unable to further separate the low dose treat-
ments super cluster. This might suggest that low
concentration treatment conditions perturb apoptosis
network less significantly than treatments with higher
doses.

Interpretation of components recovered by Isomap
An important characteristic of linear dimensionality
reduction methods such as PCA is the intuitive interpreta-
tion of components in the low-dimensional space in
terms of the original dimensions. Unfortunately, since
exact one-to-one correspondence between the original
and low-dimensional subspace can not be recovered
through application of Isomap, it is difficult to interpret
low-dimensional projections in terms of original multidi-
mensional input space. However, in contrast to image
data, input variables in the signaling space have direct bio-
logical interpretation (e.g. MAK kinase activity) and it is
essential that such information is captured by low-dimen-
sional embedding. We applied neural networks (NN) to
approximate the nonlinear projection from original input
space into low-dimensional space found by Isomap, fol-
lowed by the sensitivity analysis to choose the best subset
of predictive variables in the input space.

The subset of variables with the highest rank/scores (con-
tributing most to the low-dimensional Isomap space)
includes phosphorylation/activity of MAPK-activated pro-
tein kinase 2 (MK2, mean rank 4), insulin receptor sub-
strate 1 (IRS1, mean rank 2), MEK kinase (mean rank 3),
AKT kinase (mean rank 1), and procaspase-3 (ProC3,
mean rank 5) level [see Additional file 1], which conform
to the pervious study of [5]. However, in our case variables
define Isomap projection through a nonlinear combina-
tion, the exact form of which remains unidentifiable.
Interestingly, they are not the obvious ones that would
have been chosen based on our current understanding of
the regulation of apoptosis (i.e. caspases). The presence of
proteins from different kinase pathways (p38, ERK and
ANT) as significance variables further suggested that only
systems-level view can accurately model mapping func-
tions in signaling networks. Another noteworthy feature is
that Isomap components include not only caspases as
immediate downstream effectors of apoptosis, but also
more upstream signals such as insulin receptor substrate
1.

Supervised comparison of PCA and Isomap
Many non-parametric classification algorithms in
machine learning such as k-nearest neighbors (k-NN) per-
form poorly in a multidimensional space where pairwise
distances between input datapoints become large. Conse-
quently, we sought to compare classification accuracy of
several machine learning algorithm using apoptosis inten-
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sity as class labels and original 19-dimesnional space of
molecular signals, Isomap components space and PCA
components space as input datasets. We assigned class
labels representing 3 levels of apoptosis intensity (low,
medium and high) to each time point using expectation
maximization clustering and performed classification
with support vector machines (SVM), k-NN or quadratic
discriminant analysis (QDA) in three dimensional Iso-
map/PCA subspace and original multidimensional space
(Table 1). K-NN and QDA classifiers based on Isomap
dimensions showed comparable performance to classifi-
ers that used original dataset and in both cases were better
than PCA-based classifiers (ANOVA, p < 0.05). SVM did
not detect statistically significant differences between PCA
and Isomap dimensions. This in part can be due to more
spherical clusters generated by PCA, which makes it easier
for SVM to find the optimal margin in a low-dimensional
space. Since the exact assignment of apoptosis signatures
to each data point was infeasible due to the absence of
experimental measurements, the accuracy of classification
based on Isomap projection and original dataset was
lower than that reported by Janes et al. using PLSR [5]. The
difference in performance can most likely be attributed to
different structure of mapping functions between cues
and responses for the apoptosis signaling network (one-
to-one vs. many-to-one) and is considered in detail below
(Factors contributing to Isomap algorithm performance).
We then tested whether Isomap projection could achieve
higher accuracy on predicting late time points of apopto-
sis network activity using training data derived from early
signals. K-nearest neighbors, trained on early time points
to predict later time points showed much higher accuracy
than when the training set was chosen randomly. In par-
ticular, a test error of 0.1 was obtained when the last three
time points were used for testing (lower than when using
full dataset - 0.22). This is consistent with previous reports
[6] and suggests that protein activities at early times
encode much of the information needed to specify an
apoptosis-survival cell fate decision. It also indicates that
Isomap could be used in predictive modeling and for
determining long term behaviors in signaling networks.

