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Abstract
Background: Data from high-throughput experiments of protein-protein interactions are
commonly used to probe the nature of biological organization and extract functional relationships
between sets of proteins. What has not been appreciated is that the underlying mechanisms
involved in assembling these networks may exhibit considerable probabilistic behaviour.

Results: We find that the probability of an interaction between two proteins is generally
proportional to the numerical product of their individual interacting partners, or degrees. The
degree-weighted behaviour is manifested throughout the protein-protein interaction networks
studied here, except for the high-degree, or hub, interaction areas. However, we find that the
probabilities of interaction between the hubs are still high. Further evidence is provided by path
length analyses, which show that these hubs are separated by very few links.

Conclusion: The results suggest that protein-protein interaction networks incorporate
probabilistic elements that lead to scale-rich hierarchical architectures. These observations seem
to be at odds with a biologically-guided organization. One interpretation of the findings is that we
are witnessing the ability of proteins to indiscriminately bind rather than the protein-protein
interactions that are actually utilized by the cell in biological processes. Therefore, the topological
study of a degree-weighted network requires a more refined methodology to extract biological
information about pathways, modules, or other inferred relationships among proteins.

Background
Experimental protein-protein interaction (PPI) data and
related networks, obtained from high-throughput meth-
odology as well as hand-curation, are being widely used to
probe the nature of biological organization and extract
functional relationships among sets of proteins [1,2].
What has not been appreciated is that the guiding princi-
ples involved in assembling these networks may exhibit
considerable probabilistic behaviour. Here, we show that
the probability of an interaction between two proteins is
generally proportional to the product of their individual

numbers of interacting partners (or degrees) and discuss
the consequences of this for probing PPI networks.
Understanding the underlying organizational principles
in assembling PPI networks holds the key for interpreting
and analyzing the observed interactions.

High-throughput methodologies [3-6] to determine PPI
networks have been used to probe the interactome of a
range of organisms. The organization of these interaction
networks has been studied using graph-theoretical tech-
niques [7-9] to find global characteristics that can be
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mapped back to biological phenomena, such as evolu-
tionary conserved interactions, pathway or module organ-
ization, and localization of essential proteins in the
network, to mention a few. Since we know that outcomes
of cellular actions are biologically "deterministic" in the
sense that cells use energy, synthesize proteins, duplicate
DNA, etc., the analysis of PPI networks is aimed at finding
and extracting causative components. If this information
is to be mined from a global dataset, it is vital to have an
accurate model of the architecture of the determined PPI
networks. The incorporation of the underlying determin-
ing principle of PPI organization into graph-theoretical
topological studies will provide a baseline from which
biologically-relevant insights could be extracted. For
example, a guided biological framework implies that cel-
lular processes consist of precise and unique protein-pro-
tein interactions, whereas a probabilistic model is
suggestive of an underlying principle that is more chemi-
cal than biological, describing the ability of proteins to
bind.

We show here that currently available PPI data support
the latter interpretation and demonstrate that the proba-
bility of an interaction between two proteins is propor-
tional to their numbers of interacting partners. The
observations suggest that PPI networks are almost com-
pletely probabilistic and, therefore, in a proteome context,
PPI interactions for specific biological processes are gener-
ally not distinct. From a purely biological point of view,
the knowledge of any potential interactions between pro-
teins is useful. However, by identifying common themes
in large PPI networks, the underlying principles responsi-
ble for the discovered interactions may become more
apparent.

Networks can be constructed directly from probabilistic
procedures where the interactions, or edges, between two
nodes is determined from an a priori probability distribu-
tion of edges, the simplest being the Erdös-Rényi random
model [10,11]. However, biological networks, including
PPI typically show power-law scaling in their degree dis-
tributions, in that the probability of any node having a
given number of interactions follows a power law [12-14].
As such, the Erdös-Rényi model, which generates Poisso-
nian degree distributions, is an unsuitable archetype for
PPI networks. Networks with power-law degree distribu-
tions can be constructed using a number of techniques,
including those based on preferential attachment [15,16],
duplication [17-19], and hierarchical [20,21] approaches.
Alternatively, the geometric random model generates net-
works that nearly follow a power-law distribution [22].
While each of these models may have qualitatively simu-
lated biological networks, none have consistently and
accurately reproduced properties of individual PPI net-
works.

