
BioMed CentralBMC Systems Biology

ss
Open AcceResearch article
The regulatory network of E. coli metabolism as a Boolean 
dynamical system exhibits both homeostasis and flexibility of 
response
Areejit Samal1 and Sanjay Jain*1,2,3

Address: 1Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India, 2Jawaharlal Nehru Centre for Advanced Scientific 
Research, Bangalore 560064, India and 3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

Email: Areejit Samal - areejit@physics.du.ac.in; Sanjay Jain* - jain@physics.du.ac.in

* Corresponding author    

Abstract
Background: Elucidating the architecture and dynamics of large scale genetic regulatory networks
of cells is an important goal in systems biology. We study the system level dynamical properties of
the genetic network of Escherichia coli that regulates its metabolism, and show how its design leads
to biologically useful cellular properties. Our study uses the database (Covert et al., Nature 2004)
containing 583 genes and 96 external metabolites which describes not only the network
connections but also the Boolean rule at each gene node that controls the switching on or off of
the gene as a function of its inputs.

Results: We have studied how the attractors of the Boolean dynamical system constructed from
this database depend on the initial condition of the genes and on various environmental conditions
corresponding to buffered minimal media. We find that the system exhibits homeostasis in that its
attractors, that turn out to be fixed points or low period cycles, are highly insensitive to initial
conditions or perturbations of gene configurations for any given fixed environment. At the same
time the attractors show a wide variation when external media are varied implying that the system
mounts a highly flexible response to changed environmental conditions. The regulatory dynamics
acts to enhance the cellular growth rate under changed media.

Conclusion: Our study shows that the reconstructed genetic network regulating metabolism in
E. coli is hierarchical, modular, and largely acyclic, with environmental variables controlling the root
of the hierarchy. This architecture makes the cell highly robust to perturbations of gene
configurations as well as highly responsive to environmental changes. The twin properties of
homeostasis and response flexibility are achieved by this dynamical system even though it is not
close to the edge of chaos.

Background
Large scale biological networks and their associated
dynamical systems have a crucial role to play in unravel-
ling the systemic properties of cells. Structural studies of

large scale metabolic, protein interaction and genetic reg-
ulatory networks have uncovered some unexpected pat-
terns leading to interesting hypotheses and questions (for
reviews see [1-3]). For a deeper understanding of system
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level phenomena, it now seems that we need to explore
the relationship between network structure and the
dynamics of genes, proteins and other biomolecules. In
this paper we study the Escherichia coli regulatory network
and show that the dynamics leads to biologically impor-
tant properties such as cellular homeostasis and flexibility
of response to varied environments. Our study reveals that
some very simple features of the genetic regulatory net-
work are responsible for these properties. These design
features may be universal across prokaryotes and possibly
have vestiges in higher organisms as well.

Large scale mathematical models for dynamical phenom-
ena are difficult to construct due to paucity of data and are
difficult to profitably analyze due to their complexity. In
this context flux balance analysis (FBA) has proved to be
a useful computational technique to explore steady state
flows in large scale metabolic networks [4-7]. A concep-
tual framework to study dynamics of large scale genetic
regulatory networks as Boolean systems was introduced
by Kauffman [8-10]. In this paper we use this approach to
study the large scale transcriptional regulatory network
(TRN) of an organism in which both the network and the
Boolean functions have been constructed from real data.
Our study is based on the database iMC1010v1 [11]
which describes the regulatory network controlling
metabolism in E. coli.

The Boolean approach provides a coarse-grained model of
the dynamics of TRNs, in which each gene's configuration
has only two allowed values (corresponding to the gene
being off or on), each gene's update is given by a Boolean
function of all its inputs, time is discrete and (in our work)
all genes are updated synchronously. A differential equa-
tion based simulation of large scale TRNs is not feasible at
the moment due to lack of kinetic data, and the large
number of unknown parameters would also render the
results of such a simulation difficult to interpret [12]. On
the other hand Boolean simulations of smaller biological
systems have provided useful insights [13-17]. The
Boolean approach can provide useful information about
some qualitative features of the dynamics, e.g., the nature
of the attractors of the system, and through that, insights
about what might happen in a more detailed simulation
and the system itself.

The genetic network regulating E. coli metabolism as a 
Boolean dynamical system
The database iMC1010v1 contains 583 genes. These are
collectively regulated by a set of 103 transcription factors
(TFs) which are gene products of 104 of the genes in the
set, 96 external metabolites, 19 other conditions, 21 inter-
nal fluxes of metabolic reactions and 9 stimuli. The
directed graph of this network is shown in Fig. 1, where a

directed link from one node to another denotes a regula-
tory interaction.

The database also provides the Boolean input-output map
at each node, e.g., the configuration of each gene (on or
off), as a function of the on-off states of all its inputs.
Using this information we construct the following discrete
dynamical system describing E. coli's TRN (for details, see
Methods section):

gi(t + 1) = Gi(g(t), m); i = 1, 2,..., 583. (1)

Here gi(t) is the configuration of gene i at time t. Time is
measured in discrete units: t = 0, 1, 2,... gi(t) = 1 (0) means
that at time t gene i is on (off). The vector g(t) collectively
denotes the configurations of all the genes at time t; its ith

component is gi(t). The vector m denotes the configura-
tion of external metabolites; its ith component mi = 1 if
metabolite i (i = 1, 2,...,96) is present in the external envi-
ronment for uptake into the cell, and mi = 0 if it is absent.
The above equation expresses the fact that the on-off state
of a gene at any time instant is controlled by the state of
the genes at the previous time instant as well as the state
of the external environment. The interaction of genes is
mediated by transcription factors. Thus a single time unit
corresponds to the average time between the initiation of
transcription of a gene coding for a transcription factor
and the initiation of transcription of a gene regulated by
that transcription factor.

In principle m can also change with time as the cell uses
up food molecules in its external environment for its
metabolism and excretes other molecules [18,19]. How-
ever, in the present work we consider only buffered media
which are characterized by mi that are constant in time. m
thus defines a constant external environment of the cell.
We have considered two classes of buffered media, (a) a
set of 93 minimal media (62 aerobic and 31 anaerobic)
each capable of supporting the growth of the cell as deter-
mined by FBA (see Supplementary Table S1 in Additional
File 1 for a list), and (b) a much larger library of 109732
minimal media constructed using the method described
by Barrett et al [19].

