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Abstract

Background: Gene networks in nanoscale are of nonlinear stochastic process. Time delays are
common and substantial in these biochemical processes due to gene transcription, translation,
posttranslation protein modification and diffusion. Molecular noises in gene networks come from
intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all
genes. Knowledge of molecular noise filtering and biochemical process delay compensation in gene
networks is crucial to understand the signal processing in gene networks and the design of noise-
tolerant and delay-robust gene circuits for synthetic biology.

Results: A nonlinear stochastic dynamic model with multiple time delays is proposed for
describing a gene network under process delays, intrinsic molecular fluctuations, and extrinsic
molecular noises. Then, the stochastic biochemical processing scheme of gene regulatory networks
for attenuating these molecular noises and compensating process delays is investigated from the
nonlinear signal processing perspective. In order to improve the robust stability for delay toleration
and noise filtering, a robust gene circuit for nonlinear stochastic time-delay gene networks is
engineered based on the nonlinear robust H∞ stochastic filtering scheme. Further, in order to avoid
solving these complicated noise-tolerant and delay-robust design problems, based on Takagi-
Sugeno (T-S) fuzzy time-delay model and linear matrix inequalities (LMIs) technique, a systematic
gene circuit design method is proposed to simplify the design procedure.

Conclusion: The proposed gene circuit design method has much potential for application to
systems biology, synthetic biology and drug design when a gene regulatory network has to be
designed for improving its robust stability and filtering ability of disease-perturbed gene network or
when a synthetic gene network needs to perform robustly under process delays and molecular
noises.

Background
Gene expression involves a series of molecular events,
which include binding of regulators, transcription,
splicing, translation, posttranslation modification and
diffusion. As each of these molecular events is subject to
significant biochemical process delays, intrinsic

fluctuations, and extrinsic disturbances, gene expression
is best viewed as a nonlinear stochastic process with
multiple time delays [1-4]. Even in cases where popula-
tion measurements are regular and reproducible, single-
cell measurements often display significant heterogene-
ity [1]. In general, these observations suggest that the
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molecular events underlying cellular physiology at the
nanomolar scale are easily subject to fluctuations and
biochemical process delays so that we have to propose a
nonlinear stochastic model with multiple time delays for
gene expression and biochemistry [2-4]. Therefore,
molecular noise processing and delay compensation in
nonlinear stochastic gene network with process delays is
an important topic to understanding how cells function
and process information when the underlying molecular
events are random with biochemical process delays. As
pointed out in [1, 3, 4], this topic is one of the most
challenging and fascinating problems for systems biol-
ogists, since it opens questions in physiology, develop-
ment and evolutionary biology.

When the underlying molecular events are basically
random and time-delayed, how does the physiology of
the cell remain highly orchestrated and robust? Most
cellular events are orderly and precisely regulated in spite
of the stochastic function and process delays of gene
regulatory circuits within cells [1, 5, 6]. Without
consideration of biochemical process delay, a stochastic
differential equation or the Langevin equation has
recently been employed to describe the molecular
fluctuation in gene networks [3, 7]. Many algorithms
have been developed for simulating the Langevin
equation to calculate the probability density function
[5, 6, 8, 9]. The Fokker-Plank equation is employed to
describe the evolution of the probability function [1, 10].
Most researchers analyze these stochastic models, using
the Monte-Carlo method, such as Gillespie algorithm,
StockSim algorithm and so on to describe the evolution
of biochemical networks via the discrete stochastic
model. Even these modeling tools allow us to address
questions concerning intracellular noise. However, if
biochemical process delays have not been considered in
the dynamic model of biochemical gene networks, an
engineered biochemical network based on this model
may lead to fluctuation, oscillation or even blowing up
[11]. Therefore, biochemical process delays and molecu-
lar noises must be considered in the dynamic model to
mimic the realistic cellular behaviors of biochemical gene
network in cell. Recently, it is also found that most newly
synthetic networks are non-functioning and need tuning
owing to process delays, parameter fluctuations, due to
thermal fluctuation, gene expression noise, mutation and
extrinsic noises, due to changing extra cellular environ-
ments, interactions with cellular context [12]. Therefore, a
systematic design method for noise-tolerant and delay-
robust gene networks is an important topic in systems
biology and synthetic biology for an engineered gene
network to work properly in host cell [13].

In recent years, many researchers have found it useful to
invoke analogies from signal processing when

investigating molecular noise. In this situation, a
biochemical pathway is viewed as an analogy filter and
classified in terms of its frequency response from the
signal processing perspective. In terms of signal proces-
sing, the biochemical pathways function as low-pass
filters, as they transduce low-frequency signals and
attenuate high-frequency signals. In addition to intrinsic
chemical damping, negative feedback [14, 15], integral
feedback [16], and many other simple mechanisms such
as redundancy mechanisms are found to attenuate
molecular noise in biochemical systems. It is also
found that the effect of molecular noise is also amplified
in some sense by autocatalytic mechanisms (positive
feedback) to give rise to population heterogeneity (and
so diversity). Even some of the elementary mechanisms
for molecular noise attenuation and amplification
enumerated above seem simple and identifiable. How-
ever, elementary mechanisms typically do not function
in isolation; rather they interact in complex gene
networks involving multiple feedback loops. Although
it is straightforward to understand how a single feedback
loop shapes molecular noise, it is far more difficult to
understand composite behavior of multiple mechanisms
interconnected in complex architecture of gene networks
[1, 8, 9]. These molecular noise-related problems are
called molecular noise filtering problems of gene net-
work by molecular biologists [1-3, 17-19]. The analysis
of molecular noise attenuation and amplification of
gene regulatory network without process delays has been
recently discussed from the stochastic system point of
view [17]. At present, though theoretical and computa-
tional tools exist for analyzing the filtering properties of
a given network, as pointed out by Rao et al. in [1], no
good theory exists for identifying all possible systematic
mechanisms that generate robust networks to compen-
sate biochemical process delays and to attenuate
molecular noises simultaneously.

It is clear that complex gene networks are able to
function reliably despite inherent noise attributable to
molecular fluctuations and unavoidable time delays due
to biochemical process. Robustness has been hypothe-
sized as an intrinsic property of intracellular networks.
Although robustness is often studied independent of
noise and time delay, the two problems are related.
When studying robustness, the typical question is how
sensitive the behavior of a gene network is to kinetic
parameter perturbations in the model [13]. As these
parameter perturbations are subject to molecular fluc-
tuations, a molecular noise-resistant network is likely to
be robust. Nevertheless, a gene network that is insensi-
tive to kinetic parameter perturbations may still be
sensitive to extrinsic molecular noises. A robust filtering
of biochemical networks under parameter perturbations
has been discussed based on the global linearization
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technique in [20]. However, this method is only with
S-systems and without consideration of process delays.
In [21], based on S-system model [13], a robust circuit
design is proposed for nonlinear deterministic biochem-
ical networks from steady state approach and without
considering process delay. The robust stabilization
method for gene network against molecular noises has
been discussed in [22] without consideration of time-
delays in biochemical processes.

Time delays are common and substantial in biochemical
process. They can protect biochemical systems against
transient loss of input signal. Delay for proofreading is
widely employed to increase the fidelity of recognition
to provide security against misrecognition. Further delay
can filter the non-beneficial pulses [11]. However, time-
delays may play a negative role in stability of gene
networks. In [23, 24], the concepts of sensitive edge and
robust edge are used to analyze the robustness and
fragility of synchronization. Then the authors want to
increase the robustness of synchronization by its
associated feedback loops to protect against attacks to
the complex networks. Further, the robust synchroniza-
tion designs of complex time-delayed networks are also
discussed in [25, 26] to increase the robustness of
synchronization to tolerate time-delays and protect
against attacks to the networks. In this study, the random
parameter fluctuations are modeled as state-dependent
intrinsic molecular fluctuations of the stochastic gene
network model in which multiple-time delays of
biochemical process is also considered to mimic the
process delays in gene regulation processes. Both the
upstream molecular noise and the global molecular
noise affecting all genes are modeled as extrinsic
molecular noises. The robust molecular noise attenua-
tion problem will be systematically discussed for gene
networks with multiple process delays from the non-
linear H∞ stochastic signal-processing perspective.

The H∞ filtering theory has been developed for state
estimation of nonlinear stochastic signal processing to
investigate the noise attenuation problem via minimiz-
ing the worst-case effect of noise on the filtering error
[27, 28] and the H∞ control theory has been developed
to robustly stabilize the nonlinear stochastic system
under parameter perturbations [29, 30]. However, the
time delay of the stochastic process is not considered.
Recently, various time-delay control designs for non-
linear systems and fuzzy systems have been discussed in
[25, 26, 31, 32]. In this study, the robust nonlinear
stochastic H∞ filtering theory is applied to discuss the
robust stability and noise filtering problems of nonlinear
stochastic gene networks under both multiple-time
delays due to biochemical process delays and stochastic
intrinsic molecular noise due to parameter fluctuations.