Here, we describe insights into the topologies of PPI net-
works that should serve to enhance the development of
future models. A degree-weighted network is one in which
the probability of an interaction between two nodes is
proportional to the product of their degrees, i.e., Pij ∝ kikj,
where ki and kj are the degrees, or number of interactions,
associated with nodes i and j, respectively [23]. A type of
degree-weighted network denoted "STICKY" [24] has
been proposed as a model for PPI networks on the basis
of similarities in derived global, or average, network prop-
erties, e.g., graphlet frequencies and average clustering
coefficients. However, this model generates far too many
nodes of zero degree and is therefore an unsuitable proto-
type for PPI networks. It is thus of importance to both
qualitatively and quantitatively ascertain the extent of
degree-weighted behaviour in biological networks. Here,
we explore the nature of the protein-protein connectivities
more directly and conclusively demonstrate that PPI net-
works indeed contain degree-weighted elements.

Results
Probabilistic behaviour in protein interaction networks
A total of nine PPI networks from six unique organisms
were studied. Full details of these networks are provided
in Additional file 1. Their sizes are given in Table 1. For
each network we calculated the probabilities P(k1, k2) of
interaction between two proteins of degrees k1 and k2. A
probability of interaction P(k1, k2) is calculated by count-
ing the total number of interactions occurring between all
proteins of degree k1 and all proteins of degree k2, and
dividing this by the total number of all pairs of combina-
tions that can be made. Degree-weighted behaviour was
then established by comparing the probabilities P(k1, k2)
of interaction with the products k1k2 of the degrees (Figure
1). We find that each PPI network exhibits perfect degree-
weighted behaviour up to a characteristic value of k1k2, or
cutoff, which depends on the network studied. Cutoffs
have been estimated for each network and these are
shown as dashed lines in the graphs (Figure 1). For Plas-
modium falciparum, degree-weighted behaviour is exem-
plary throughout, thus no such value could be
determined. Cutoff estimates range from 200 (Worm-
CORE) to 4000 (Escherichia coli). It is unclear why cutoff
values vary greatly between networks but this is presuma-
bly related to the differences in their degree distributions
in that the actual degrees of the hub proteins vary from
network to network. As the number of hub proteins of a
particular degree is consistently very small (one or two),
one might expect more noise in the hub-hub interaction
regions (largest values of k1k2). Correlation coefficients
between P(k1, k2) and k1k2 determined using data with
product degrees less than the cutoff are 0.97 or higher
(Table 1), indicating an unmistakable degree-weighted
signature in the PPI networks.
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Evidence of degree-weighted connectivity in nine PPI networksFigure 1
Evidence of degree-weighted connectivity in nine PPI networks. a, Homo sapiens (human); b, Drosophila melanogaster 
(fruit fly); c-e, Saccharomyces cerevisiae (yeast): Yeast-DIP, Yeast-CORE, Yeast-Y2H; f, Escherichia coli (bacterium); g-h, 
Caenorhabditis elegans (nematode): Worm-Y2H, Worm-CORE; i, Plasmodium falciparum (malaria-causing parasite). For k1k2 > 
10, probabilities of interaction P(k1, k2) were ordered by k1k2 and averaged in groups of 10.
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If we express the probability of interaction as P(k1, k2) =
γ(k1k2)θ, then the power, θ, and proportionality con-
stant, γ, can be determined for each network by linear
regression on data with product degrees less than the cut-
off (Table 1). We find that all powers, θ, are very close to
one, which is consistent with a probability function that is
linear in each degree [23,24]. The proportionality con-
stants γ determined from the regressions can also be calcu-
lated from normalizations via γ(cal) = E/Σi<j(kikj), where
E is the total number of interactions in the network and
the summation is over all pairs of proteins. We find that
the fitted and calculated proportionality constants are in
good agreement (Table 1). Therefore, not only is degree-
weighted behaviour evident in the networks but this prop-
erty can straightforwardly be extracted, and modelled by
Pij = γkikj, where the proportionality constant γ is deter-
mined from the degrees of the proteins.