The functions Gi contain all information about the inter-
nal wiring of the network (who influences whom) as well
as the logic of each gene's regulation (given the configura-
tion of all of gene i's inputs at time t, whether gene i will
be on or off at t + 1). Each function Gi typically depends
only upon those components of g and m that directly
affect the expression of gene i (see Fig. 2 for an example).
We have considered the dynamical system (1) with two
slightly different forms of the functions Gi, called 1A and
1B, arising from two different treatments of intermediate
variables (the internal fluxes of certain metabolic reac-
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tions) that appear in the database iMC1010v1. In the first
approach (1A) for simplicity we have treated only the
genes and their products as dynamical variables, keeping
these internal fluxes fixed. The second approach (1B)
includes the effect of some other internal variables such as
concentrations of internal metabolites (as reflected

through these fluxes) also being dynamical. The latter
effectively introduce additional interactions among the
genes.

The conceptual framework for studying TRNs as Boolean
dynamical systems of the type gi(t + 1) = Gi(g(t)) was set

Map of the transcriptional regulatory network controlling metabolism in E. coliFigure 1
Map of the transcriptional regulatory network controlling metabolism in E. coli. In this figure, there are genes coding for the TFs 
(pink circles), genes coding for enzymes (brown circles), external metabolites (green squares), certain internal fluxes (purple 
parallelograms), stimuli (yellow triangles) and other conditions (blue diamonds). See text for details.
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up by Kauffman [8,9] almost four decades back and sub-
sequently has been studied extensively, resulting in sev-
eral important insights [10,20-24]. In particular Kauffman
found that such systems with a large number of compo-
nents possess an ordered regime in which the attractors
have short periods and large basins. In this regime these
systems have the property of homeostasis or robustness to
perturbations of the genetic configuration. In the absence
of detailed molecular data on the real genetic networks,
this approach was used for ensembles of biologically
motivated random Boolean networks, and, more recently,
real networks with the functions Gi chosen randomly from
a suitable ensemble of Boolean functions [23,24].

References [13-17] have applied the Boolean approach to
specific biological gene regulatory networks where
detailed genetic data is available. These networks are
smaller than the ones mentioned above, and have up to
40 distinct genes, proteins and other molecules [13-17].
In reference [14], where a Boolean network of 180 nodes
is considered, the network contains 15 distinct genes and
proteins (with 12 nodes for each of them corresponding

to 12 distinct cells). These models, apart from reproduc-
ing several observed phenomena of these systems, have
also found that the networks possess the property of
homeostasis, as well as robustness to genetic mutations.

The present study is inspired by the work of Kauffman and
extends the above development in two important ways.
One, it studies the empirically derived network of a real
organism, but one that is much larger than the biological
systems mentioned above. The present network [11] has
583 genes and 96 external metabolites accounting for
close to half of all genes currently believed to be involved
in metabolism in E. coli. Being more than an order of mag-
nitude larger (in terms of the number of genes involved)
than other real genetic networks considered as Boolean
systems, this allows us a qualitatively different systemic
view of the organization of the genetic network of an
organism. We not only find homeostasis in this large sys-
tem, but also identify the design feature of the network
responsible for this property. Two, we are able to study the
effect of the external environment on the TRN dynamics
through the vector m in Eq. (1). Note that the system stud-

Example of a Boolean function Gi representing the regulatory logic at the promoter region of gene b2720 that determines its expressionFigure 2
Example of a Boolean function Gi representing the regulatory logic at the promoter region of gene b2720 that determines its 
expression. The gene b2720 is on if and only if both the transcription factors coded by genes b2731 and b3202 are present and 
oxygen is absent in the environment. For all other cases, the gene b2720 is off.
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ied by Kauffman is described by the equation gi(t + 1) =
Gi(g(t)) instead of Eq. (1), which takes into account the
effect of genes on other genes but not the effect of the
external environment. Other works that investigate real
biological systems as Boolean networks have only a few
environmental signals [13-17]. As a consequence of the
present database [11], we are able to take into account the
effect of external environment in a much more systematic
and extensive way than before. This sheds light on a dif-
ferent property of the network, namely its flexibility of
response to a diversity of environments.

Results
Homeostasis: The final state is essentially the same after 
any perturbation of the genes
We simulated the dynamical system 1A for each of the 93
m vectors corresponding to the 93 minimal media men-
tioned above, starting from a set of 10000 randomly cho-
sen initial conditions for the gi. For each m and each

initial condition of the genes, the system reached a fixed
point attractor in a maximum of 4 time steps. Further-
more, for each m the fixed point was independent of the
chosen initial condition of the genes. This is shown in Fig.
3 for glucose aerobic medium for four initial conditions.
We also considered the library of 109732 minimal media
for a single randomly chosen initial condition each. A
fixed point attractor was found in each case. There are in
principle 2583 possible initial conditions. We present later
the analytic argument as to why a unique final configura-
tion independent of initial condition is inevitable for each
fixed m, given the architecture of the TRN. This property
means that as long as the external environment remains
fixed, the TRN regulating E. coli metabolism will revert to
a unique configuration of its genes after any perturbation
of the latter.