As the Cytokine compendium comprises time series data
for each combination of cytokine treatments, it was

important to confirm that the low-dimensional embed-
ding recovered by Isomap is not solely governed by corre-
lation between consecutive time points for each treatment
condition. Consequently we introduced a modified Euc-
lidian distance where points belonging to the same treat-
ments receive more weight than points belonging to
different treatments to see how this affects continuity of
the submanifold found by Isomap. The distance D' is
defined by the formula:

where xi is an input vector and yi are corresponding labels
for each of 10 treatment conditions, d(xi,xj) denotes Euc-
lidian distance and β is a scaling factor defined as an aver-
age distance between all pairs of data points.
Consequently, the dissimilarity between two points is
equal to or greater than 1 if the cytokine treatments are
different and is less than 1 if treatments are the same. To
prevent overfitting, the parameter α = 0.65 is used to
reduce the restriction that intra-class dissimilarity is less
than 1. Using Isomap in combination with this distance
metric we found that the low-dimensional embedding
was distorted by disconnected components and 6 that
were very distant from all clusters. This suggests that clus-
ters found by Isomap were not solely grouped by correla-
tion between similar time points for any particular
treatment condition.

AfCS double ligand screen dataset
Data representation and transformation
The data for AfCS double ligand screen of phosphopro-
teins was downloaded from Signaling Gateway website at
[16] [see Additional file 1]. In the screen the phosphor-
ylated states of the following proteins were recognized
(site of phosphorylation in parenthesis): Akt (S473), ERK
(T202/Y204), Ezrin/radixin/moesin (T567/T564/T558),
GSK 3 α/β (S21/9), JNK (T183/Y185), p38 MAPK (T180/
Y182), p40 phox (T154), ribosomal S6 (S235/236), NF-
κB p65 (S536), PKC δ/θ (S643/676), PKCμ (S916), p90
RSK (S380), Smad2 (S465/467), STAT 1 (Y701), STAT 3
(Y705), and STAT 5 (Y694). Measurements were made
after 1, 3, 10, and 30 minutes of treatment with ligands;
basal phosphorylation was assessed in untreated cells.
Cells were treated with each individual ligand and simul-
taneously with the two ligand combination. To correct for
lane-to-lane variation in total protein loaded, in the
downloaded dataset all signal intensities were already
normalized against the signal for Rho-GDI detected by a
phosphorylation insensitive antibody. After preliminary
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Table 1: Error rates for SVM, k-NN and QDA used to compare 
effectiveness of PCA and Isomap for supervised classification 
analysis of the cytokine compendium (computed by 10-fold cross 
validation with 95% confidence intervals)

Datasets Isomap Full data PCA

k-NN 0,31 ± 0.08 0,29 ± 0.08 0,39 ± 0.10
QDA 0,28 ± 0.07 0,23 ± 0.09 0,39 ± 0.08
SVM 0,31 ± 0.09 0,24 ± 0.08 0,36 ± 0.11
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exploratory analysis we decided not to use the corre-
sponding measurements of cytokines also available
through the AfCS double ligand screen. In contrast to the
Cytokine compendium data, the AfCS has not made effort
to insure that the same culture plates are used for the
assessment of both phosphorylation and cytokine secre-
tion, and in fact concentration of some ligands was differ-
ent for the two screens. Under such conditions reliable
mapping between signals and responses can not be
achieved, consequently we applied only Isomap unsuper-
vised learning procedure to the AfCS double ligand screen
data.

In our analysis of the AfCS double ligand screen each
measurement represents a single treatment condition
with a particular ligand at one time point. After removing
observation in which more than 3 measurements of phos-
phoproteins were missing the dataset comprised 1006
data points in 21 dimensions of molecular signals. The
final pre-processing included standardization of the data-
set to the unit variance. For examples of scripts and soft-
ware used in pre-processing see Additional Files 2, 3, 4, 5.

Extended Isomap analysis of the AfCS dataset
To determine the relationship between ligands in terms of
changes in the phosphorylation levels of phosphopro-
teins they induce, and to find out whereas the multidi-
mensional space of phosphoproteins can form the low
dimensional embedding of the signaling network, we
used Extended Isomap to analyze the AfCS double ligand
screen data. The two dimensional map of the double lig-