Furthermore, the filtering ability of extrinsic molecular
noises will be also investigated at each gene of gene
network from the H∞ filtering point of view. For the
biotechnological purpose or drug design purpose, if
robust stability is required to tolerate a prescribed range
of intrinsic parameter variations and the filtering ability
of gene network to filter extrinsic molecular noises from
the environment has to be improved, a robust gene
circuit design scheme needs to be developed for gene
networks from the nonlinear noise filtering perspective
to achieve the design purpose via transfection and
transformation biotechnologies. For recent metabolic
engineering and future synthetic biology [7], if a
synthetic gene regulatory network is required to work
near a desired equilibrium point in an environment with
process delays, intrinsic molecular fluctuations, and
extrinsic molecular noises, a robust control circuit design
is necessary to improve the robust stability and
molecular noise filtering ability of the synthetic gene
network to achieve its required performance. This robust
filtering design method will be potential for robust gene
circuit design in future, from which gene therapy and
drug design could be developed. However, the drawback
of these nonlinear stochastic filtering approaches needs
to solve a nonlinear differential Hamilton-Jacobi
inequality (HJI) for the robust stabilization and filtering
design of gene networks. In general, we still have no
analytic solution or numerical solution for HJI, except
for some simple cases. In this study, to avoid solving HJI,
a fuzzy interpolation method is employed to interpolate
several local linear gene networks at different operation
points to approach the nonlinear gene network to
simplify the design produce of robust stabilization and
filtering of gene networks so that the robust gene circuit
design could be easily designed and implemented.

In recent years, Takagi-Sugeno (T-S) fuzzy systems have
efficiently interpolated several local linear systems via
fuzzy bases to approximate a nonlinear system [33, 34].
Therefore, a T-S fuzzy stochastic gene network is
employed to approximate a nonlinear stochastic gene
network with time delays by interpolating several local
linear stochastic gene networks with time delays at
different operation points of the nonlinear stochastic
gene network. In this study, based on fuzzy interpolation
approximation, the robust stabilization problem for
tolerating process delays and intrinsic molecular fluctua-
tions and H∞ filtering design problem for attenuating
extrinsic molecular noises of gene networks can be
efficiently solved via a set of linear matrix inequalities
(LMIs) developed from a set of fuzzy local linear
stochastic systems. These LMIs could be easily solved
via LMI toolbox in Matlab [35] to simplify the design
procedure. Furthermore, based on fuzzy approximation
method, the circuit design procedure for robust stability
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and noise filtering of a nonlinear stochastic gene
network with process delay could be simplified from
the linear gene network design point of view. In this
situation, more biological robust stabilization and
filtering insight could be investigated from the linear
system point of view. We found that if the eigenvalues of
these local linear gene networks are in the far left-hand
side of the complex domain (i.e., with more negative real
parts or more stable), then the gene network will tolerate
more process delays and intrinsic molecular fluctuations,
and could also filter more extrinsic molecular noises to
achieve the design purpose of gene networks. The robust
stabilization and H∞ molecular noise filtering circuit
design could be achieved by shifting the eigenvalues of
fuzzy linear gene networks to the far left-hand side of the
complex domain through engineering appropriate nega-
tive feedback loops via the proposed robust gene circuit
design method for nonlinear stochastic time-delayed
gene networks.

In general, the proposed robust filter design in non-
linear stochastic gene network is different from the
conventional robust fuzzy H∞ filter design for engineer-
ing control or signal processing systems [27-31]. In the
conventional fuzzy H∞ filter design [27-29], a dynamic
fuzzy estimator is employed to estimate system state
variables from the noisy measurement data, which
needs a very complicated computation for state
estimation at any time instant. In this study, only
some gene circuits are implemented (or embedded)
directly in gene network to achieve robust stabilization
to tolerate process delay and intrinsic molecular
fluctuations and to filter the extrinsic disturbances.
Therefore, the proposed robust circuit design is different
from the conventional control and filter designs in
control engineering and signal processing in [27-31].
Gene circuits are implemented by inserting the tran-
scription factor (TF) binding site of regulatory gene
product, i.e. the binding site of protein produced by
regulatory gene, to the promoter region of regulated
gene by the techniques of transfection and transforma-
tion [7, 14]. The kinetic parameters of gene circuits of
molecular noise filter are proportional to the length of
binding sites of TF inserted to the promoter region of
regulated genes and will be specified by the designer. In
order to simplify the design procedure, only a few gene
circuits are implemented. In our design procedure, the
T-S fuzzy approximation method is only employed to
simplify the specification of kinetic parameters of gene
circuit of molecular noise filter, i.e., the specification
procedure of lengths of inserted binding sites of TF
produced by regulatory genes in gene circuit design
procedure. Recent experimental advances in sequencing,

genetic engineering and bionanotechnology will make
this engineered circuit implementation feasible in near
future [7, 36-41].

Because disease may perturb the normal gene regulatory
network through genetic perturbation and/or by patho-
logical environmental molecular noise such as infection
agents or chemical carcinogens [42], in future synthetic
biology [7, 12, 19] and systems biology [13, 36, 42], we
could improve the robust stability and molecular noise
filtering ability of gene network for drug design and gene
therapy by the proposed gene circuit design method via
transfection and transformation biotechnologies, so that
a designed gene network could be protected from the
influence of process delays, intrinsic molecular fluctua-
tions and environmental molecular noises, and thus
work more reliably. Finally, two design examples in
silico are given to illustrate the design procedure and to
validate the performance of the proposed robust H∞ gene
circuit design method for nonlinear stochastic gene
networks under process delays, intrinsic molecular
fluctuations and extrinsic molecular noises.

Results
Firstly, a nonlinear stochastic time-delayed model is
developed to mimic the realistic dynamic behavior of a
gene network under process delays, random intrinsic and
extrinsic molecular noises. Then the robust stability and
the filtering ability of nonlinear stochastic time-delayed
gene network are discussed from the H∞ signal proces-
sing perspective. Further, in order to improve the robust
stability and filtering ability to tolerate more parameter
fluctuations, process delays and to attenuate much
environmental molecular noises, based on fuzzy approx-
imation and LMI technique, a systematic design method
is proposed for nonlinear stochastic time-delayed gene
networks. Finally, a simple design procedure is devel-
oped for the proposed robust gene circuit design
method. These results are described in the following
subsections in detail.

Robust Stability and Filtering Ability Analysis for
Nonlinear Stochastic Time-Delayed Gene Networks
For the convenience of illustration, the following linear
gene network with process delay is introduced first,

d
dx

x t A x t A x tk k

k

m

( ) ( ) ( ),= + −
=
∑0

1

t (1)

x(t) = x0(t)∀t Œ [-τ, 0], where x(t) = [x1(t),...,xN(t)]
T

denotes the vector of mRNA concentrations of N genes;
the maximum time delay τ = max{τk, k Œ [1, m]}; A0 and
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Ak denote the real-time and delay-time kinetic interac-
tion matrices among these genes, respectively. For
example, x(t) is the mRNA expression vector of N
genes; the diagonal component a0,ii = -li of A0 denotes
the degradation of mRNA of i-th gene with decay rate li;
the i, j component ak,ij of Ak denotes the regulatory
interaction from gene j to gene i to activate or repress
gene i with time delay τk. The delay time τk may be due to
the process time of gene transcription, translation,
posttranslation protein modification and diffusion,
which are needed for regulatory genes to product
proteins (e.g. transcription factors TFs) and then convey
them to their target genes (see Fig. 1). In general, in real
biochemical systems, these biochemical process delays
may be very long and can not be neglected in
biochemical dynamic models, especially for practical
gene network design applications.

Suppose the linear gene network in (1) suffers from
intrinsic molecular fluctuations so that ak,ij Æ ak,ij + Δak,
ijnk(t), k = 0,1,...,m, where Δak,ij denotes the amplitude of
the stochastic kinetic fluctuation and nk(t) is a white
noise with zero mean and unit variance, i.e., Δak,ij
denotes the deterministic part of fluctuations and nk(t)
absorbs the stochastic property of intrinsic molecular
fluctuations (see Fig. 1). Intrinsic molecular fluctuations
are mainly attributed to thermal fluctuation and random
molecular events in the transcription, splicing, and
translation processes of gene expression [1-3]. The
covariances of stochastic intrinsic molecular fluctuations
Δak,ijnk(t), k = 0, 1,...,m, are as follows

Cov a n t a n t ak ij k k ij k k ij t t( ( ), ( )) ( ), , , ,Δ Δ Δ1 2
2

1 2
= d (2)

for k = 0, 1,...,m, where d t t1 2, denotes the delta function
as follows

d t t
t t

t t1 2

1

0
1 2

1 2
, =

=
≠

⎧
⎨
⎩

for 

for 

According to the above analysis, the gene network under
stochastic molecular fluctuations can be represented as

d
dt

x t A B n t x t A B n t x tk k k k

k

m

( ) ( ( )) ( ) ( ( )) ( )= + + + −
=
∑0 0 0

1

t

(3)

where the fluctuation matrices Bk are given by

B

a a

a

a a

kk

k k N

k ij

k N k NN

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
Δ Δ

Δ
Δ Δ

, ,

,

, ,

, , , ...,
11 1

1

0 1 mm .

If ak,ij is free of fluctuation, then Δak,ij = 0 in Bk. By the Itô
stochastic differential equation, the stochastic gene
network equation in (3) is equivalent to the following
stochastic process [27, 29, 31]

dx t A x t dt A x t dt B x t dW t B x tk

k

m

k k k

k

m

( ) ( ) ( ) ( ) ( ) (= + − + + −
= =
∑ ∑0

1

0 0

1

t t )) ( )dW tk

(4)

where Wk(t) is a standard Wiener process or Brownian
motion with dWk(t) = nk(t)dt.