The dynamical system 1B, which includes some addi-
tional links between the genes compared to 1A, was also

Dynamical behaviour of the E. coli TRN for a fixed environment, glucose aerobic minimal mediaFigure 3
Dynamical behaviour of the E. coli TRN for a fixed environment, glucose aerobic minimal media. For all initial conditions the 
system is attracted to a fixed point whose configuration depends upon the medium. The plots depict, as a function of time, the 
hamming distance of the configuration from the fixed point attractor corresponding to the medium. 4 different initial condi-
tions are shown. One is a randomly chosen initial condition. Another is the 'hamming inverse' of the attractor (in which the 
configuration of every gene is reversed with respect to the attractor). Two other initial conditions are the attractor configura-
tions of other minimal media.
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studied for the 93 minimal media with 1000 randomly
chosen initial conditions each. In this case for 89 of the 93
media, we found 36 distinct attractors (8 fixed point
attractors and 28 two-cycles). For the remaining 4 mini-
mal media, there were 10 distinct attractors (4 fixed point
attractors and 6 two-cycles). Again the attractor was
reached in a maximum of 4 time steps. For each of the
cycles, we found that most of the genes (562 to 567 out of
583) were in fact frozen in a fixed configuration, and only
16 to 21 genes oscillated back and forth between zero and
one with period two. These 21 genes are listed in Supple-
mentary Table S2 in Additional File 1. Furthermore for
any given medium we found that each of the 562 frozen
genes had the same configuration across all the attractors
(36 or 10). This means that for any given medium, most
genes (562 or more out of 583) end up in the same fixed
configuration independent of the initial conditions of the
genes. Recently, Shlomi et al. [25], using a different tech-
nique, also observed that the state of only 10 genes is
undetermined for a given medium in the regulatory net-
work controlling E. coli metabolism [11]. One can show
that there are no other attractors of system 1B, using its
structural properties (analysis not presented here). We
have also checked that the 562 frozen genes end up in the
same configuration in both system 1A and 1B for any
given medium.

Kauffman has characterized random Boolean networks as
having two regimes, an ordered regime wherein the attrac-
tors have a large 'frozen core' of genes locked in a fixed
configuration together with a few 'twinkling islands' of
genes that switch on and off, and a chaotic regime
wherein the number of 'frozen' genes is much less than
those of the 'twinkling' ones [10]. Our findings above
imply that the genetic regulatory network controlling E.
coli's metabolism is deep in the ordered regime, since the
dynamical variables corresponding to 562 out of 583
genes are frozen in a fixed configuration when the external
environment is fixed. Collectively, our results of both
dynamical systems imply that the E. coli TRN exhibits a
high degree of homeostasis, in that it is highly insensitive
to initial conditions and for any given medium all genetic
perturbations die out quickly, restoring an overwhelming
majority of genes to a configuration that is independent of
the perturbation.

Flexibility: The system has a wide range of response to 
changes in environmental conditions
While homeostasis is a useful property in any given envi-
ronmental condition, the organism also needs to respond
flexibly to changes in the environment. We investigated
flexibility of the TRN to environmental changes in two
ways. First, we determined the hamming distance between
attractor states of the system 1A corresponding to pairs of
minimal media. For the set of 93 minimal media, we

found the largest hamming distance between two attractor
states corresponding to two different minimal media to be
114. We also determined the attractors of the dynamical
system 1A for the larger library of 109732 minimal media
(all attractors are fixed points whose basin of attraction is
the entire configuration space). We ran 'constrained FBA'
for each of these attractors to determine which of them
supports a nonzero growth rate (see Methods section for
details). This yielded a subset of 15427 minimal media.
We computed the pairwise hamming distances among
this set of 15427 attractors also. The largest of these dis-
tances was found to be 145. The distribution of these
hamming distances is trimodal (Fig. 4) similar to that
found and discussed in Barrett et al. [19]. Thus, although
the attractor for a fixed environmental condition is
unique, the attractors for two different environmental
conditions can be quite far apart. Therefore, while the sys-
tem is insensitive to fluctuations in gene configurations in
a fixed external environment, it can move to quite a differ-
ent attractor when it encounters a change in environment.
Thus the system shows flexibility of response to changing
environmental conditions.

Second, we found that across these 15427 conditions the
genes that had a configuration that differed between any
pair of attractors were drawn from a set of 374 out of the
583 genes. Of these 374 genes, 66 genes code for TFs and
308 genes code for metabolic enzymes. The remaining
209 genes had the same configuration (75 off and 134 on)
in all the 15427 attractors. The variability of a gene's con-
figuration across different environmental conditions can
be characterized by the standard deviation of its value
(zero or one) across this set. We found this standard devi-
ation to range from zero to close to its maximum possible
value 0.5, with the mean of the 374 standard deviations
mentioned above being 0.20. The histogram of standard
deviation values is shown in Fig. 5. These observations
quantify the considerable variety in a gene's variability
across environmental conditions.

Adaptability: The genetic network's response to changed 
media increases metabolic efficiency
To further investigate flexibility, we tracked how the met-
abolic response of the cell, as measured by its growth rate
computed using FBA, changes when its environment
changes. A reaction in the metabolic network can be
assumed to be off if none of the enzymes catalyzing it are
being produced, or, equivalently, in our dynamical sys-
tem, if the genes coding for those enzymes are in the off
state. For any configuration of the metabolic genes, FBA
can thus be used to compute the growth rate of the cell by
turning off all reactions whose corresponding genes are in
the off state in that configuration, thereby capturing the
effect of gene regulation on metabolic function (see Meth-
ods section). We computed this 'constrained FBA' growth
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rate for each of the attractors of the TRN dynamical system
1A for the 93 minimal media. 81 of them, listed in Table
S3 in Additional File 1, gave a nonzero growth rate. Start-
ing from an initial condition of the TRN that corresponds
to the attractor of one of these 81 media, say X, we com-
puted the time course of the TRN configuration in another
buffered medium Y, until it reached the attractor corre-
sponding to Y. For each of the TRN configurations in the
trajectory we computed the growth rate using constrained
FBA.

This effectively tracks how the constrained growth rate of
the cell changes with time after its environment changes
suddenly from X to Y. The result is shown in Fig. 6 for the
cases where the carbon source in X is glutamate and in Y
is glutamine, lactate, fucose or acetate. In the attractor of

X the growth rate is low for the medium Y. The TRN con-
figuration changes with time so as to typically increase the
growth rate. We found that for the above 81 minimal
media, the growth rate in the attractor configuration of the
medium was greater than the average growth rate in the
other 80 attractors by a factor of 3.5 (averaged over the 81
media). Moreover the average time to move to the attrac-
tor from such initial configurations was only 2.6 time
steps. In other words regulatory dynamics enables the cell
to adapt to its environment to increase its metabolic effi-
ciency very substantially, fairly quickly.