Having demonstrated that PPI networks exhibit degree-
weighted behaviour up to a certain value of the degree
product k1k2, we turn our attention to these nonconform-
ing regions of the networks. Of the networks analyzed
here, only that of P. falciparum (Figure 1i) shows a degree-
weighted tendency throughout. In terms of the number of
interactions, this network is the second smallest only to
that of the high-confidence network of Caenorhabditis ele-
gans (Figure 1h), which shows more consistent behaviour
in the high-degree product range than the other networks.
However, there does not seem to be any association
between levels of consistency and the sizes of the PPI net-
works. The nature of the deviations from degree-weighted
behaviour is similar in all networks (Figure 1) and con-
sists of a levelling off in values of P(k1, k2) together with
increased variability. An important observation is that the
probabilities of interaction in these high-degree areas are
still quite high when compared to the well-behaved,

lower-degree interaction regions. Thus, even though the
high-degree nodes (or hub proteins) do not seem to obey
degree-weighted behaviour, they still prefer to interact
with each other rather than with lower-degree proteins.
These findings are similar to that reported previously, in
that the hub proteins act somewhat differently to the
remainder of the proteins [25]. However, in contrast, we
find that interactions between hub proteins have high
probability compared to an interaction between low-
degree nodes. It has been commonly accepted that hubs
in a network avoid each other [25], however, we do not
find this to be so.

Impact of degree-weighted behaviour upon network 
topology
Further insight regarding the hub-hub connectivity, as
well as the overall topology of the PPI networks, can be
gained by determining the average path lengths L(k1, k2)
between proteins of degrees k1 and k2. We investigate such
maps for each of the PPI networks studied here. Figure 2
illustrates maps for the networks of Homo sapiens and Dro-
sophila melanogaster, while maps for the remaining net-
works are provided in Additional file 2. As expected, the
lowest-degree proteins are typically separated by the larg-
est number of links, and the distance between proteins is
decreased as either, or both, of their degrees are increased.
For H. sapiens, this trend extends through to the high-
degree interacting proteins, as most of the hubs are sepa-
rated by only one or two links, indicating that they do not
avoid each other. Therefore, this network incorporates a
scale-rich element [26] as well as a hierarchical nature in
that the hub proteins are somewhat interconnected and
generally closer to higher-degree proteins. For D. mela-
nogaster, the hubs appear slightly less clustered than in H.
sapiens, with separations of mostly one, two, and three
links. If most of the shortest paths between proteins

Table 1: Properties of PPI networks

Network Number of 
proteins

Number of 
interactions

r* θ† γ† (× 10-5) γ(cal)‡ (× 10-5)

H. sapiens 9263 34564 0.99 1.00 ± 0.02 1.49 1.45
D. melanogaster 6736 20308 0.99 1.01 ± 0.02 2.25 2.46
Yeast

- DIP 4617 16311 0.99 1.02 ± 0.02 2.98 3.07
- CORE 2449 5579 0.99 1.03 ± 0.06 8.41 8.97
- Y2H 3277 4393 0.99 1.15 ± 0.08 7.22 11.4