Actually, in real gene networks, the dynamic gene regulatory
equations are always nonlinear. In this situation, the linear
dynamic gene network regulatory equation in (4) should be
modified as the following Langevin nonlinear stochastic
equation with multiple time delays [1, 3, 10]

dx t f x t dt f x t dt h x t dW t h x tk k

k

m

k( ) ( ( )) ( ( )) ( ( )) ( ) ( (= + − + + −
=
∑0 0 0

1

t tt k k

k

m

dW t)) ( )
=
∑

1

(5)

where the first two terms on the right-hand side denote
the nominal nonlinear interactions of gene network and
the last two terms denote the effect of intrinsic molecular
fluctuations on the gene network, which are state-
dependent and will influence the stability of nominal
gene network.

Remark 1 If the Langevin equation in (5) is linearized at an
operation point, it should be a linear stochastic gene network
as (4).

Figure 1
A linear gene regulatory network of N genes under
process delays, intrinsic molecular fluctuation Δak,
ijnk(t) and extrinsic molecular noise v(t).
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For simplicity, the linear stochastic gene network in (4)
and nonlinear stochastic gene network in (5) will be
reformulated, respectively, as follows

dx t A x t dt B x t dW tk k

k

m

k k k

k

m

( ) ( ) ( ) ( )= − + −
= =
∑ ∑t t

0 0

(6)

and

dx t f x t dt h x t dW tk k

k

m

k k k

k

m

( ) ( ( )) ( ( )) ( )= − + −
= =
∑ ∑t t

0 0

(7)

where τ0 = 0 and τk > 0, k = 1,...,m, denote the
corresponding time delays.

We say that the stochastic gene network is asymptotically
stable in probability at the equilibrium point x = 0 if
there exists a Lyapunov (power-like) function V(x(t)) >
0, with V(0) = 0, in the neighborhood of the equilibrium
point such that the expectation of the derivative of V(x
(t)), E V x td

dt ( ( )) < 0 , i.e., the power of the gene network
is decreasing. In general, there exist many equilibrium
points for nonlinear gene networks in (7). Gene
networks perform their biochemical function within
some local region of an equilibrium point, which is
called the phenotype of the gene network. For the
convenience of design, only the robust stability of the
equilibrium point at x = 0 is discussed for the nonlinear
stochastic gene network in (7). If the interested
equilibrium point (steady state) of the nonlinear time-
delayed gene network is not at x = 0, the origin should be
shifted to the equilibrium point or the steady state. In
this situation, the robust stabilization and filtering
ability at the origin is equivalent to the stabilization
and filtering ability at the interested equilibrium point of
the gene network. According to the stochastic gene
network model in (7) and the nonlinear stochastic
stability theory in [27, 30, 31], the robust stability and
molecular noise filtering ability of stochastic time-
delayed gene networks are analyzed in the following
propositions.

Proposition 1 Assume there exists a positive Lyapunov
function V(x(t)) > 0 and V (0) = 0 satisfying the following
second-order Hamilton-Jacobi inequality (HJI)

∂
∂

⎛
⎝⎜

⎞
⎠⎟

− + − ∂

∂=
∑V x t

x
f x t h x t

V x t
T

k k

k

m

k
T

k
( ( ))

( ( )) ( ( ))
( ( ))

t t
0

1
2

2

xx
h x tk k

k

m

2
0

0

( ( ))− <
=
∑ t

(8)

for all nonzero x(t) Œ RN, then the equilibrium point x = 0 of
the nonlinear stochastic gene network in (7) is asymptotically
stable in probability, i.e., the effects of the time delays and

intrinsic molecular fluctuations h x t dW tk k kk

m
( ( )) ( )−=∑ t

0
could be tolerated by the gene network.

Proof. See Appendix A. ■

Remark 2 The last diffusion term in (8) is from the intrinsic
molecular noises in (7). If the gene network is free of intrinsic
molecular fluctuations, then the asymptotic stability of the
equilibrium point is only to check the existence of V(x(t)) > 0
in the following inequality without diffusion terms

∂
∂

⎛
⎝⎜

⎞
⎠⎟

− <
=
∑V x t

x
f x t

T

k k

k

m
( ( ))

( ( ))t
0

0 (9)

Proposition 2 For the linear stochastic gene network with
process delays in (6), we could choose the Lyapunov function
as [35]

V x t x t Px t x s Q x s dsT T
k

t

t

k

m

k

( ( )) ( ) ( ) ( ) ( )= +
−=
∫∑ t

1

for P = PT > 0 and Q Qk k
T= > 0 > 0, i = 1,...,m. Then the

robust stability problem in Proposition 1 is reduced to check
whether or not the existence of symmetric matrices P > 0 and
Qk > 0, k = 1,...,m, in the following LMI

Ξ PA PA

A P B PB Q

A P B PB Q

m

T T

m
T

m
T

m m

1

1 1 1 1 0 0

0 0

0 0

0
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

< (10)

where Ξ = + + + =∑A P PA B PB QT T
kk

m
0 0 0 0 1

.

Proof. See Appendix B. ■

If the linear gene network in (6) is free of intrinsic
molecular fluctuations, then the asymptotic stability is
only to check whether or not P > 0 and Qk > 0, k = 1,..., m,
exist in the following LMI

A P PA Q PA PA

A P Q

A P Q

T
k

k

m

m

T

m
T

m

0 0
1

1

1 1 0 0

0 0

0 0

+ +

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=∑
⎥⎥
⎥
⎥

< 0 (11)

Obviously, the condition for the existence of P > 0 and
Qk > 0, k = 1,...,m, in inequality (10) is stricter than that
in inequality (11) because A0 should be more negative
than that in inequality (11), i.e., the eigenvalues of A0

should be in the farther left-hand side of the complex
domain (the real parts of all eigenvalues of A0 should be
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more negative) or more robustly stable in order to
tolerate time delays and intrinsic molecular fluctuations.

In general, a gene network in vivo also suffers from
extrinsic molecular noises such as the transmitted noise
from upstream genes and the global noise affecting all
genes. Therefore, the nonlinear stochastic gene regula-
tory equation with process delays in (7) should be
modified in the following to mimic the realistic dynamic
behavior in its host cell.

dx t f x t dt Gv t dt h x t dW tk k

k

m

k k k

k

m

( ) ( ( )) ( ) ( ( )) ( )= − + + −
= =
∑ ∑t t

0 0

(12)

where signal vector v t v t v tn
T

v
( ) [ ( ),..., ( )]= 1 denotes the

extrinsic molecular noises and G denotes the coupling
matrix between the extrinsic molecular noises and the
gene network. In general, the intrinsic molecular
fluctuations are state-dependent as shown in (6)–(7).
Therefore, they will influence the stability of gene
network and provide an important topic for discussing
the robust stability of gene network at an equilibrium
point of interest, i.e. to discuss how much the gene
network could tolerate the intrinsic molecular fluctua-
tion h x t dW tk k kk

m
( ( )) ( )−=∑ t

0
without blowing away

from the equilibrium point. Another important topic is
how to quantify the ability to filter extrinsic molecular
noises v(t) in the gene network, i.e. the attenuation
analysis of v(t) on x(t) by the gene network. Such
information is crucial for understanding the signal-
processing scheme in gene networks, from which the
design of molecular noise-tolerant and time delay-
compensation gene circuits can be developed to achieve
a robust H∞ noise filtering design for biotechnological
purposes.

Therefore, we want to investigate the influence of
extrinsic molecular noises v(t) on the gene i, i.e. xi(t),
which is crucial to the design of noise-tolerant gene
circuit in synthetic biology [7]. Let us denote the choice
of a gene of interest as

zo(t) = Cx(t) (13)

where the row vector C = [0, 0,...0, 1, 0, 0, 0, 0], i.e., all
elements of C are zero except the i-th element being 1, if
the i-th gene xi(t) is the gene of interest in molecular
noise filtering. Let us denote the effect of extrinsic
molecular noises v(t) on a gene of interest as follows

( ( ) ( ) ) /

( ( ) ( ) ) /
,

E zo
T t zo t dt

E vT t v t dt
0

1 2

0
1 2

∞∫
∞∫

≤ g

or

E z t z t dt E v t v t dto
T

o
T( ) ( ) ( ) ( )

0

2

0

∞ ∞

∫ ∫≤ g (14)

for all bounded energy noises v(t). This is the so-called
H∞ noise filtering problem [27], which addresses the
effect of extrinsic molecular noises on the gene of interest
from the system gain (L2-gain) point of view. If the
extrinsic molecular noises v(t) are deterministic signals,
then the expectation E on v(t) in (14) could be neglected.

Remark 3

(i) The physical meaning of (14) is that the effect of extrinsic
molecular noises v(t) on zo(t) should be less than or equal to g.
If g < 1, then extrinsic molecular noises v(t) are filtered at
gene i by the gene network. If g > 1, then it means that
extrinsic molecular noises v(t) are amplified at gene i, i.e.,
gene i is much influenced by external molecular noises v(t)
and may be a weak site of the gene network.