and screen obtained after application of Isomap featured
tight clusters and the first two dimensions explained 59%
of the variance (Figure 6). In contrast, the corresponding
two-dimensional PCA map gave unclear clusters [see
Additional file 1] and the variance captured by the leading
principal components was much lower – 40% (Figure
6B). The graph based clustering using the first two Isomap
components identified 5 distinct clusters of different lig-
ands treatment. To assess the biological significance of the
clustering we calculated the functional coherence of clus-
ters as the relative frequency (percentage) of occurrence of
each ligand in each cluster normalized to the size of the
cluster. Isomap clusters appeared to be functionally coher-
ent [see Additional file 1]. For instance, cluster 3 on the
Isomap map was significantly enriched for 3 out of 4 Toll-
like receptor (TLR) ligands including lipopolysaccharide
(LPS), P2C and P3C. Their functional coherence scores
were 35%, 36% and 31% respectively. The emergence of
these ligands as a single cluster is in agreement with simi-
lar patterns of protein phosphorylation they induce. TLR
ligands signal through the proximal adaptor protein
MyD88, which results in activation of NF-κB and MAP
kinase pathways [17]. Interferons (IFNα, IFNβ and IFNγ)
and interleukin 6 (IL6) were also grouped into a single
cluster 1 (functional coherence scores 31%, 36%, 37%
and 22% respectively) by their pattern of STAT phosphor-
ylation [18]. 2-methylthio-ATP (2MA), platelet activating
factor (PAF) and uridine diphosphate (UDP) also clus-
tered together (functional coherence scores 38%, 32%
and 30%), which is in agreement with similar phospho-
protein responses they induce [19]. On the contrary to

Performance comparison of Isomap, PCA and PLS Discriminant Analysis AfCS double ligand screen datasetFigure 6
Performance comparison of Isomap, PCA and PLS Discriminant Analysis AfCS double ligand screen dataset. 
Panel A shows cumulative residual variance after the application of Isomap and PCA on the AfCS double ligand screen dataset. 
Panel B shows two dimensional Isomap projection of the AfCS double ligand screen dataset. Clusters were identified using 
graph-based clustering with 20-nearest neighbours distance matrix and multilevel k-way partitioning scheme for irregular 
graphs. Cluster 1 is functionally enriched for interferons, cluster 3 – for TLR ligands and cluster 5 for 2MA, PAF and UDP. 
Functional coherence scores for all clusters are listed in Additional file 1.
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Isomap, PCA has not found functionally coherent clusters
[see Additional file 1] for TLRs ligands and interferons:
interferons were split between clusters 2 and 4 and TLRs
ligands – between clusters 1, 2 and 4 on the PCA two-
dimensional map. Quite interestingly, after applying neu-
ral networks to determine the significance of individual
variables we identified STAT 3/5 (mean rank 2 and 7) and
JNK/P38 kinases (mean rank 1, 3 and 6) as the most
highly represented phosphorproteins in the first two Iso-
map components [see Additional file 1]. The first two
principal components were more homogeneous and
included contribution of many different phosphorpro-
teins at a similar level. In general, broad and undefined
clusters on the PCA map are most likely attributed to the
low informativeness of the leading two principal compo-
nents that account only for the 40% of the variance. On
the other hand, Isomap captures more information in the
first two components and can therefore reconstruct the
state of the signaling network more accurately.

Discussion
Extended Isomap can be used for visualization, predictive 
and descriptive modeling of apoptosis signaling network
If we consider signaling networks as multivariate nonlin-
ear functions that map various perturbations and extracel-
lular cues onto different cellular responses it becomes
clear that only by understanding the network dynamics
and interplay between its key components as a whole will
we be able to construct predictive and descriptive models
of cell decision processes. To explain different and some-
times antagonistic cellular responses to the same ligand,
for example, TNF during angiogenesis [20], accurate
measurements with frequent temporal sampling will be
required. Since cells in vivo typically respond to multiple
ligands all present at different concentrations, another
important goal in signaling network research will be to
identify how cells integrate and respond to multiple sig-
nals simultaneously. In this study we applied an unsuper-
vised non-linear dimensionality reduction approach,
extended Isomap, to find similar instantiations of apopto-
sis signaling network in response to different treatments
with TNF, EGF or insulin. By projecting the original 19
dimensional space of intracellular signals into a 3-dimen-
sional space, Isomap was able to reconstruct clusters cor-
responding to different cytokine treatments that were
then identified with graph-based clustering. Alternative
approaches were either unable to find biologically mean-
ingful clusters (PLS-DA) or produced broad and unclear
clusters (PCA). Potential biological applications of this
method therefore include characterisation, visualisation
and clustering of different treatment conditions (i.e. with
low and high doses of TNF) in terms of the changes in
intracellular signaling they induce. We also applied neural
networks to infer the contribution that original variables
make into the low-dimensional subspace. The variables

contributing most to the low-dimensional projection
were phosphorylation/activity of MEK, AKT, MK2, IRS1
and ProC3 cleavage, which is consistent with the previous
reports [5]. Consequently, these signals might be poten-
tial targets for further biological investigation on how dif-
ferent doses and treatment conditions with TNF, EGF or
insulin lead to different death/survival decisions in cancer
cells.