E. coli 1473 5709 0.97 1.06 ± 0.04 6.09 8.79
Worm

- Y2H 2624 3967 0.98 1.08 ± 0.07 9.59 12.6
- CORE 727 814 0.99 1.03 ± 0.09 53.5 61.7

P. falciparum 1304 2745 0.99 0.99 ± 0.05 18.0 18.3

*Pearson correlation coefficient for test of association between P(k1, k2) and k1k2, where P(k1, k2) is the probability of interaction between two 
proteins of degrees k1 and k2.
† Fitted values (from the Log-Log plots in Figure 1) occurring in the expression P(k1, k2) = γ(k1k2)θ. θ is given with 99% confidence intervals.
‡ Prediction of γ via γ(cal) = E/Σi<j(kikj), where E is the number of interactions in the network and the summation is over all pairs of proteins.
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traverse the interconnected hub areas, then this explains
why the overall average path length for the H. sapiens net-
work (4.28) is smaller than for the D. melanogaster net-
work (4.41) even though the former is much larger. Maps
for all PPI networks studied here show similar features.
The only real differences are in the connectivities of the
high-degree proteins, which can be enhanced (H. sapiens,
E. coli, C. elegans, P. falciparum) or slightly diminished (D.
melanogaster, Saccharomyces cerevisiae).

The path length maps clearly demonstrate that almost
every high-degree protein has another high-degree protein
located within one or two steps. This implies that any
existing modules that incorporate one or more high-
degree proteins are very likely to overlap or neighbour
each other. As such, it is doubtful that isolated modules, or
dense clusters, will contain high-degree proteins. Rather,
they might contain proteins of more modest degree. How-
ever, the maps also indicate that any protein is, on the
average, within three steps of a hub. Therefore, isolated
complexes, if they exist, are likely to be few steps away
from a high-degree protein. The observed trends in
degree-weighted behaviour and shortest path lengths sug-
gests that the PPI networks are extremely dense in their
core, or interconnected hub region, and become some-
what sparser as the number of steps from the core is
increased. Therefore, if any concentrated clusters are iden-
tified by some graph theoretical criterion, then there are
probably many other complexes satisfying, or very nearly

satisfying, this criterion. Thus, the concept of an isolated
module becomes indistinct.

Analogy between degree-weighted connectivity and 
randomness
To illustrate the concept of inherent randomness in net-
works displaying degree-weighted behaviour, we show
how Erdös-Rényi (ER) random graphs [10,11] also exhibit
a degree-weighted characteristic. ER random networks
have degree distributions that are Poissonian about the
average degree and are, therefore, different from those of
PPI networks, which show power-law scaling. Nonethe-
less, examination of the connectivity profile in ER net-
works will shed light on the interpretation of degree-
weighted behaviour. The model we studied here is an ER
random graph equivalent to the PPI network of P. falci-
parum, i.e., the probability of any edge is determined from
the number of nodes and edges in the network of P. falci-
parum. We analyzed the extent of degree-weighted behav-
iour in this ER model by computing the probabilities P(k1,
k2) of interaction between two proteins of degrees k1 and
k2 over 104 realizations of the network. However, each
probability P(k1, k2) was only averaged over the number
of generated networks that contain nodes of degree k1 and
k2. The reason for this is that nodes of higher degree may
not occur in every realization. The resulting relationship
between the probability of interaction P(k1, k2) and the
degree product k1k2 is shown in Figure 3. As expected, this
plot clearly suggests that ER random networks are inher-

Distance profiles in two protein-protein interaction networksFigure 2
Distance profiles in two protein-protein interaction networks. a, Homo sapiens; b, Drosophila melanogaster. Distances 
shown as average shortest path lengths L(k1, k2) between proteins of degrees k1 and k2.
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ently degree weighted, i.e., P(k1, k2) ∝ k1k2. The results fur-
ther suggest that degree-weighted behaviour may be an
indication, or property, of randomness. The ramifications
of these findings are not immediately obvious and further
analysis is required to comprehensively assess whether
PPI networks incorporate random elements. However,
our preliminary analysis indicates that randomness may
play a significant role in these biological networks.