(ii) In the conventional control system design and signal
processing [27-32], the H∞ noise filtering criterion in (14)
has been employed to design a filter to robustly estimate the
state variables from the noisy measurement output, i.e., to
specify the filter design parameters to efficiently attenuate the
effect of uncertain external disturbance on the state estimation
error of the filter [27, 28]. In this study, we only discuss the
effect of external disturbance on the genes of nonlinear time-
delayed gene network and then engineer some gene circuits to
improve the noise filtering ability of the nonlinear time-
delayed gene network to attenuate the effect of external
disturbance. Therefore, there are some differences between the
proposed noise filtering circuit design in gene network and the
conventional H∞ filter design to robustly estimate state
variables in a signal processing system under external
disturbance.

(iii) If we want to discuss the effect of extrinsic molecular
noises v(t) on the whole gene network, then C in (13) should
be an identity matrix, i.e. C = I and zo(t) = x(t).

(iv) If the initial condition x(0) ≠ 0, then the filtering ability
in (14) should be modified as follows [27, 28]

E z t z t dt EV x E v t v t dtT
o

T
0

0

2

0
0( ) ( ) ( ( )) ( ) ( )

∞ ∞

∫ ∫≤ + g (15)

for some Lyapunov function V (x(0)), i.e., the energy due to
initial condition x(0) should be considered in the H∞ filtering
performance.

Then we get the following molecular noise filtering result
for the nonlinear stochastic gene network with process

BMC Systems Biology 2008, 2:103 http://www.biomedcentral.com/1752-0509/2/103

Page 7 of 23
(page number not for citation purposes)



delays, intrinsic molecular fluctuations, and extrinsic
molecular noises in (12).

Proposition 3 If there exists a positive function V (x(t)) > 0
with V (0) = 0 solving the following HJI

∂
∂

⎛
⎝⎜

⎞
⎠⎟

− + + ∂

=
∑V x t

x
f x t x t C Cx t

V x t
T

k k

k

m
T T( ( ))

( ( )) ( ) ( )
( ( )t

g0

1

4 2
)) ( ( ))

( ( ))
( ( ))

( (

∂
⎛
⎝⎜

⎞
⎠⎟

∂
∂

+ − ∂

∂
−

x
GG

V x t
x

h x t
V x t

x
h x t

T
T

k
T

k k
1
2

2

2
t tt k

k

m

)) <
=
∑ 0

0

(16)

then the influence of molecular noises v(t) on the gene
network is less than g or equivalently, the molecular noise
filtering ability g in (14) or (15) is achieved in the nonlinear
stochastic gene network under process delays, extrinsic
molecular noises, and intrinsic molecular fluctuations.

Proof. See Appendix C. ■

Therefore, the optimal extrinsic molecular noise filtering
ability of gene network at the gene of interest is obtained
by solving the following constrained optimization

g g0

16

= min

( )subject to 
(17)

i.e., the molecular noise filtering ability g0 of v(t) on gene
i could be evaluated by the optimal H∞ filtering ability
of gene network via solving the constrained optimization
in (17).

Remark 4

(i) From Propositions 1 and 3, we gain more insight into
robust stability and molecular noise filtering of nonlinear
stochastic time-delayed gene network from the nonlinear
stochastic H∞ filtering perspective. The solution for HJI in
(16) is stricter than that for HJI in (8), because of two extra
terms for the robust filtering of extrinsic molecular noises in
(16). i.e., Proposition 3 not only guarantees robust stability
against process delay and intrinsic molecular fluctuations, but
also achieves a prescribed noise filtering ability g against
extrinsic molecular noises.

(ii) In general, a nonlinear stochastic gene network has many
equilibrium points (i.e. phenotypes). We are only concerned
about the robust stability of one equilibrium point of interest, i.
e. the equilibrium point at the steady state of gene networks.
Propositions 1 and 3 are true only at the equilibrium point
(one phenotype) of the origin, i.e. xe = 0. If we are interested
in an equilibrium point xe ≠ 0 (i.e. another phenotype), for the
convenience of investigation, the origin should be shifted to xe,
i.e., the stochastic system in (12) should be modified as

dx t f x t x dt Gv t h x t x dWk k e

k

m

k k

k

m

e′ = ′ − + + + ′ − +
= =
∑ ∑( ) ( ( ) ) ( ) ( ( ) )t t

0 0

kk t( )

(18)

where x'(t) = x(t) - xe. Therefore, when we are interested in an
equilibrium point xe ≠ 0 of gene network, the variable x(t) in
HJIs (8) and (16) should be replaced by x'(t) + xe so that the
origin of the coordinate should be shifted to xe. This shift is a
one-to-one correspondence [43]. Therefore, instead of studying
the behavior of gene network in the neighborhood of xe, one
can equivalently study the behavior in the neighborhood of the
origin x'(t) = 0 in (18).

In general, it is still very difficult to solve the second-
order HJI in (8) or (16) with V (x(t)) > 0 and V (0) = 0 to
guarantee the robust stability of a nonlinear stochastic
gene network under process delay and intrinsic mole-
cular fluctuations or to solve the constrained minimiza-
tion in (17) to get the noise filtering ability g0 on
extrinsic molecular noises at any gene of the gene
network, especially for complex gene networks. In this
situation, the T-S fuzzy model is employed to interpolate
several linear gene regulatory networks at different
operation points to efficiently and globally approximate
the stochastic gene networks in (7) and (12). According
to the T-S fuzzy model, both the robust stability of a
gene network to tolerate process delays and intrinsic
molecular fluctuations and the filtering ability of
attenuating extrinsic molecular noises of the gene
network could be efficiently investigated and calculated
via fuzzy interpolation of several local linear gene
networks. Finally, if the gene regulatory network cannot
tolerate process delays and intrinsic parameter variations
and achieve a prescribed noise filtering level g <g0 for
some biotechnological or drug design purpose, a robust
gene circuit control design is developed from the fuzzy
robust stabilization and H∞ filtering theory to achieve
the robust stability and to improve the filtering ability of
the gene network. The proposed robust H∞ filtering
design method for gene networks is also useful for
synthetic biology in the near future, if a synthetic gene
network wants to perform reliably under process delays,
intrinsic molecular fluctuations, and extrinsic molecular
noises.

Robust H∞ Gene Circuit Design of Nonlinear
Gene Network Under Process Delays and Molecular
Noises via Fuzzy Methodology
If the linear stochastic gene network in (6) is not robust
enough and cannot tolerate the molecular fluctuations

B x t dW tk k kk

m
( ) ( )−=∑ t

0
, which are state-dependent and

will affect the stability of gene network. i.e., the
perturbative gene network in equation (6) becomes
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unstable, then a gene circuit design is necessary for the
gene network. We want to engineer some feedback gene

circuits K x tk kk

m
( )−=∑ t

0
to robustly stabilize the

perturbative gene network as follows

dx t A x t K x t dt B x t dW tk k k k

k

m

k k

k

m

k( ) ( ( ) ( )) ( ) ( )= − + − + −
= =
∑ ∑t t t

0 0

(19)

= − + −
= =
∑ ∑A x t dt B x t dW tk

k

m

k k k k

k

m

0 0

( ) ( ) ( )t t (20)

where A A K K k mk k k k+ =; , , , ...,0 1 , are the circuit
kinetic parameter matrices of gene circuits to be
designed. The element k0,ij of K0 denotes the circuit
parameter to be specified for the engineered gene circuit
between gene j and gene i via transfection and
transformation biotechnologies (see Fig. 1). The gene
circuit from gene j to gene i can be implemented by
inserting the binding site of gene product j (i.e. the
protein of gene j) into the promoter region of gene i so
that the protein of gene j could bind this inserted
binding site to act as a transcription factor (TF) to
regulate the gene expression of gene i. By inserting strong
(long) or weak (short) binding site, we can get a large or
small circuit kinetic parameter k0,ij. The inserting of a TF
binding site into promoter region or the deleting of a TF
binding site from the promoter region can be easily done
by using a highly efficient phage-based homologous
recombination system, called recombineering [37, 38].
Furthermore, the change of decay rates in the diagonal
terms of A0 by the diagonal terms of K0 can be
implemented by the mechanisms and controls of
mRNA degradation through elongating or shortening
the 3' polyadenylate tail of mRNA [39, 40, 44-46]. These
powerful biotechnologies have been employed to
engineer large segments of genomic DNA to generate
transgenic and knockout constructs. However, for
simplicity and feasibility, only a few feasible gene
circuits in K0x(t) are considered for gene circuit design
in gene network, i.e., the circuit kinetic parameter matrix
K0 has with only a few elements k0,ij. The design
principle of Kk, k = 1,...,m, is similar. A more detailed
design procedure will be given in the design example in
the sequel. Therefore, in the gene circuit design
procedure, we engineer some feasible gene circuits kk,
ijxj(t - τk) for a gene network with adequate kk,ij to achieve
robust stabilization and filtering design. In the situation,
the specification of kk,ij for the embedded gene circuits is
different from the convenient control or filter design
method, which is used to calculate control input or state
estimation from state variables or output signals.
However, the closed-form solutions for Kk, k = 0, 1,...,

m, are diffcult to be obtained. Therefore, some searching
algorithms for components of Kk, k = 0, 1,...,m, are
needed.