We also calculated the growth rate for each of the 15427
minimal media in their respective attractor configurations
as a ratio of the maximal growth rate possible in those
media (the latter computed for each medium using FBA

The E. coli TRN is flexible in response to changing environmental conditions encounteredFigure 4
The E. coli TRN is flexible in response to changing environmental conditions encountered. Changing the environmental condi-
tion can lead to a wide range of hamming distances among the attractors. In the figure, the distribution of pair-wise hamming 
distances between attractors for 15,427 different environmental conditions is shown. Inset: Enlargement of the graph for large 
hamming distances. The largest hamming distance obtained between attractors for two different environmental conditions is 
145.
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on the full metabolic network without imposing any reg-
ulatory constraints). The average value of this ratio was
found to be as high as 0.815 and was less than 0.5 for only
7% of the media (for the histogram of these ratios see Fig.
7). This shows that the regulatory dynamics results in a
close-to-optimal metabolic functioning under a large set
of conditions. This observation also lends support to the
usefulness of FBA in probing metabolic organization.

In a dynamical system of the type gi(t + 1) = Gi(g(t), m) it
is of course not surprising that the attractor of the genes'
configuration g depends upon the external metabolite
configuration m. Our results related to flexibility and
adaptability are an attempt to quantify the change in the
attractors as the external environment is varied and to
show that the change is functionally useful in the survival
of the organism.

Robustness of the network to gene knockouts
In order to test the robustness of network functionality to
successive gene knockouts, we considered the progressive
decline of metabolic performance for an ensemble of
1000 'random knockout trajectories'. Each trajectory was

constructed as follows: One out of 583 genes was chosen
at random and knocked out, i.e., its gi was set to be iden-
tically 0. The constrained FBA growth rate was determined
for the attractors of the resultant dynamical system of 582
genes for each of the 81 minimal media discussed above.
This was repeated after knocking out another gene chosen
at random from the remaining 582 genes, and so on until
the attractors for all the 81 media became dysfunctional
(i.e., gave a zero growth rate). The number of knockout
steps, n, needed for the network to become metabolically
dysfunctional for all the 81 media was determined for
each of the 1000 random knockout trajectories con-
structed in this way. Figure 8 shows the number or fre-
quency f(n) of trajectories with a given value of n. The
curve fits the exponential distribution f(n) ~ exp(-n/n0)
with n0 = 12.1. Thus the chances of survival decrease expo-
nentially with the number of knockouts.

Design features of the regulatory network: Origin of 
homeostasis and flexibility
The following structural characteristics of the TRN explain
several of the dynamical features described above: The
TRN 1A is an acyclic directed graph with maximal depth

The histogram of standard deviation of a gene's configurations across 15427 attractors for different environmental conditionsFigure 5
The histogram of standard deviation of a gene's configurations across 15427 attractors for different environmental conditions. 
The left-most bar corresponds to 209 genes whose configuration remains unchanged.
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4. The largest connected component is displayed as a hier-
archy in Fig. 9, in which all links are pointing downwards.
At the bottom of the hierarchy are 479 metabolic genes in
the full system (409 in the largest connected component)
coding for enzymes that have no outgoing links. Thus
these nodes do not influence the dynamics of any other
gene. We refer to these as the 'leaves' of the acyclic graph.
At the top of the hierarchy are nodes with no incoming
links, or 'root nodes'. The depth of a node in the acyclic
graph is the length of the longest path to it from a root
node. Root nodes correspond to external metabolites and
other variables that have fixed values in the system 1A
such as certain conditions, fluxes, etc. Since we consider
only buffered media the m variables, by virtue of their
root location, act as control variables of the dynamical
system. The genes coding for TFs are at intermediate levels
in the graph. These observations immediately explain why
(a) there are only fixed point attractors of this system, (b)
their basin of attraction is the entire configuration space,
(c) it takes at most 4 time steps to reach the attractors from

any initial configuration, and (d) the attractor configura-
tion depends upon the medium. For, the m vector deter-
mines the configuration of the root level. This fixes the
configurations of all nodes at the next level (depth 1) at
the next time instant (t = 1) and subsequent times irre-
spective of their values at t = 0, because the input variables
to the Boolean functions controlling them are fixed. This
fixes the configurations of all nodes of depth 2 at t = 2 irre-
spective of their configurations at t = 1, and so on, until at
t = 4, the configuration of the maximum depth leaves are
fixed irrespective of the configuration they held earlier. A
change in the medium or external environment is a
change in the configuration of root nodes; this also perco-
lates down in a maximum of 4 steps resulting in a new
fixed point. The acyclicity of the E. coli TRN was noted by
[26]. Its maximum depth being 5 (including parts of the
network that regulate systems other than metabolism)
was remarked upon by [27]. That root control of this acy-
clic graph is in the hands of environmental signals has
been observed by [28]. However, to our knowledge the

Metabolic efficiency due to regulationFigure 6
Metabolic efficiency due to regulation. The figure shows the adaptation of the E. coli TRN towards higher growth rate in 
response to change of medium. Growth rate obtained using constrained FBA is plotted for 4 trajectories of the TRN corre-
sponding to aerobic minimal media with glutamine, lactate, fucose or acetate as the carbon source. The initial condition of the 
TRN in each case is the state the system would have been in for the glutamate aerobic medium. Dotted lines show the pure 
FBA growth rate in the 4 minimal media. The growth rate increases in three and remains constant in one of these trajectories.
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present work is the first one that brings these facts together
to study dynamics and elaborate upon their consequences
for homeostasis and flexibility of the system.

Disconnected structure of the reduced dynamical system: modularity, 
flexibility and evolvability
Since leaf nodes do not affect the dynamics of upstream
nodes, it is worthwhile to ask about the dynamics of the
'reduced dynamical system' which is obtained from the
full system by removing the leaves. When leaf nodes in the
system are removed along with all their links, one is left
with Fig. 10. This is a surprisingly disconnected graph; the
large connected component has broken up into 38 dis-
connected components. It has several small components
containing upto only 4 nodes at depth ≥ 1 and one com-
ponent with 27 nodes at depth ≥ 1. The latter component
is regulated by oxygen, some inorganic sources of nitro-
gen, and certain amino acids and sugars. Other compo-
nents are typically regulated by single metabolites or
groups of biochemically related metabolites. This proce-
dure reduces the number of outgoing links from global

regulators drastically. For example the gene b3357 coding
for Crp is left with only 3 outgoing links instead of 105.

