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Abstract
Background: Analyzing the dynamics of insulin concentration in the blood is necessary for a
comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has
been addressed in many studies. The results are highly variable with respect to insulin clearance
and the relative contributions of hepatic and renal insulin degradation.

Results: We present a dynamic mathematical model of insulin concentration in the blood and of
insulin receptor activation in hepatocytes. The model describes renal and hepatic insulin
degradation, pancreatic insulin secretion and nonspecific insulin binding in the liver. Hepatic insulin
receptor activation by insulin binding, receptor internalization and autophosphorylation is explicitly
included in the model. We present a detailed mathematical analysis of insulin degradation and
insulin clearance. Stationary model analysis shows that degradation rates, relative contributions of
the different tissues to total insulin degradation and insulin clearance highly depend on the insulin
concentration.

Conclusion: This study provides a detailed dynamic model of insulin concentration in the blood
and of insulin receptor activation in hepatocytes. Experimental data sets from literature are used
for the model validation. We show that essential dynamic and stationary characteristics of insulin
degradation are nonlinear and depend on the actual insulin concentration.

Background
Insulin regulates important physiological processes like
cellular glucose uptake [1,2], metabolism [2,3] and gene
expression [4]. The processes triggered by insulin are asso-
ciated with widely spread diseases. Type I diabetes melli-
tus results from defective pancreatic insulin secretion
[5,6]. Insulin resistance, obesity and type II diabetes mel-
litus may result from defects in the insulin signaling sys-
tem [6-8] and are often accompanied by abnormalities in
insulin degradation [9]. Improving therapies of these mal-
adies is a topic of intense investigation [5,10,11].

Insulin dynamics in vivo
A prerequisite for fully understanding the effects of insu-
lin in vivo is to enlighten the fate of insulin after the injec-
tion or endogenous production. Much work has been
done in past decades to study insulin kinetics in the blood
[12-14]. In the last few years, efforts have been focused on
analyzing the dynamics of insulin concentration after the
subcutaneous injection [15-17]. The resulting models
describe insulin removal from the blood in a highly
reduced way [12,17], whereas the subcutaneous tissue is
usually modeled in more detail. Insulin traverses different
compartments (e.g. the injection pocket and the intersti-
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tium) after the injection and can be degraded or temporar-
ily stored within these compartments [17].

Long acting insulins tend to form dimers or hexamers in
the subcutaneous tissue, whereas fast acting insulin ana-
logues have a decreased ability to form oligomers [5]. Oli-
gomer formation slows down the transition of insulin
from the injection pocket in the subcutaneous tissue to
the blood. These effects are included in some models [17].
In other studies, insulin dynamics are linked with glucose
dynamics [18-23]. The corresponding models describe all
involved processes in a highly reduced way.

There are also efforts to predict glucose concentration and
to automate insulin dosage for individuals with impaired
glucose levels [24-29]. These efforts are first steps towards
the development of an artificial pancreas [30].

In the last few decades, many different kinetics for insulin
removal from the blood were proposed. The most fre-
quently used kinetics are linear first order kinetics,
Michaelis-Menten kinetics or a combination of both [13].
Due to the investigation of narrow concentration inter-
vals, nonlinearity was difficult to demonstrate [31]. The
presence of nonlinearities due to saturable processes now
is widely accepted [5,9]. However, insulin degradation is
described as a linear first order process in most models.
Allocation of insulin degradation to specific tissues is not
performed in the models of insulin dynamics [17]. There-
fore, no model-based analysis of the contributions of the
liver and the kidney to the degradation process has been
done. A prerequisite for such an analysis is the availability
of a validated model describing all important processes.

Insulin receptor dynamics in vitro
There are several models in literature that describe insulin
receptor dynamics in vitro. Most models [32-36] focus on
a subset of the occurring processes and lump several proc-
esses into single reaction steps. This reduces the number
of model parameters and has to be done if there is only lit-
tle experimental data and if there are many parameters to
estimate. However, two recent in vitro models describe
insulin receptor dynamics in more detail [37,38].