Previous studies have concentrated on the structural
reconstruction of the signaling networks using Bayesian
networks [3] or their extension to learn causal (Bayesian)
networks [1,2]. Other methods attempt to build signaling
network regressors/classifiers that map cues into cellular
responses, for example to build predictive models of
migration speed in mouse fibroblasts [21]. Our extended
Isomap approach instead focuses on a broader combina-
tion of unsupervised and supervised machine learning
analysis of signaling networks through non-linear dimen-
sionality reduction [11]. In this framework, different
instantiations of the signaling networks (i.e. activities of
signaling molecular induced by different growth factors)
are first projected into low-dimensional space and then
used to compare cues/treatment conditions by finding
their corresponding low-dimensional embedding. Moreo-
ver, the relative contribution of each molecular signal to
the projection can also be inferred. For instance, we
showed that AKT activity is responsible for the segregation
of the insulin cluster on the two-dimensional map.
Although Isomap is primarily a technique for unsuper-
vised learning and visualization, by feeding Isomap out-
put into supervised classification algorithms such as k-NN
and QDA, the technique can be successfully extended for
predicting apoptosis outcomes. The Isomap predictive
power was especially pronounced when early activation
time points in the apoptosis signaling network were used
to predict the later ones.

Extended Isomap also outperformed PCA on the AfCS
double ligand screen data. Isomap identified more func-
tionally coherent clusters than PCA and captured more
information in the first two-components. We have not
attempted to functionally characterize the AfCS double
ligand screen as extensively as we analyzed the Cytokine
compendium due to the large number of ligands and sig-
nal transduction pathways involved. Instead, our aim was
to assess Isomap performance on much larger survey of
signaling pathways and compare it to PCA. The Isomap
projection becomes slightly worse when more signaling
networks are analyzed (59% of the variance explained by
the first two Isomap components for AfCS dataset versus
62% for the Cytokine compendium). For the PCA this
reduction is much more dramatic – 53% and 40% respec-
tively, suggesting that the mapping function between cues
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and responses becomes more non-linear when large sign-
aling pathways are considered.

Factors contributing to Isomap algorithm performance
Multiple factors could contribute to the superior perform-
ance of Isomap over linear dimensionality reduction
approaches such as PCA and PLS-DA. First, the apoptosis
signaling network in our representation may itself be non-
linear, especially when signaling molecules are located
proximally to the receptors. Second, the application of
Isomap for analysis of the apoptosis signaling network is
similar to the notion of invariance manifolds in the field
of cognitive neuroscience and in computer vision. In the
invariance manifold, relevant features of the multi-
dimensional input space are often represented by a large
number of different instances of the same object to form
a nonlinear surface in the low-dimensional output space
[22]. This is the case, for example, with images of the same
objects shifted by small angles (rotational invariance).
Isomap has been successfully applied to many image
processing problems having invariance manifold repre-
sentation. Better performance of Extended Isomap
approach for the analysis of signaling network might
therefore be attributed to the fact that only a small portion
of molecular signals, such as kinase activities, change sig-
nificantly between different treatment conditions, espe-
cially when these conditions are similar (i.e. TNF-Insulin
and Insulin alone treatment). Can activation profiles of
other signaling networks be approximated by invariance
manifolds? The invariance manifold concept suggests, in
part, that as input cues are gradually varied (by changing
concentration and/or composition of cytokines/growth
factors), the activation state of intracellular signaling net-
work also changes gradually. This systems-wide network
view suggested by the non-linear dimensionality reduc-
tion differs from results obtained when studying smaller
networks at the single cell level, where switch like behav-
ior and population heterogeneity are documented
(Albeck et al., Mathematical modeling and cell analysis of
a snap-action feed-forward switch controlling receptor-
mediated cell death, submitted). However, clusters found
by Isomap do not perfectly reproduce invariance mani-
fold, suggesting that further research into signaling net-
works dynamics at the systems wide level will be required
to corroborate this idea.