Two components of a dynamical system that are discon-
nected from each other are dynamically independent: the
dynamics of each can be analyzed independently of the
other. The dynamics of the 'reduced dynamical system'
shown in Fig. 10, in particular its attractors and basins of
attraction, can be reconstructed from those of its discon-
nected components. Such a disconnected or 'product'
structure of a dynamical system greatly simplifies its
mathematical analysis. Modularity of biological systems
refers to the existence of subsystems that are relatively
independent of each other [29]. Each connected compo-
nent of Fig. 10 can therefore be regarded as a core of a
module, and modularity of the present genetic regulatory
system is then nothing but the property that it is com-
posed of disconnected components at this level of
description.

Histogram of the ratio of constrained FBA growth rate in the attractor of each of 15427 minimal media discussed in text to the pure FBA growth rate in that mediumFigure 7
Histogram of the ratio of constrained FBA growth rate in the attractor of each of 15427 minimal media discussed in text to the 
pure FBA growth rate in that medium. This is peaked in the bin with the largest ratio (≥ 0.9).
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Restoring the leaves and their links in Fig. 10 will take us
back to Fig. 1 which contains the large connected compo-
nent shown in Fig. 9. This means that leaf nodes typically
receive links from more than one module core. The struc-
ture is like a banyan tree which has multiple trunks ema-
nating from independent roots and in which leaves
receive sustenance from more than one root. In this pic-
ture, there is no direct crosstalk between the module cores
but they can affect common leaves. This enables many leaf
nodes to be influenced by several environmental condi-
tions. This 'multitasking' adds to the complexity of cellu-
lar response to different environments and possibly
contributes to greater metabolic efficiency. When a mini-
mal medium is changed by replacing its carbon source by
another that belongs to a different module, the genetic
network needs to respond by activating genes coding for
enzymes that catalyze metabolic reactions needed to
break down the new source and process its moieties. The
connections of the leaf nodes to the modules above them
must be such that that is achieved, given our finding that
the constrained FBA growth rate increases as the new
attractor is reached.

The location and dynamical autonomy of the modules
could also contribute to evolvability. A new module
added to Fig. 10 would not affect existing ones; thus the
organism can explore new niches characterized by new
food sources without jeopardizing existing capabilities.
This may be a particular case of the more general observa-
tion [30,31] that the architectural features of organisms
responsible for their flexibility to environmental condi-
tions also contribute to their evolvability.

The graph of the dynamical system 1B is not completely
acyclic. Effectively some of the genes that are leaves in 1A
now get outgoing links that feed back to genes coding for
transcription factors. This results in the cycles we have
seen as attractors. Our analysis of this dynamical system,
not discussed here, reveals that removing the leaves of this
system exposes a modular structure in terms of which the
attractors can be understood.

Almost all input functions are canalyzing in the E. coli TRN
It has been shown by Kauffman and his colleagues that
the stability in the genetic regulatory networks to pertur-
bations can arise due to the canalyzing property of

Frequency distribution of the number of random knockouts needed to make a cell unviable for growth for all 81 minimal mediaFigure 8
Frequency distribution of the number of random knockouts needed to make a cell unviable for growth for all 81 minimal 
media. The red curve is the best fit to an exponential distribution.
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Boolean functions [23,24]. A canalyzing Boolean function
has at least one input such that at least one of the two val-
ues of this input determines the output of the function
[10]. For a given number of inputs, K, the fraction of
Boolean functions that are canalyzing decreases as K

increases. All Boolean rules compiled for eukaryotes from
the available literature have been found to be canalyzing
functions [21]. For the present E. coli TRN the frequency
distribution of the number of genes with K regulatory
inputs is given in Table S5 in Additional File 1. We found

Largest connected cluster of the TRN controlling metabolism in E. coliFigure 9
Largest connected cluster of the TRN controlling metabolism in E. coli. The colour coding of all nodes is as in Fig. 1.

Picture of the regulatory network obtained when all leaf nodes in the network of Fig. 1 are removed along with all their linksFigure 10
Picture of the regulatory network obtained when all leaf nodes in the network of Fig. 1 are removed along with all their links. 
The colour coding of all nodes is as in Fig. 1. The red hexagon denotes the lone TF in the network that is coded for by two 
genes. The nomenclature for conditions C1 to C7 and S1 to S8 is given in Table S4 in Additional File 1. The electronic version 
of this figure can be zoomed in to read node names.
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that Boolean functions for 579 of the 583 genes in the E.
coli TRN possess the canalyzing property. Only 4 genes
had input functions that were not canalyzing.

The dynamical system achieves flexibility even though it is far from 
the edge of chaos
One might expect that a dynamical system whose attrac-
tors have large frozen cores and very small 'twinkling
islands' is rather rigid and therefore unlikely to be adapt-
able to the external environment and also unlikely to be
evolvable. This expectation has given rise to the conjecture
[10] that genetic regulatory systems ought to be close to
the 'edge of chaos', the boundary that separates the
ordered phase from the chaotic phase in the space of
dynamical systems. However, as discussed above in the
section on homeostasis, the present dynamical system is
deep in the ordered phase, since it always falls into the
same attractor that is a fixed point or has isolated low
period cycles for all initial conditions in a few time steps
(all or most genes get frozen). In other words it is far from
the edge of chaos. We have seen that this is an inevitable
consequence of the hierarchical, largely acyclic architec-
ture of the network (see the section on design features). At
the same time, we have seen that the system is also highly
responsive to the environment. How have these two prop-
erties managed to co-exist? The answer lies in the observa-
tion that root nodes of the hierarchy are largely the
environmental variables – the external metabolites in the
present case. The attractor configuration is thus a function
of the external environment, specified by the variable m.
While for any fixed m there is a global attractor in which
most or all genes have frozen configurations, when m
changes the genes 'unfreeze' and move to a new attractor
configuration. The modular organization of the network
with a lot of crosstalk between modules at the leaf level
(enzyme coding genes) ensures that the melting and
refreezing is quite substantial. The same architecture that
produces this flexibility of response to the external envi-
ronment can also enhance evolvability.