Following the robust stability inequality in (10), we
could get the following result.

Proposition 4 The designed gene network in (20) is robustly
stable if we could specify Kk, k = 0, 1,...,m, for the designed
gene circuits such that there exist the positive definite
symmetric matrices P > 0 and Qk > 0, k = 1,...,m, solving
the following inequality

Ξ PA PA

A P B PB Q

A P B PB Q

m

T T

m
T

m
T

m m

1

1 1 1 1 0 0

0 0

0 0

0
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

< (21)

where Ξ = + + + =∑A P PA B PB QT T
kk

m
0 0 0 0 1

and Ak = Ak +

Kk, i.e., the robust gene circuit design becomes how to specify
Kk, k = 0, 1,...,m, such that there exist the positive symmetric
matrices P and Qk, k = 1,...,m, in LMI (21).

Proof. The proof is trivial. ■

Remark 5 In order to make sure the positive concentrations of
gene regulation network in (19) or (20), the choice of
designed kinetic parameter Kk to solve LMI in (21) should
guarantee the positive concentrations of gene networks. In
general, according to the positive orthant stabilization theory
[35], the guaranty for the positive concentration of x(t) is that
the off-diagonal entries of Ak = Ak + Kk are all nonnegative.
Therefore, the specification of Kk to solve LMI should be
subjected to this constraint. If these concentration constraint
can not be achieved, changes of gene circuits through other
loop should be tried.

If the nonlinear stochastic time-delayed gene network in
equation (7) cannot tolerate molecular fluctuations

h x t dW tk k kk

m
( ( )) ( )−=∑ t

0
, then we want to design the

gene circuits K g x tk k kk

m
( ( ))−=∑ t

0
in the following to

robustly stabilize the perturbative gene network

dx t f x t K g x t dt h x t dW tk k

k

m

k k k k k k( ) ( ( ( )) ( ( ))) ( ( )) ( )= − + − + −
=
∑ t t t

1 kk

m

=
∑

1

(22)

where gk(x(t - τk)), k = 0, 1,...,m, denote the nonlinear
feedback circuits and the matrices Kk, k = 0, 1,...,m,
denote their corresponding circuit kinetic parameters to
be specified to robustly stabilize the perturbative gene
network. In general, for the nonlinear stochastic gene
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network with time delays in (22), it is not easy to obtain
a systematic design method for Kk, k = 0,1,...,m, to
achieve the robust gene circuit design.

The fuzzy dynamic model with time delay has been
widely employed to interpolate several local linear time-
delayed dynamic models to efficiently approximate a
nonlinear time-delayed dynamic system. The T-S fuzzy
dynamic model is described by fuzzy If-Then rules and
employed here to deal efficiently with the robust H∞

filtering problem for gene networks under process delay,
intrinsic molecular fluctuations and extrinsic molecular
noises in (22). The i-th rule of the fuzzy model for
nonlinear stochastic time-delayed gene network in (22)
is proposed as the following form [33, 34]:

Rule If  is  and  is  and  is i z t F z t F z t Fi i g ig: ( ) ( ) ( ) ,1 1 2 2…

tthen dx t A x t K G x t dt B x tk i k

k

m

k k i k k i k( ) ( ( ) ( )) ( ), , ,= − + − + −
=
∑ t t t

0

ddW tk

k

m

( )
=
∑

0

(23)

for i = 1, 2,...,L. Fij is the fuzzy set; Ak,i, Bk,i, and Gk,i (k = 0,
1,...,m) are known constant matrices; L is the number of
If-Then rules; z(t) = [z1(t),...,zg(t)]

T are the premise
variables; g is the number of premise variables. If all
state variables x(t) are used as premise variables, then z
(t) = x(t) and g = N. The physical meaning of the fuzzy
rule i is that if premise variables z1(t), z2(t),...,zg(t) are
with the fuzzy sets Fi1, Fi2,...,Fig, then the nonlinear
stochastic gene network in (22) can be represented by
interpolating the linearized systems in (23). The fuzzy
stochastic system in (23) is inferred as follows [33, 34]

dx t z A x t K G x t dt B x ti

i

L

k i k

k

m

k k i k k i( ) ( ) ( ( ) ( )) (, , ,= − + − +
= =
∑ ∑m t t

1 0

−−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

∑ t k k

k

m

dW t) ( )
0

(24)

where

m i z
Fij z j tj

g

Flj z j tj
g

l
L

( )
( ( ))

( ( ))

=∏

=∏=∑

1

11

Fij(zj(t)) is the grade of membership of zj(t) in Fij or the
possibility function of zj(t) in Fij and μi(z), for i = 1, 2,...,
L, are called the fuzzy bases. The denominator

F z tlj jj

g

l

L
( ( ))

== ∏∑ 11
is only for normalization so that

the total sum of fuzzy bases m ii

L
z( ) ==∑ 1

1
. The physical

meaning of (24) is that the fuzzy stochastic system
interpolates L local linear stochastic systems through
nonlinear bases μi(z) to approximate the nonlinear
stochastic gene network in (22). In this situation, the
Langevin stochastic equation in (22) can be represented
by the fuzzy interpolatory gene network as follows

dx t f x t K g x t dt h x t dW tk k k k k
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0

(25)

where A A K Gk i k i k k i, , ,+ ; Δfk(x), Δgk(x), and Δhk(x)
denote fuzzy approximation errors as follows

Δ Δ

Δ

f x f x t f x t z A x t

g x

k k k k k i k i k
i

L

k

( ) ( ( )) ( ( )) ( ) ( )

(
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L
x t h x t z B x t( ( )) ( ( )) ( ) ( ),− = − − −

=∑t t m t
1

There are many methods for finding Ak,i and Bk,i, k = 0,
1,...,m, i = 1, 2,...,L, for fuzzy model identification [33].
We could use fuzzy toolbox in Matlab to find Ak,i, Bk,i,
and Gk,i easily. After finding Ak,i, Bk,i, and Gk,i, k = 0, 1,...,
m, i = 1, 2,...,L, we could easily find the bounds of fuzzy
approximation errors Δfk(x), Δhk(x) and Δgk(x) as follows

|| ( ) || || ( ) ||

|| ( ) || || ( ) ||

|| (

Δ
Δ
Δ

f x a x t

h x b x t

g

k k k

k k k

k

2 2
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≤ −
≤ −

t
t

xx c x tk k) || || ( ) ||2 2≤ − t
(26)

for some positive constants ak, bk, ck, k = 0, 1,...,m, where
|| ( ) || ( ( ) ( ) ( )) /x t x t x t x t tk k k N k− − + − + + −t t t2 1

2
2
2 2 1 2 , e . g . i f k = 0 then

|| ( ) || || ( ) || ( ( ) ( ) ( )) /x t x t x t x t x tN− = = + + +t0 2 2 1
2

2
2 2 1 2

with τ0 = 0 in (7).

According to the above fuzzy approximation method, we
get the following result.

Proposition 5 The nonlinear stochastic gene network with
time delays in (22) is robustly stabilizable by gene circuits
Kkgk(x(t - τk)), k = 0, 1,...,m, if there exist the positive definite
symmetric matrices P > 0 and Qk > 0, k = 1,...,m, solving the
following LMIs

Ξ Ξ Ξ Ξ
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11 12 13 14

21 22

31 33

41 44
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⎢
⎢
⎢
⎢
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⎥
⎥
⎥
⎥
⎥

< 0 (27)

for all i = 1,...,L, and P <bI, where

BMC Systems Biology 2008, 2:103 http://www.biomedcentral.com/1752-0509/2/103

Page 10 of 23
(page number not for citation purposes)



Therefore, the robust stabilization problem for the nonlinear
stochastic time-delayed gene network in (22) becomes how to
specify Kk, k = 0, 1,...,m, in LMIs (27) such that there exist
the positive definite symmetric common matrices P > 0 and Qk

> 0, k = 1,...,m, i.e., the gene circuits Kkgk(x(t - τk)), k = 0,
1,...,m, could robustly stabilize the nonlinear stochastic time-
delayed gene network, and the equilibrium point x = 0 of gene
network (22) is asymptotically stable in probability under
process delays and intrinsic molecular fluctuations.

Proof. See Appendix D. ■

Remark 6 In the conventional fuzzy design [33, 34], we need
to design a complicated fuzzy controller or fuzzy filter for
engineering systems. In this paper, the fuzzy approximation in
(25) is only to simplify the gene circuit design procedure by
solving Kk, k = 0, 1,...,m, via LMIs in (27) instead of solving
Kk, k = 0, 1,...,m, via HJI directly. So there are some
differences between the proposed fuzzy gene circuit design
method and the conventional fuzzy control and filter design
methods.

Remark 7 For the nonlinear stochastic gene network with
time delays, it is diffcult to construct a Lyapunov function V (x
(t)) to satisfy the HJI in (8) or (16). However, based on fuzzy
approximation method, the nonlinear stochastic gene network
with time delays is approximated by interpolating several local

linear systems with time delays at different operation points.
The advantage of the proposed fuzzy approach is that the
circuit design procedure could be simplified from the linear
time-delayed system design point of view. Thus the following
standard Lyapunov function for linear system with multiple
time-delays can be employed for the robust stabilization of
nonlinear stochastic gene network [32, 35]

V x t x t Px t x s Q x s dsT T
k

t

t

k

m

k

( ( )) ( ) ( ) ( ) ( )= +
−=
∫∑ t

1

Therefore, we can avoid the diffculty of constructing a complex
Lyapunov function for (16) and can employ the above
Lyapunov function to obtain a systematic design procedure
in the molecular circuit design.