When assessing performance of predictive models for sig-
naling networks it is important to distinguish between
afferent and efferent cascades from cues to intracellular
signals and from intracellular signals to responses respec-
tively. While the former network from cues to intracellular
signals operate through signal transduction mechanisms,
such as protein phosphorylation and involve significant
cross-talk between different pathways with many layers of
interacting proteins, the network from signals to

responses often include transcriptional events with much
smaller number of components. Our results suggest that
when using one-to-one mapping between signals and
responses both types of cascades tend to operate though
non-linear interactions, although mappings from cues to
intracellular signals are likely to be more dramatically
nonlinear than mappings from signals to responses. In
part, this agrees with previous studies on apoptosis [5]
and T-cell activation networks (Kemp et al., Signal Com-
binations Downstream of T Cell Receptor Activation Pre-
dict IL-2 Response, submitted), where PLSR accurately
predicted cellular responses from signals using linear
functions, although failed to predict signaling from cues
to intracellular signals. The significant difference of those
approaches from ours is that both used multiple time
slices of the signaling network to predict cellular
responses. An approximately multi-linear relationship
between signals and responses, when multiple time slices
of the signaling network are taken into account, might
have important applications for predictive modeling of
cell decision processes in clinical applications, consider-
ing that linear methods have much higher reproducibility
and robustness. It also highlights the importance of
choosing the optimal number of time points when pro-
ducing cues – signals – responses data for predictive and
descriptive modeling of signaling networks, as was
described in the introduction.

Our study could be extended in several ways. First, better
approaches for analysis of Isomap projections could be
used. Second, other non-linear dimensionality reduction
techniques could be applied to study signaling networks
in addition to Isomap as used here. A disadvantage of Iso-
map is the requirement for dense coverage of manifold
with datapoints, which is necessary for accurate approxi-
mation of submanifold with geodesic distance. Through
sampling we have shown that the data in the Cytokine
compendium is sufficiently dense for Isomap to approxi-
mate nonlinear submanifold. However, this may not be
true for other datasets. Research on spectral methods for
dimensionality reduction continues at a rapid pace. Other
algorithms closely related to the Isomap and LLE include
hessian eigenmaps [23], local tangent space alignment
[24], Laplacian eigenmaps [25] and locally linear isomaps
[26]. These methods allow handling of manifolds with
more complex geometries that are more robust to noise
and outliers and have the ability to scale to larger data sets.
Application of these techniques may provide further
advances in systems wide analysis of signaling networks.

Conclusion
The construction of predictive and descriptive models for
the analysis of signaling networks is essential for under-
standing cell decision processes at the systems wide level.
Cues – signals – responses paradigm provides a unifying
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framework for data analysis and modeling of signaling
networks. The comparison of different treatment condi-
tions in terms of changes in the intracellular signaling
molecules they induce is particularly important. Here we
developed the extended Isomap algorithm for the non-
linear dimensionality reduction and applied it to the anal-
ysis of the two signaling networks: apoptosis signaling
networks induced by treatment with TNF, EGF and Insu-
lin in cancer cells and multiple signaling pathways
derived from AfCS double ligand screen dataset. We show
that Extended Isomap can find clusters corresponding to
different treatment conditions through the non-linear
dimensionality reduction of the space of intracellular sig-
naling molecules. By applying neural networks sensitivity
analysis we also recovered the subset of signaling proteins
that best explain Isomap projection from the original into
the low dimensional subspace. Finally, we demonstrated
how Isomap components can be used in a supervised
learning content for predictive modeling of apoptosis
intensity. We conclude that extended Isomap approach
can be used for visualization, predictive and descriptive
modeling of signaling networks.

Methods
Cytokine compendium data normalisation and 
transformation
Data in the Cytokine compendium used in the study were
normalized for different assays and reproducibility
between time course experiments done at different times.
All the measurements were normalized to the 0 time
point. To scale the data for estimation of Isomap geodesic
distances appropriately, each molecular signal at each
individual time point (e.g. TNF 100 ng treatment at 5
min) was normalized to unit variance. For neural net-
works application the data was scaled into [0 1] range.