The present architecture as an alternative to the edge of
chaos hypothesis for simultaneously producing homeos-
tasis and flexibility has not been noticed earlier because
the earlier literature has primarily focussed on the abstract
genetic network itself without much reference to the envi-
ronmental control variables that abound in the real sys-
tems. Here, since we are investigating the database
iMC1010v1 which brings together, within the same net-
work, genes as well as nodes describing external environ-
mental signals, this possibility has become evident.

Discussion
All our results, being derived from the database
iMC1010v1, have some limitations that stem from the
database itself. First, the database covers the regulation of

only about half of the metabolic genes in E. coli. Even
among these genes the present set of connections could
have false positives as well as negatives, especially the lat-
ter. Additional nodes and connections would modify the
dynamics reported here. However, new nodes and con-
nections corresponding to genes coding for enzymes are
unlikely to affect our qualitative conclusions about the
nature of attractors significantly. The reason is that most
such genes are likely to be leaves of the network like the
nodes at the bottom of Fig. 9, in which case they would
not affect the dynamics of other nodes. However the
inclusion of such genes as well as additional connections
of existing genes in the network would add to the con-
straints on FBA; it would be interesting to see the extent to
which regulatory dynamics enhances metabolic efficiency
in different environmental conditions. The inclusion of
more TF genes and modified connections among existing
genes would affect the dynamics. In particular feedback
loops could bring in longer cycles as attractors. Several
genes are known to have autoregulatory self-loops [32]
that are not included in the present database. These could
produce 2-cycles at the individual nodes even at constant
input. Present work seems to indicate that apart from self-
loops, TRNs are largely acyclic [26-28] and have a small
depth (about 5). Furthermore the kind of modularity
described here for the TRN regulating metabolism seems
to exist for other parts of the E. coli TRN. This together
with the evidence of preponderance of canalyzing func-
tions suggests that cyclic attractors where they do exist are
likely to be of low period and localized. Cyclicity is
needed for explicitly temporal phenomena like the cell
cycle or circadian rhythms. It is possible that metabolism
being a functionality that needs to be active whenever
food is available is largely regulated without cycles at the
genetic level, with feedbacks typically entering at the level
of metabolites regulating enzymes to ensure efficient
functioning on a faster time scale. Nevertheless it would
be important to explore these questions with an enlarged
database.

In this context, we remark that the lack of feedback from
genes to other genes via TFs is not an assumption on our
part, rather it reflects the way this biological system actu-
ally is as captured in the present database and also in other
studies mentioned above. The models studied originally
by Kauffman [8,10] were random Boolean networks.
Those networks had substantial feedbacks between genes
and hence more complicated attractors and dynamics.
One of our main results is that the genetic regulatory net-
work of this real biological system is structured (and
hence departs from random networks) in such a way that
it has simple attractors and dynamics. Thus while our
modeling technique is not very different from Kauffman's
(apart from the inclusion of the external environment)
our dynamical results are quite different because the
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underlying network has a very different structure from the
one Kauffman considered.

In addition to the feedback from genes to other genes via
TFs, discussed above, there can be another kind of feed-
back from the metabolic network (e.g., metabolite con-
centrations) into the genetic network. The database we
have used has such feedbacks via the fluxes of certain met-
abolic reactions. We have converted these into effective
feedbacks from genes to other genes in order to have a
simplified dynamics and a closed system of the genes
alone (along with external metabolites). We remark that
there exist in the literature alternative ways of treating
metabolic feedback on regulation and in particular the
flux variables. These include the regulatory FBA
[11,18,33] and dynamic FBA [34,35] in which the fluxes
and the genes are dynamically coupled to each other.
However, in these methods one makes an arbitrary choice
of the flux vector out of many alternative flux vectors sat-
isfying the constraints. Another method, SR-FBA [25], has
been proposed that systematically accounts for multiple
optimal metabolic steady states given a regulatory state.
However SR-FBA cannot be used for dynamical simula-
tions since it only yields the various steady states for the
metabolic-regulatory system. Our treatment of the inter-
nal fluxes is simpler compared to the above mentioned
methods in that it eliminates the flux variables in favour
of an effective feedback of the genes upon other genes. In
the context of the present database we believe that our
broad conclusions would not change significantly
because of our simplified approach to the treatment of the
fluxes since the feedbacks from the fluxes affect only 5
genes coding for transcription factors and 16 genes down-
stream of these coding for enzymes, thus affecting only 21
genes out of 583. A better treatment of the feedbacks from
internal metabolites than is achieved by our approach and
the other approaches mentioned above requires metabo-
lite concentrations which are difficult to compute at the
present time due to the paucity of kinetic information for
large scale networks.

We end this section with a comment relating this to earlier
works and a speculation. Kauffman [8,10] has found bio-
logically motivated random Boolean networks to possess
multiple attractors that he has interpreted as different cell
types of a multicellular organism. In the present work, we
have studied the genetic network regulating metabolism
in a prokaryote. Perhaps not surprisingly, we get a much
simpler picture of the network exhibiting a much higher
degree of order in the dynamics than the systems Kauff-
man investigated. While we also find that the system can
go into different attractors (see the discussion above on
flexibility), yet, unlike Kauffman, for whom different
attractors were realized via different initial conditions of
the genes, in the present case the different attractors are

realized when the control variables (metabolites in the
external environment) have different configurations.
When the control variables are held fixed we find no (or
very little) multiplicity of attractors irrespective of the ini-
tial condition of the genes (see the discussion on homeos-
tasis). The architecture and dynamics we have found is
probably quite suitable for prokaryotic lifestyles and evo-
lution. The question remains open whether for eukaryotes
and especially multicellular ones, the hypothesis that
associates different cell types with different attractors of
the regulatory dynamics is valid. While that hypothesis
remains an enticing possibility, it is worth noting that the
present simple architecture would have its uses in the
eukaryotic case as well. Environmental control of cellular
attractors (via the architecture discussed above) can itself
cause a cell to differentiate into another type, the environ-
ment being determined in the multicellular case by the
state of other cells in the organism. The modular structure
discussed above would even permit a cell to hop through
several attractors in the course of development of the
organism as the environmental cues to this cell change.
Such an architecture could thus contribute to develop-
mental flexibility and, potentially, evolvability of eukary-
otes as well. The multiplicity of internal attractor basins
pointed out by Kauffman would be an asset in keeping the
cell in its new attractor after a transient environmental cue
has caused it to shift from one basin to another. It would
be interesting to investigate these questions when a data-
base similar to iMC1010v1 becomes available for a multi-
cellular organism.