Remark 8 If the gene circuit terms cannot be separated as
(22) in gene circuit design and are merged into the terms fk(x
(t - τk)), k = 0, 1,...,m, as follows

dx t f x t K dt h x t dW tk k k
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= =
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then (27) should be changed as follows
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for all i = 1,...,L, and P <bI, where
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and other matrices are same as in (27). Ak,i(Kk), k = 0, 1,...,
m, denote the system matrices Ak,i, k = 0, 1,...,m, containing
the designed circuit parameters Kk, k = 0, 1,...,m, as elements,
respectively.

After investigating the robust stabilization design of
nonlinear stochastic gene network under process delays
and intrinsic molecular fluctuations by the fuzzy
approximation method, in order to avoid solving the
nonlinear constrained optimization for molecular noise
filtering problem in (17), the extrinsic molecular noise
filtering ability improvement problem of gene network
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could be also treated by the fuzzy interpolation method.
Therefore, the robust filtering circuit design problem
becomes how to engineer the gene circuits Kkgk(x(t - τk)),
k = 0, 1,..., m, not only to tolerate intrinsic molecular
fluctuations h x t dW tk k kk

m
( ( )) ( )−=∑ t

0
but also to

attenuate the effect of extrinsic molecular noises v(t)
on zo(t) to a prescribed noise filtering level g as (14) or
(15). Especially, when the prescribed noise filtering level
g is below the optimal filtering ability g0 in (17) of the
gene network, the robust filtering circuit design is needed
to improve the molecular noise filtering ability. Since it
is not easy to specify Kk, k = 0, 1,...,m, to achieve robust
filtering design directly for the nonlinear stochastic gene
network in (22), the T-S fuzzy approximation in the
following equation is employed to treat the robust
filtering design problem as follows

dx t z A x t dt Gv t dt B x t dWi

i
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0

(29)

zo(t) = Cx(t) (30)

Then we get the following result.

Proposition 6 For the stochastic gene network with time
delay in (29), if we could specify Kk, i = 1,...,m for the
designed gene circuits such that there exist the positive definite
symmetric matrices P and Qk, k = 1,...,m, solving the
following LMIs
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for i = 1, 2,...,L, and P <bI where
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and the other matrices are defined in (27), then the effect of
extrinsic molecular noises v(t) on the gene of interest is less
than g.

Proof. See Appendix E. ■

Therefore, according to fuzzy approximation method,
the optimal H∞ noise filtering design problem for

nonlinear stochastic time-delayed gene network in (29)
could be solved by the following constrained optimiza-
tion problem

g g

b

0

0 0 31

=

< < >

min

, ( ).

K

k

k

P I Qsubject to   and 
(32)

After solving Kk, k = 0, 1,...,m, from LMIs in (31) for a
prescribed noise filtering level g or solving Kk, k = 0, 1,...,
m, from (32) for the optimal H∞ noise filtering ability g0,
we can design gene circuits Kkgk(x(t - τk)), k = 0, 1,...,m, in
the nonlinear stochastic time-delayed gene network (22)
to achieve a desired molecular noise filtering ability or
an optimal H∞ noise filtering ability of gene network,
respectively. Since the gene circuit design could improve
the noise filtering ability, the g0 in (32) should be less
than the gO in (17) without gene circuit design.

Remark 9 In general, the optimization problem in (32) is
called the eigenvalues problem, which can be efficiently solved
by the Matlab LMI toolbox [35].

Remark 10 If the gene control circuit terms cannot be
separated as (22) and are merged into fk(x(t - τk)), k = 0,
1,...,m, as follows

dx t f x t K dt Gv t dt h x t dW tk k

k

m

k k k
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(33)

zo(t) = Cx(t) (34)

then LMIs in (31) should be modified as follows
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and other matrices are same as in (27) and (31). Ak,i(Kk),
k = 0, 1,...,m, denote the matrices Ak,i whose entries contain
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circuit kinetic parameters Kk. In this situation, for a prescribed
noise filtering ability g, the robust circuit design is to specify
Kk, k = 0, 1,...,m, such that there exist P > 0 and Qk > 0 for
LMIs in (35).

Remark 11 If the prescribed attenuation level g is small in H∞

noise filtering design, more extrinsic molecular noises are
eliminated by gene network. However, it is more diffcult to
solve LMIs in (31) or (35) and more control or filtering effort
is needed. This is a trade off for a designer between a good
filtering ability (small g) and a design diffculty in the
robust gene circuit design.

Remark 12 Unlike the conventional fuzzy control designs
[30, 33, 34, 47] and fuzzy filter designs [20, 27, 28], the
proposed fuzzy interpolation method is only to simplify the
circuit design procedure so that we could solve Kk, k = 0, 1,...,
m, easier via the LMI scheme.

According to the above analysis, a robust circuit design
procedure using fuzzy interpolation method for stochas-
tic gene regulatory networks are summarized as follows

Design Procedure
Step 1: Model the nonlinear time-delayed gene network
as (12) and shift the interested equilibrium point to
origin as (18).

Step 2: Design some feasible feedback control circuits
K0g0(x(t)) and Kkgk(x(t - τk)), k = 1,...,m.

Step 3: Approximate the nonlinear stochastic gene
network by fuzzy system as (29).

Step 4: Estimate the fuzzy approximation error bounds
ak, bk, and ck, k = 0,1,...,m, in (26), and give a prescribed
noise filtering ability g.

Step 5: Specify the feasible circuit kinetic parameters Kk, k
= 0,1,...,m, by solving LMIs in (31) for the prescribed noise
filtering ability g or solving the constrained optimization
in (32) for the optimal noise filtering ability g0.

Computational Design Examples in Silico
Two computational design examples using the devel-
oped robust gene circuit design method are presented in
silico to illustrate the design procedure and to validate
the performance of the proposed molecular circuit
design methods.

Example 1:

Consider a benchmark genetic regulatory network as
shown in Fig. 2, which is a typical gene regulatory

network describing the gene, mRNA and protein inter-
actions [36]. These genes are regulated by other genes
and then expressed through transcription and translation
to obtain their products, i.e. proteins. Then these
proteins could be as the TFs of other genes to regulate
the expressions of other genes after some process delays.
We consider only the mRNA abundances x1, x2, x3, and
x4. Suppose the gene network suffers from stochastic
intrinsic molecular fluctuations and extrinsic molecular
noises v(t) on gene x2 and gene x4. The stochastic gene
network under process delays, intrinsic molecular
fluctuations and extrinsic molecular noises can be
represented as follows [36]

dx1(t) = (1 - l1x1(t))dt (36)

dx t
V xn t

xn t I xn t
2
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(39)

Here l1, l2, l3 and l4 are the first-order rate constants of
the degradation of x1, x2, x3 and x4, respectively. τk
denotes the process delay of gene regulation due to
transcription, transfection, posttranslation modification

and transportation of TF. The Hill term
V xn t

xn t

2 4
4 1

2 4
4 1

( )

( ( ))

−

+ −

t

tΛ

describes the sigmoid formation of x2 activated by x4

Figure 2
Gene regulatory network comprising four genes
x1-x4[36].
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with time delay τ1, maximal rate V2, dissociation
constant Λ2 and Hill coefficient n4. The inhibition by

x3 is expressed by the term (ΛI3 + xn33 (t - τ3)). The

formation of x3 is modeled with Hill expression that
points to a threshold of the formation of x3 depending
on the concentrations of x1 and x2. V3 and Λ3 are
maximal rate and dissociation constant, respectively, and
n12 is the Hill coefficient. The production of x4 depends
on the maximal rate V4 and on the inhibition by x3. The
parameters are chosen as follows [36]

l1 = 1; V2 = 1; Λ2 = 5; l2 = 0.1; ΛI3 = 0.5;

n3 = 1; V3 = 1; Λ3 = 5; l3 = 0.1; V4 = 1; l4 = 1;

n4 = 1; n12 = 1; τ1 = 1; τ2 = τ3 = 2;