Extended Isomap approach
Original Isomap and determination of k nearest neighbors
The Isomap algorithm attempts to find a low-dimensional
representation of a high dimensional data set that most
faithfully preserves pairwise distances between input pat-
terns measured along the submanifold from which they
were sampled. Isomap achieves this in three distinct steps.
In the first step, Isomap finds k-nearest neighbors from
the distance matrix for each input data point in n dimen-
sions and constructs a sparse k-nearest neighbors graph
where each data point is connected to its k-nearest neigh-
bors. The edges are then assigned weights based on the
Euclidean distance between nearest neighbors. The sec-
ond step estimates the pairwise distances dij between all
data points (i, j) by finding shortest paths through the k-
nearest neighbors graph using Djikstra's algorithm [27].
Finally, in the third step, the pairwise instances dij, esti-
mated in the previous step, are fed as input into Classical
Metric MDS. The MDS yields a low-dimensional represen-

tation ψj ∈ Rm for which (ψi - ψj)2 ≈ dij2. The value of m
required for a faithful low-dimensional representation is
estimated by the number of significant eigenvalues in the
Gram matrix constructed by MDS.

The critical parameter that determines Isomap perform-
ance is the number of nearest neighbors, k. If k is too
small, Isomap cannot capture enough information on
local dimensionality, which leads to appearance of dis-
connected components and discrete points in the low-
dimensional space. If k is too large, neighborhoods con-
sidered by the algorithm are more global than local and
Isomap may fail to find a low-dimensional representation
of the network. Consequently, the optimal value for k was
determined on the basis of stability of the low-dimen-
sional representation. To assess the stability for each value
of k, 5% of the data was randomly removed from the
Cytokine compendium and presence/absence of discon-
nected components as well as number of significant eigen-
values was recorded for 20 iterations. Based on this data
the value of k = 3 was selected as the optimal number of
nearest neighbors.

Graph-based clustering in the Isomap components
Given a collection of n datapoints (treatment conditions)
S, the similarity graph Gs is obtained by modeling each
treatment as a vertex and having an edge between each
pair of vertices whose weight is equal to the similarity
between the corresponding treatments in the signaling
space. A MinMaxCut criterion function was used to meas-
ure the overall clustering quality and find the optimal
solution. It is defined as

where cut (Sr, S-Sr) is the edge-cut between the vertices in
Sr to the rest of the vertices in the graph S-Sr . The edge-cut
between two sets of vertices A and B is defined to be the
sum of the edges connecting vertices in A to vertices in B.
The motivation behind this criterion function is that the
clustering process can be viewed as that of partitioning the
treatments into groups by minimizing the edge-cut of
each partition. However, for many problems this criterion
function has trivial solutions that can be achieved by
assigning to the first k - 1 clusters a single data point that
shares very few terms with the rest, and then assigning the
rest to the kth cluster. For this reason each edge-cut is
scaled by the sum of the internal edges, which leads to the
balanced clustering solutions.

Graph-based clustering itself is executed in three stages:
first, a distance matrix between each data point in low-
dimensional subspace is computed using Euclidian dis-
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tances, followed by a sparsification step where only 20 k-
nearest neighbors of each datapoint are retained. Finally,
the resulting sparse graph is partitioned into clusters using
a multilevel k-way partitioning scheme for irregular
graphs [28]. The advantage of this approach is that it
allows detection of irregular graphs of different densities
and sizes.

Interpretation of Isomap projections by neural networks
Different methods have been proposed for interpreting
what has been learned by a feed-forward neural network.
These interpretative methods can be divided in two types
of methodologies: analysis based on the magnitude of
weights and sensitivity analysis. Analysis based on the
magnitude of weights groups together procedures that are
based exclusively on the values stored in the static matrix
of weights to determine the relative influence of each
input variable on each one of the network outputs. In con-
trast, sensitivity analysis is based on the measurement of
the effect that is observed in the output yk due to the
change that is produced in the input xi. We used a form of
sensitivity analysis based on the "missing value problem".
One way to carry out this type of analysis, called clamping
technique [29], consists of comparing the error made by
the network from the original patterns with the error
made when restricting the input of interest to a fixed value
(in general the average value) for all patterns. However,
we adopted a more sophisticated approached based on
data imputation, where one attempts to predict the
unknown input variables conditioned upon those which
are known, by constructing auxiliary models – the
imputed values are used to fill in the gaps before the main
model is used to predict the output [30]. We analyzed sen-
sitivity by replacing each variable in turn with missing val-
ues, and assessing the effect upon the output error
produced by the neural network.To define the sensitivity
of a particular variable, V, we first run the network on a set
of test cases, and accumulate the network error E. We then
run the network again using the same cases, but this time
replacing the observed values of V with values estimated
by the missing value procedure. Next we estimate the cor-
responding network error E(V) and rank variables by the
ratio E(V)/E, where variables with high ratio contribute
most to the mapping function of neural networks.