Conclusion
The overall organizational picture of the system that
emerges from our study is the following: The genetic reg-
ulatory network controlling metabolism in E. coli as rep-
resented in the present database is (essentially) an acyclic
graph. Cycles, where they do exist, are short and 'local-
ized' in that they have a limited number of nodes down-
stream of them in the present system. The nodes at the
root of this graph are primarily environmental variables
(in the present case external metabolites). The leaves of
this graph are genes coding for enzymes while the middle
layers correspond to genes coding for transcription fac-
tors. The maximal distance between a root node and a leaf
node is 4. The top and middle layers are organized into
small dynamically independent modules; crosstalk
between the modules occurs at the lower level of enzyme
coding genes. The database, and hence the above men-
tioned architecture, represents a limited portion of the
genetic regulatory network of E. coli and can change as
more information becomes available. Nevertheless, this
architecture has the virtue that it endows the system with
the property of homeostasis, namely, that in a fixed envi-
ronment the genes relax within a short time to the same
fixed configuration after being perturbed. It is also respon-
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sible for the property that the system responds in a flexible
and efficient way to a sustained change of environment.
We have speculated that such an architecture can contrib-
ute to the evolvability of the network, and variants of it
might be useful for multicellular organisms as well.

Methods
Construction of the Boolean dynamical system describing 
the genetic regulation of E. coli metabolism
We have represented the E. coli TRN regulating its metab-
olism as a Boolean dynamical system given by the equa-
tion (1) where gi(t) represents the configuration of gene i
(with values 0 or 1 representing the gene being off or on,
respectively) at time t, and the vector m = (m1,..., m96)
describes the buffered external environment (mi being 0 or
1 if metabolite i is absent or present, respectively, in the
external environment). This dynamical system was con-
structed from the integrated regulatory and metabolic net-
work iMC1010v1 for E. coli [11]. This database was
downloaded from the website [36]. The regulatory inter-
actions and the Boolean rules incorporated in this recon-
structed network are based on various literature sources.
The TRN accounts for 583 genes of which 479 are coding
for enzymes catalyzing metabolic reactions and 104 are
coding for TFs. The 583 genes, 103 TFs, 96 external metab-
olites, 19 conditions, and 21 internal fluxes of metabolic
reactions are respectively denoted by the vectors g, t, m, c,
v, all of which can, in principle, depend upon time t. E.g.,
ti(t) (i = 1, 2,...,103), the ith component of t(t), equals
unity if the TF i is present in the cell at time t and zero if
not. ci(t) (i = 1,2,...,19), the ith component of c(t), equals
unity if the ith condition holds at time t and zero if not.
vi(t) (i = 1, 2,...,21), the ith component of v(t), equals unity
if the ith metabolic reaction in the above mentioned set of
internal metabolic reactions is happening inside the cell at
time t (with a flux greater than a specified value) and zero
if not. The additional 9 stimuli (e.g. stress, etc.) are
assumed to be absent. Thus the overall system contains
583+103+96+19+21 = 823 Boolean variables. Its dynam-
ics is organized as follows: The presence or absence of the
transcription factors, external metabolites, and the status
of the internal fluxes and other conditions at time t deter-
mines the on-off state of the 583 genes at t:

gi(t) = Fi(t(t), m(t), c(t), v(t)), i = 1, 2,...,583. (2)

The database iMC1010v1 gives the form of the functions
Fi in terms of AND, OR and NOT operations on the
Boolean arguments. The 103 transcription factors are
coded for by a subset of 104 genes (two genes together
code for one TF and the remaining 102 genes code for one
TF each). The on-off state of these genes at the previous
time step t - 1 determines whether the TFs they code for
are present at t (a single time step therefore corresponds to
the average time for transcription and translation). Thus

ti(t) = Ti(g(t - 1)), i = 1, 2,...,103, (3)

where the function Ti(g) = gi for 102 transcription factors

that are coded for by single genes; for the TF coded for by

2 genes Ti(g) = AND . Substituting this in the pre-

vious equation gives

gi(t) = Fi(T(g(t - 1)), m(t), c(t), v(t)). (4)

This equation provides the dynamical rule for updating
the gene configurations from one instant to the next, pro-
vided the status of the variables m, c, v is known.

Treatment of external metabolites m
In this work we considered only buffered media in which
the external environment was assumed constant. Thus
m(t) = m, independent of t. For each medium considered,
the components of m corresponding to the metabolites
present in the external environment were set to unity and
the remaining components were set to zero. E. coli is
known to be capable of transporting 143 metabolites into
the cell, including 131 organic and 12 inorganic mole-
cules [37] of which 96 (86 organic and 10 inorganic) are
included in the regulatory part of the database
iMC1010v1. We considered the following classes of min-
imal media in this work:

(a) 93 minimal media (61 aerobic and 32 anaerobic):
These are characterized by a single organic source of car-
bon (listed in Supplementary Table S1 in Additional File
1), and the ions of ammonium, sulphate, phosphate,
hydrogen, iron, potassium and sodium. The components
of m corresponding to these metabolites were set to unity
and others were set to zero in a given minimal medium.
Oxygen was set to unity in the aerobic media and to zero
in anaerobic media. In principle 86 organic carbon
sources would yield 172 media (aerobic plus anaerobic).
Out of these we restricted ourselves to that subset of
media for which the E. coli metabolic network supports
growth of the cell as determined by Flux Balance Analysis
(FBA); i.e., media for which the optimal growth rate calcu-
lated by FBA without imposing regulatory constraints is
nonzero (see below). This condition yielded the list of 93
media listed in Supplementary Table S1 in Additional File
1. Most of the work reported in this paper was performed
with this set of minimal media.