The gene expression profiles of stochastic gene networkwith
process delays, intrinsic and extrinsic molecular noises in
(36)–(39) are given in Fig. 3. It is seen that there are large
fluctuations in these gene expression profiles due to process
delays and molecular noises. Suppose the proposed gene
circuit design method is employed to attenuate these
molecular fluctuations to achieve a desired steady state
quickly. In general, engineering a gene circuit to a gene
network may change its steady state because of nonlinear
inherence. Since changing the steady state of a gene network
may destroy the normal function of the gene network, it is
important tomake sure that a designed gene circuit does not
change the steady state (phenotype) of a gene networkwhile
it can compensate process delays and attenuate molecular
noises. Therefore, in order to keep the steady state of a

designed gene network the same as the desired steady state,
the gene network is designed as follows

dx x t dt1 1 11= −( ( ))l (40)
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where k1, k2 are the circuit kinetic parameters at the genes
x2 and x3. From the simulation result of the nominal
gene regulatory network, we can know that the equili-
brium point of the nominal system is at [xe1, xe2, xe3, xe4]
= [1.0000, 0.5899, 1.0557, 0.5739] which is the desired
steady state (phenotype) and should be shifted to the
origin as shown in (18) in the design procedure.
Suppose we want to specify the engineered circuit
parameters k1 and k2 such that the prescribed noise
filtering ability g = 0.9 can be achieved for the molecular
noise filtering of perturbative gene regulatory network in
(40)–(43). We must find the operative points of the gene
network to construct the fuzzy model at first. The
operative points of the state x1 are located at (0.1, 1).
For the other states x2, x3, and x4, the operative points are
located at (0, 1), (0.5, 1.5), and (0, 1), respectively. Then
we can create two membership functions for every state
at the operative points, and the number of fuzzy rules is
L = 16. The bounds of the fuzzy approximation errors are
estimated as a0 = 0, a1 = 0.001, a2 = 0.0524, b0 = 0, b1 = 0,
b2 = 0, c0 = 0, c1 = 0, c2 = 0 at (26). By the robust
molecular noise filtering circuit design in Proposition 4,
in order to guarantee the positive definite symmetric
matrices of P, Q1 and Q2, the engineered circuit kinetic
parameters k1 and k2 should be in the range k1 Œ (0, 1]
and k2 Œ [1, 20]. In the case k1 = 0.1, k2 = 10, we get
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Figure 3
The gene expression profiles of nonlinear stochastic
time-delayed gene network without engineered gene
circuit.
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The molecular noise filtering results without engineered
circuit and with two engineered circuit k1 = 0.1 and k2 =
10 are simulated in Fig. 3 and Fig. 4, respectively.
Obviously, the large molecular fluctuations in Fig. 3 are
significantly attenuated by the proposed gene circuits as
shown in Fig. 4 and the expression profiles of four genes
asymptotically achieve the desired states in probability.
From the simulation, the gene network without engi-
neered gene circuit design has much molecular fluctua-
tions due to process delays and molecular noises.
However, the designed gene network by the proposed
gene circuit design can robustly achieve the desired
equilibrium point xe = [1.0000, 0.5899, 1.0557, 0.5739]
and the molecular noise filtering is also improved by the
proposed gene circuit design. For confirmation, the noise
filtering ability of the designed gene network is
estimated as follows

( ( ) ( ) ) /

( ( ) ( ) ) /
. .

E zo
T t zo t dt

E vT t v t dt
0
100 1 2

0
100 1 2

0 3475 0
∫

∫
≈ < =g 99

and the filtering ability of stochastic gene network in
(36)–(39) without gene circuit design is given by

( ( ) ( ) ) /

( ( ) ( ) ) /
. .

E zo
T t zo t dt

E vT t v t dt
0
100 1 2

0
100 1 2

6 2545 0
∫

∫
≈ > =g 99

where zo(t) = Cx(t) in which C is an identity matrix.
Therefore, the prescribed filtering ability g is achieved by
the proposed robust gene circuit design. From the design
example in silico, it is obvious that the proposed gene
circuit design could improve the molecular noise
filtering ability of the nonlinear stochastic gene network.

Recently, the gene circuit design can be implemented by
using a highly efficient phage-based homologous
recombination system, called recombineering [37, 38].
This powerful technology has been used to engineer
large segments of genomic DNA to generate transgenic
and knockout construct to insert or delete the TF binding
sites in the promoter region of regulated genes to
increase or decrease the expression of regulated genes.
Therefore, k1 = 0.1 of the first term in the right hand side
of (41) could be achieved by deleting 90% of TF binding
sites of gene product X4 of gene x4 from the promoter
region of gene x2 through knockout construct technique
of recombineering. Similarly, k2 = 10 of first term in the
right hand side of (42) could be implemented by
inserting 10 times of TF binding sites of complex protein
X1X2 of gene x1 and x2 to the promoter region of gene x3
to increase its gene expression.

As for the implementation of two mRNA decay terms
k1l2x2 and k2l3x3 in (41) and (42), respectively, it has
been shown that mRNA decay in eukaryotic cells can be
achieved by shortening the 3' polyadenylate tail found
on eukaryotic mRNAs (referred to as deadenylation),
which primarily triggers decapping, leading to 5' to 3'
exonucleolysis. Alternatively, removal of 3' polyadeny-
late tail can expose the mRNA to 3' to 5' degradation [39,
40, 44-46]. Therefore, by elongating the 3' polyadenylate
tail of mRNA of gene x2, we can get a small kinetic decay
parameter k1 of k1l2x2 in (41) and by shortening the 3'
polyadenylate tail of gene x3, we can get a large kinetic
decay parameter k2 of k2l3x3 in (42).

Example 2:

Consider a dynamic system for the regulation of
induction in the lac operon [48]. This stochastic system
consists of five nonlinear differential equations with
multiple time delays due to transcription and translation
processes (see Fig. 5). Therefore, this gene regulatory
system in vivo could be described by the following
nonlinear stochastic time-delayed system [48].
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Figure 4
The gene expression profiles of nonlinear stochastic
time-delayed gene network with engineered gene
circuit. Four step functions in figures denote the desired
steady states of gene expressions x1-x4.
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where x1(t) is the dynamic of mRNA production; x2(t) is
the dynamic of b-galactosidase; the dynamic of allolac-
tose is described by x3(t); the lactose dynamic is
described by x4(t); the permease dynamic is described
by x5(t). When the the glucose available for cellular
metabolism is absent, the external lactose Le is trans-
ported to the cell by the permease x5(t). Then, by the
enzyme b-galactosidase x2(t), the intracellular lactose
x4(t) is broken down into glucose, galactose, and
allolactose x3(t). Finally, the allolactose feeds back to
bind with the lactose repressor and enables the
transcription process to produce the mRNA production
x1(t). The mRNA production x1(t) from DNA via
transcription needs a delayed time τM for RNA poly-
merase to transverse the three structural genes, and the b-
galactosidase production x2(t) through mRNA transla-
tion requires a delayed time τB. The delayed time τP is the
translation time between mRNA and permease. The
delay τP is the sum of the b-galactosidase and premise

translation times based on the assumption that per-
mease production can not start until b-galactosidase
production is complete. Δi, i = 1,...,5 denote the
corresponding parameter variations. The detailed process
for the lactose operon regulatory system is described in
Fig. 5 and refers to the literature [48]. The parameters for
the model are given in Table 1. The initial values are
chosen as x1(0) = 6.26 × 10-4, x2(0) = 0, x3(0) = 3.80 ×
10-1, x4(0) = 3.72 × 10-1, and x5(0) = 1.49 × 10-2. The
desired steady state (the interested equilibrium point) is
at xe(t) = [1.2359 × 10-3, 8.3645 × 10-4, 5.7666 × 10-1,
4.1583 × 10-1, 1.1664 × 10-2]T.

If the gene regulatory system is free of intrinsic molecular
fluctuations and extrinsic disturbances, i.e., W(t) ≡ 0 and
v(t) ≡ 0, the time-profiles of regulatory system are shown
in Fig. 6. We can know the system can work right.
However, in the realistic cellular environment, this gene
regulatory system may suffer from the intrinsic mole-
cular fluctuations and extrinsic disturbances. In this
example, an extrinsic disturbance v(t) affects the lactose
dynamic x4(t), and the allolactose dynamic x3(t) and the
lactose dynamic x4(t) also suffer from some molecular
fluctuations. By computational simulation, the time
profiles of the stochastic regulatory system are shown
in Fig. 7. Obviously, this system can not work properly.
Therefore, we need to redesign the some parameters of
some gene circuits to ensure the system can resist the
influences of intrinsic molecular fluctuations and extrin-
sic disturbances. From the lactose dynamic x4(t) which is
critically destroyed, we choose parameters Le, aL, b L2

,
and gL to redesign the gene regulatory system.

By the same procedure as example 1, the we could
choose the three membership functions for every state
xi(t) to approximate nonlinear functions of the gene
network. Therefore, we have L = 35 = 243 fuzzy rules to
approximate the gene regulatory system. The approxima-
tion errors in (26) could be estimated as a0 = 4.2355 ×
10-3, a1 = 1.2136 × 10-9, a2 = 4.8344 × 10-4, a3 = 7.7390 ×
10-17, b0 = 2.7578 × 10-7, b1 = 0, b2 = 0, and b3 = 0. Note
that the parameters of the fuzzy system are omitted,
because the amount of the parameters is huge. Using
LMI toolbox in Matlab to solve the optimization
problem in (32), we can obtain the optimal H∞ filtering
ability g

0
= 0.3535 and the positive definite matrices P,

Qk, k = 1...3 in the following.

P =
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Figure 5
The schematic diagram of the lactose operon
regulatory system.
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The design parameters of this regulation system are
obtained as Le = 8.0 × 10-2, aL = 2880.3, b L2

= 8460, and
gL = 0.002.

From the simulation results in Fig. 7 and Fig. 8, the
molecular noise filtering ability is also improved signifi-
cantly by the proposed gene circuit design. For confirma-
tion, the filtering ability of stochastic regulatory systems of
lac operon without gene circuit design is given by

( ( ) ( ) ) /

( ( ) ( ) ) /
.