In our application, three-layered perceptron networks are
used. The activation functions of the hidden layer and the
output layer are selected as logistic function and pure lin-
ear function respectively. A two-stage process is used to
train the network: 30 epochs of scaled conjugate gradient
descent followed by Quasi-Newton BFGS optimisation
for 100 epochs. This approach gives improved perform-
ance due to greater stability in the error function Hessian
matrix once the gradient-descent has located a reasonable
starting point for the second-order descent [31]. We also

scaled the input variables into a consistent range [0, 1]
using the Minimax approach. The number of hidden
nodes was chosen moderately small to ensure the general-
ization (4–5). The network was trained 100 times with
random initialization. The selection subset comprising
25% of the normalized dataset was chosen first without
bootstrapping (i.e. the selection subset is sampled with-
out replacement); then, the training subset is boot-
strapped from the other 75% of the data and the test set
includes remaining variables not sampled by the boot-
strap.

Choice of class labels
The results produced by Isomap were compared with
those obtained by PCA. To compare the two algorithms in
an unbiased way we have used both exploratory analysis
and a supervised classification approach. To perform clas-
sification it was first necessary to select class labels (apop-
tosis intensity) for each time course treatment, for
instance activity of signaling network five minutes after
stimulation with 100 ng of TNF. Unfortunately, we could
not use the results of apoptosis assays in the Cytokine
compendium directly as they were measured only twice
during the 24 -hour time course (with a third measure-
ment made at 48 hours after stimulation). With only two
apoptosis measurements for 13 measurements of signal-
ing network activity, the entire time course of distinct
cytokine treatments (e.g. TNF 100 ng) corresponds to a
single measurement of apoptosis intensity (e.g. high
apoptosis intensity). This assumption was checked against
compendium dataset to insure consistency, and it allowed
us to consider the 12 apoptosis measurements for each
treatment condition as signatures for class labels in classi-
fication. Expectation Maximization (EM) clustering was
used to discretize continuous apoptosis measurement
data into three different classes which represent strong,
medium or absence of apoptotic response.

Classifiers comparison
Having derived class labels we used SVM (1-norm soft-
approximation, capacity = 10000, radial bases function
kernel with variance 0.2), k-nearest neighbors, k-NN (k =
3, number of iterations for 10-fold cross-validation –
1000 to break neighboring ties) and quadratic discrimi-
nant analysis (QDA) to compare the 3-dimensional sign-
aling network reconstructions found by PCA, Isomap and
the full model comprising all 19 molecular signals
(dimensions). Optimal SVM parameters were estimated
using a cross validation loop. For comparing hypotheses
produced by PCA, Isomap or original dataset with three
different algorithms, we used 10-fold cross validation.
95% confidence intervals for the error rates were esti-
mated using binomial test. ANOVA was used to estimate
statistical significance of differences between error rates
reported for each of the classifiers and the Tukey-Kramer
Page 15 of 17
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test was used to perform post hoc comparison of the
means. For testing k-NN for classification accuracy of
apoptosis at late time points, we withheld late time points
for each of 10 different cytokine treatment conditions and
used it in the test set, starting with one condition (24
hours), and until 50% of compendium data was withheld
(4 to 24 hours).

PLS Discriminant Analysis
Computational analysis was done using Statistca
(StatSoft, Inc.) as described in details elsewhere [4]. The
software uses the non-linear iterative partial least-squares
algorithm (NIPALS) to perform decompositions and
regressions. Goodness of prediction Q2 was evaluated
using 10 fold-cross validation. Briefly, cross validation is
performed by omitting 10% of observations (13 data
points) from the model development and then using the
model to predict the Y-block values for the removed
observations.

Choice of Principal components (PC) using cross validation
We have used cross validation to find and estimate the
number of PC as follows: one entry of the Cytokine com-
pendium data matrix are kept out of the PCA model devel-
opment, and then predicted by the model, and compared
with the actual values. The prediction error sum of squares
(PRESS) is the squared differences between observed and
predicted values for the data kept out of the model fitting
was calculated according to the formula

where m is the current number of PC and m ij is the pre-

dicted value of Xij. We have used Krzanowski cross-valida-

tion approach where each entry is removed from the data
and PCs were constructed by the NIPALS algorithm using
Statistca (StatSoft, Inc.).
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