(b) For part of our work we also considered a much larger
library of minimal media, described by [19], in which all
possible combinations of single sources of carbon, nitro-
gen, sulphur, phosphorus, etc., from among the 143
metabolites ingested by E. coli are considered. Following
the method described in the supplementary material of
[19] gave us a library of 109732 minimal media.

gi1
gi2
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Treatment of the conditions c and internal fluxes v
The c variables: Of the 19 Boolean variables ci(t), 15
depend only on the configuration of a subset of TFs and
external metabolites at time t, i.e., ci(t) = Ci(t(t), m(t)), i =
1, 2,...,15, where the Ci are specified Boolean functions in
the database. These functions can be substituted in Eq. 2.
This eliminates these 15 variables ci from the dynamical
system at the expense of a more complicated effective
dependence of gi(t) on t(t) and m. Of the remaining 4
conditions, one, representing growth of the cell, is set to
unity (since we primarily consider only those conditions
in which the cell has a nonzero growth rate). Another con-
dition represents the pH of the external environment,
which we take to be between 5.5 and 7 (weakly acidic, as,
for example, in the human gut). The pH condition affects
only 3 genes in the database. For two of them the opera-
tive regulatory clause is 'pH < 4'; we take the Boolean var-
iable ci corresponding to pH to be zero (false) for these
two genes. For the third gene the clause is 'pH < 7'; for this
gene we take this variable to be unity (true). Two other
conditions, designated as 'surplus FDP' and 'surplus PYR'
in the database, correspond to whether 'surplus' amounts
of fructose 1,6-bisphosphate and pyruvate are being pro-
duced in the cell. These conditions depend upon the val-
ues of some of the internal fluxes vi and the presence of an
external metabolite, fructose, through specified Boolean
functions. The latter variable is treated as unity if the min-
imal medium includes fructose and zero otherwise, as dis-
cussed above. The treatment of the internal fluxes is
discussed below.

The v variables: The 21 components of the vector v repre-
sent fluxes of 21 metabolic reactions. As mentioned by
[11], these are surrogate for other conditions inside the
cell, e.g., concentrations of metabolites produced by those
reactions, which can affect gene regulation. We have
treated these variables in two distinct ways.

(A) In the first approach we identified whether the partic-
ular metabolic reaction was a 'blocked reaction' or not
[38-40]. A reaction is said to be blocked in a particular
environmental condition (specified by a buffered
medium) if under that medium no steady-state flux is pos-
sible through it [39]. This can be determined using meta-
bolic flux analysis methods from a knowledge of the
metabolic network. For each medium (specified by the
vector m) we chose the fixed value zero for a particular
flux variable vi(t) if it was found to be blocked for that
condition, and unity otherwise. Thus in this approach the
vi were not dynamical variables, but rather fixed parame-
ters (albeit fixed with an eye on self-consistency).

(B) In the second approach, we allowed the vi to be
dynamical, but made a simplifying assumption about
their dynamics. In the cell, the flux values of individual

reactions are determined by the concentrations of partici-
pating metabolites and the catalyzing enzymes, the latter
being controlled by the activity of their respective genes.
In a discrete-time approximation, an enzyme is present at
time t if the genes coding for it are active at t - 1. Thus we
set vi(t) = 1 if the genes coding for the enzyme of that met-
abolic reaction were active at t - 1, and vi(t) = 0 otherwise.
This could be done for a subset of 10 out of 21 reactions,
since the genes of their enzymes were part of the 583
genes in the database. Genes coding for the enzymes of
the remaining 11 reactions were not part of the database
and hence the corresponding vi could not be made
dynamical variables in this fashion. These latter vi were
fixed as in part (A) for each medium. The approach (B)
introduces feedbacks in the genetic regulatory network.

Our above treatment defines the substitutions to be made
in Eq. 2 for the variables c(t), v(t). Each component of c in
Eq. 2 is either a specified Boolean function of t(t), m, and
v(t), or is a suitably chosen Boolean constant. Each com-
ponent of v(t) is, in turn, either a specified Boolean func-
tion of g(t - 1), or is a suitably chosen Boolean constant.
These substitutions together with Eq. 3 make the right
hand side of Eq. 2 a function of only g(t - 1) and m, i.e.,
Eq. 2 reduces to gi(t) = Gi(g(t - 1), m), which is the same
as Eq. 1. The functions Gi define the final dynamical sys-
tem, and include information coming from the functions
Fi, as well as the dependence of t, c and v on g and m. Note
that the choices (A) and (B) for the v variables yield differ-
ent dynamical systems for Eq. 1 which we denote as 1A
and 1B respectively; in 1B 6 out of 583 genes have addi-
tional links from other genes in the set compared to 1A.
Programs implementing these two dynamical systems are
available from the authors.

Computation of Growth rate of E. coli for a given 
environmental condition
Flux Balance Analysis (FBA) is a computational technique
that determines the maximal steady state growth rate of a
cell that its metabolic network can support in any given
buffered medium [4,5,7]. The database iMC1010v1 [11]
includes the E. coli metabolic network database iJR904
[37] to which FBA can be applied. In this work we use FBA
in two ways:

Pure (unconstrained) FBA. This uses the full metabolic net-
work iJR904 (without any constraints from regulation) to
calculate the maximal growth rate of the cell under vari-
ous media. A zero value of the maximal growth rate for a
particular medium means that the metabolic network
does not contain pathways to convert the substances
present in the medium into 'biomass metabolites' needed
for cell growth. 
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FBA with regulatory constraints. Of the 583 genes in the
database iMC1010v1 479 genes code for enzymes of the
metabolic reactions in the database iJR904. In any given
configuration of the genetic network a subset of these
genes is off and the remaining are on. Thus one can run
FBA wherein those reactions of the metabolic network are
switched off whose enzymes are not being produced (i.e.,
whose corresponding genes are off). We will refer to this
as 'constrained FBA'. In this way one can track the optimal
growth rate as a function of time as the configuration of
the genes changes according to the dynamics of the
genetic regulatory network, as discussed in [11,18]. The
growth rate obtained from constrained FBA for any con-
figuration of the genes is, by definition, less than or equal
to that obtained from pure FBA (for the same medium).
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