E zo
T t zo t dt

E vT t v t dt
0
100 1 2

0
100 1 2

6 8949 00
∫

∫
≈ > =g ..3535

and the noise filtering ability of the designed regulatory
system is estimated as follows

( ( ) ( ) ) /

( ( ) ( ) ) /
.

E zo
T t zo t dt

E vT t v t dt
0
100 1 2

0
100 1 2

0 10525 0
∫

∫
≈ < =g 00 3535.

The conservative result of noise filtering ability is mainly
due to the comservative procedure in solving LMIs [35].

Conclusion
In the study, a gene network with process delays,
intrinsic molecular fluctuations and extrinsic molecular
noises is modeled as a nonlinear stochastic time-delayed
system. Then we propose a stochastic gene circuit design
method for the improvement of robust stability and
molecular noise filtering ability of nonlinear gene
network to tolerate time-delays and to attenuate mole-
cular noises via LMI technique and fuzzy interpolation

Table 1: The parameters for the lactose operon regulatory
system.

Le 8.50 × 10-2 mM μ 2.26 × 10-2 min-1

gM 0.411 min-1 gB 8.33 × 10-4 min-1

gA 0.52 min-1 gL 1.6043 min-1

gP 0.65 min-1 Γ0 7.25 × 10-7 mM/min
aM 9.97 × 10-4 mM/min aB 1.66 × 10-2 min-1

aA 1.76 × 104 min-1 aL 2908.8 min-1

aP 10.0 min-1 bA 2.15 × 104 min-1

2.65 × 103 min-1 b L2
7.614 × 103 min-1

K1 2.52 × 104 (mM)-2 K2 7200
KA 1.95 mM KL 9.7 × 10-1 mM
KLe

0.26 mM KL1
1.81 mM

KL2
9.72 × 10-1mM τM 0.1 min

τB 2.0 min τP 2.83 min
δM 9.9774 × 10-1 δB 9.5580 × 10-1

δP 9.3804 × 10-1 Δ1 2.5
Δ2 1.803 Δ3 2.079
Δ4 5 Δ5 1
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Figure 6
The time-profiles of the lactose operon regulatory
system in example 2 which is free of the intrinsic
molecular fluctuations and extrinsic disturbances.
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Figure 7
The time-profiles of the stochastic lactose operon
regulatory system in example 2 without circuit
design.
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scheme. The T-S fuzzy system can approach the non-
linear stochastic gene network with time delays via the
interpolation of several local linear time-delayed systems
to avoid solving HJI in nonlinear robust stabilization
and filtering design problems. Therefore, the robust
circuit design procedure for the nonlinear stochastic
time-delay gene network can be simplified by specifying
circuit kinetic parameters to satisfy a set of LMIs, which
could be efficiently solved by the LMI toolbox in Matlab.
Unlike the conventional trial-and-error, the proposed
design method provides a systematic method for robust
gene circuit design of nonlinear stochastic time-delayed
gene networks. Because the microarray data become
popular, the construction of a dynamic model from
microarray data for a gene regulatory network becomes
possible. Furthermore, the experimental advances in
transfection and transformation biotechnologies make
gene circuit implementation easier. Therefore, the
proposed gene circuit design methods have much
potential for application to systems biology, synthetic
biology and drug design when a gene regulatory network
has to be designed for improving its robust stability and
filtering ability of disease-perturbed gene networks or
when a synthetic gene network needs to perform reliably
around a desired equilibrium point despite of process
delays, intrinsic molecular fluctuations and extrinsic
molecular noises in host cell. Finally, a benchmark
design example is also given in silico to illustrate the
design procedure and to validate the proposed robust
circuit design method in nonlinear stochastic time-
delayed gene regulatory networks.

In the future, we will focus on the development of some
more general design methods for robust synthetic

biologic networks under parameter fluctuations, time-
delays and environmental molecular noise in host cell.
After some design specifications are given beforehand,
for example, the magnitudes of parameter variations to
be tolerated, the possible delays to be compensated, the
filtering ability to attenuate the molecular noises, the
feasible ranges of kinetic parameters to be designed and
the desired steady states to be achieved, we want to
develop some systematic design methods for a synthetic
biologic network to meet these design specifications and
achieve the design objective.

Appendix
Before the proof of propositions, the following fact is
necessary.

Fact 1 ([35]):

X PY Y PX X PX Y PYT T T T+ ≤ +1
a

a

for vectors X, Y, a constant a > 0 and a positive definite
matrix P > 0 with appropriate dimensions.

Appendix A Proof of Proposition 1
By the stochastic Lyapunov stability theorem, we choose
a Lyapunov funct ion V(x( t)) > 0 such that
E V x td

dt ( ( )) < 0 . Using Itô formula [49], we have
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If the inequality in (8) holds, then E V x td
dt ( ( )) < 0 , i.e.,

the nonlinear stochastic gene network in (7) is asymp-
totically stable in probability at x = 0.

Appendix B Proof of Proposition 2
For the linear stochastic gene network in (6), if we
choose
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Figure 8
The time-profiles of the stochastic lactose operon
regulatory system in example 2 with circuit design.
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. If the LMI in (10)
holds, then E V x td

dt ( ( )) < 0 , i.e., the linear stochastic
gene network in (6) is asymptotically stable in
probability.

Appendix C Proof of Proposition 3
Consider the following equivalent equation
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where V(x(t)) > 0.

By the Itô formula, we get [49]

dV x t
V x t

x
f x t dt Gv t dt h x

T

k k

k

m

k( ( ))
( ( ))

( ( ( )) ( ) (= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

− + +
=
∑ t

0

(( )) ( ))

( ( ))
( ( ))

( ( ))

t dW t

h x t
V x t

x
h x t

k k

k

m

k
T

k k k

−

+ − ∂

∂
−

=
∑ t

t t

0

1
2

2

2
ddt

k

m

=
∑

0

(C:2)

Substituting the above equation into (C.1), by the fact
that V(x(∞)) ≥ 0 andWk(t) is a zero mean Wiener process
and independent of x(t), we get
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By Fact 1, we have
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Therefore, we can obtain
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By the inequality in (16), we get
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Obviously, the filtering ability in (15) is achieved.
Because the noise filtering ability is defined as the
minimum effect of v(t) on the gene, so the noise filtering
ability could be achieved by minimizing g under the
constraint of (16).

Appendix D Proof of Proposition 5
Let us choose a Lyapunov function for gene network (25)
as
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By Fact 1, we have
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for k = 0, 1,...,m, where ak, 1, ak, 2, and ak, 3, are positive
constants.

Suppose the following inequality holds

P <bI (D.6)

where b is a positive constant. By (D.2)–(D.6) and (26),
we get

E
dV x t

dt
E z x t PA A P

Q x t x

i
T

i
T

i
T

i

L

k
T

( ( ))
( ) ( )[

] ( ) [

, ,≤ +{⎧
⎨
⎩

+ +

=∑ m 0 0
1

(( ) ( ) ( ) ( ( )]

[ ( )

, ,t PA x t x t A P x t

x t B

k i k
T

k k i
T

k

m

k

m

T
k

− + −

+ −

== ∑∑ t t

t

11

kk i
T

k i k
T

k k k
k

m

k

m

k k
T

PB x t x t Q x t

f

, ,

,

( )] [ ( ) ( )]

[

− − − −

+

== ∑∑ t t t

a

10

1Δ (( ) ( ) ( ) ( ) ( ) ( ) ( )], ,x f x h x h x g x g x

x

k k k
T

k k k
T

k
k

m
Δ Δ Δ Δ Δ+ + +

+

=∑ a b a2 3
0

TT
k k

T

k

m

T

t
k

PP
k

PK K P x t

k
x

( )
, ,

( )

,

1

1

1

3

1

2

0 a a

a

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

=∑

(( ) ( )

( )

, ,t B PPB x t

E z x

k k i
T

k i k
k

m

i
T

− −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪

⎫
⎬
⎪

⎭⎪

<

=∑ t t

m

0

Ξ111 12 22
1

21 13 33
1

31 14 44
1

41, , , , , , , , , ,i i i i i i i i i+ + +− − −Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ ii
i

L
x( )⎧

⎨
⎩

⎫
⎬
⎭=∑ 1

(D:7)

where x = [x(t), x(t-τ1),...,x(t-τm)]
T and other matrices are

defined in (27). If the following inequalities held
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for i = 1,...,L, then E dV x t
dt
( ( )) < 0 . So the gene network

(25) is asymptotically stable in probability.
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By the the following inequalities,
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Obviously, the noise filtering ability in (15) is achieved.
Furthermore, by Shur complement [35], the inequalities
in (E.5) are equivalent to the LMIs in (31).

Appendix F The design parameters of example 1
The parameters of the fuzzy model for the genetic
regulatory network in (36)–(39) are listed in the
following. Because the genetic regulatory network in
(36)–(39) have two different time delays τ1 = 1 and
τ2 = τ3 = 2, we can separate the system to f0(x(t)),
f1(x(t - τ1)), and f2(x(t - τ2)). Therefore, we can
obtain the the parameters of fuzzy model in (24) as
follows
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Because the function f(x(t)) is linear, the matrices A0,i are
the same.
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