Discussion and Conclusion
The degree-weighted nature of PPI networks as well as the
hub grouping present a quandary in that it implies that
the assembly of these networks may be less biologically
guided and more probabilistic in nature. One reason for
this may be that high-throughput methods make little
assumption about a protein's locality in the cell and there-
fore allow for more interactions than might be observed
in vivo. In fact, only 40–50% of the identified interactions
from high-throughput yeast two-hybrid (Y2H) analyses of
S. cerevisiae were between proteins occurring in the same
cellular compartment [27,28]. However, the Yeast-CORE
PPI network, which is considered to be high confidence
and has a high conservation of interactions between pro-
teins of the same compartment [29], exhibits a high level
of degree-weighted behaviour (Figure 1d). Another con-
sideration is that the various approaches to identify pro-
tein-protein interactions unintentionally bias their
collation from the different functional and cell compo-

nent categories [28]. However, all the PPI networks stud-
ied here show similar degree-weighted connectivity even
though five of them (Figures 1b (D. melanogaster), 1e (S.
cerevisiae), 1g–h (C. elegans), and 1i (P. falciparum)) are
almost completely determined from Y2H screens, while
the remaining four are compiled from a variety of experi-
mental sources (see Additional file 1).

It could also be that PPI networks determined from high-
throughput methods contain non-specific interactions.
Such variability is not unexpected considering the large
amount of irreproducibility of once-identified interac-
tions [30]. In such a case, we might expect to see similar
probabilistic behaviour as that observed here. Contrary to
this, though, the high-confidence network of C. elegans
[30], which contains interactions found in three inde-
pendent repeated experiments, exhibits clear degree-
weighted characteristics (Figure 1h).

Obviously, protein-protein interactions are necessary for a
myriad of biological processes, however, if the event is
"controlled" by other time- and location-dependent proc-
esses, the actual binding or interaction could be of sec-
ondary importance. If degree-weighted behaviour is
observed in a network, i.e., if protein interactions appear
probabilistic, an analysis of expected binding events will
determine whether the observed binding events are
guided by their interactions or just by their ability to bind.
This will greatly enhance the capability of interpreting and
extracting biological information from protein-protein
interaction networks. The findings presented here provide
a cautionary note on the biological interpretation of large
PPI networks. One interpretation of the observed degree-
weighted networks is that we are witnessing the ability to
bind, and not necessarily what connections/interactions
are actually present in the cell. The true biological connec-
tions that are used in a pathway or biological process can-
not be back-engineered from this type of data without
taking into account a degree-weighted model, and hence
the topological study of a degree-weighted network
requires a more refined methodology to extract biological
information about pathways, modules, or other inferred
relationships among proteins. A priori knowledge of a pro-
tein's degree or connectivity is not available, however,
algorithms to predict this [31,32], as well as their interac-
tions [32-34], are being developed. Whether application
of these predictive algorithms on genomic scales yield
degree-weighted networks remains to be seen, and may
even serve as a test for the verity of the resultant network
topologies.

Further insight into the degree-weighted nature of PPI net-
works may be obtained from analyses of the interacting
protein pairs at more elementary levels. An avenue for this
dissection has been to characterize the structural and func-

Degree weighted connectivity in the Erdös-Rényi random graph model equivalent to the PPI network of P. falciparum (1304 nodes, 2745 edges)Figure 3
Degree weighted connectivity in the Erdös-Rényi 
random graph model equivalent to the PPI network 
of P. falciparum (1304 nodes, 2745 edges). Probabilities 
of interaction P(k1, k2) are calculated for 104 realizations, 
which are then averaged over the number of simulated net-
works that contain nodes of degree k1 and k2.
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tional domains present in each protein [35,36] and subse-
quently identify consistent signatures, i.e., pairs of
domains that are more likely to be involved in binding
[37,38]. In this way, domain-domain interaction (DDI)
networks can be derived and then compared against PPI
networks to see if they have similar topological properties
such as degree-weighted behaviour. If, for example,
degree-weighted behaviour is not observed in DDI net-
works, then one would anticipate consistent precepts for
the allowed interactions, thereby allowing for alternative,
and more insightful, analyses of PPI networks.

One utility of knowing that a network is degree-weighted
is to use the probabilistic interpretation to find nodes that
deviate from degree-weighted probability. Such nodes
would represent a potential network that is biologically
deterministic by its protein-protein interactions alone. For
example, clusters of low-degree proteins might imply
selective complex formation, and hubs found to be iso-
lated from other high-degree proteins may represent
important bottlenecks.
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