Sedaghat et al. combined models of insulin binding [36]
and receptor internalization, recycling and degradation
[35] and extended them to a mathematical model of insu-
lin signaling in adipocytes [37]. Model parameters were
taken from other models and in vitro experiments. The
receptor part of this model includes the binding of two
insulin molecules as well as phosphorylation, internaliza-
tion, degradation and synthesis of the receptor. A very
strong coupling between insulin binding and receptor
phosphorylation is assumed. The second insulin mole-
cule can only bind to the receptor if the receptor is phos-

phorylated. Dephosphorylation of the receptor (with
simultaneous insulin dissociation) is only possible if only
one insulin molecule is bound to the receptor. Phosphor-
ylated receptors without insulin are not part of the model.

Hori et al. described receptor phosphorylation, internali-
zation and recycling in Fao hepatoma cells [38] at 100 nM
insulin. They analyzed several models corresponding to
different model assumptions and different levels of detail.
Model parameters were estimated using experimental
data sets from literature. The main limitations of the mod-
els of Hori et al. [38] are that they are only valid at 100 nM
insulin and that insulin binding is not explicitly included.
Due to the high insulin concentration (100 nM), all recep-
tors at the plasma membrane are assumed to be liganded.
Hori et al. also provide a general model structure without
parameterization that includes the binding of one insulin
molecule to the receptor and is intended for variable insu-
lin concentrations. As above, receptor dephosphorylation
and insulin dissociation are coupled in all models. Insulin
dissociation is a prerequisite for receptor dephosphoryla-
tion or the processes are lumped into a single step. In
addition, most processes are assumed to be irreversible.

Thus, there are many couplings between different proc-
esses in all detailed receptor models [37,38].

Insulin dynamics and insulin receptor dynamics in vivo
In vivo models from literature predict insulin or glucose
concentrations in the blood after the injection of glucose
or insulin. The physiological state of the involved insulin-
responsive tissues, e.g. the activation of insulin receptors,
cannot be obtained from these in vivo models, as their
level of detail is quite low [12-17]. Though insulin
dynamics in the blood and insulin receptor activation are
highly related, no detailed analysis of the interactions
between these processes exists in literature. Hovorka et al.
[14] took a first step in this direction. However, the recep-
tor part of their model only distinguishes between free
receptors and receptors with bound insulin. In addition,
the focus of this study is clearly on insulin kinetics.

In vivo models describing hepatic processes in such a
detailed way as in vitro models [37,38] could be of great
interest for a deeper understanding and a model based
control of insulin and glucose dynamics. Additionally, a
detailed model could serve as a starting point for mode-
ling and analysis of the signaling cascades emerging from
the hepatic insulin receptor in vivo. Due to combinatorial
complexity in signal transduction [39], reduced order
modeling techniques [40,41] will have to be used to
describe insulin signaling comprehensively.

We present a literature-based mathematical model of
insulin dynamics and hepatic insulin receptor activation
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in rats. Compared to other models [32-38], we describe
receptor processes in more detail to get insights into the
processes and into the connections between insulin
dynamics and insulin receptor activation in hepatocytes.
This enables us to simultaneously analyze insulin dynam-
ics in the blood and insulin receptor dynamics in the liver.
In contrast to other studies, we decouple insulin binding
and dissociation from receptor phosphorylation, as there
is experimental evidence that receptor phosphorylation
does not affect insulin binding [42]. In addition, we
model receptor phosphorylation as a reversible process if
insulin is bound to the receptor. We take experimentally
determined in vitro parameters for each reaction, wherever
this is possible. The result is a physiologically well
founded mechanistic model that does not couple or lump
different processes. Almost all processes were parameter-
ized by values from literature. The remaining parameter
values could be derived from physiological considera-
tions.

Model validation is performed with experimental data
sets from literature. We emphasize that the data sets used
for the model validation are not used for parameter esti-
mation. This corresponds to a strict separation of model
construction and model validation which is frequently
applied [43]. A very remarkable result of the model vali-
dation is that the model with parameters from literature is
able to match experimental data sets.

We perform a detailed stationary analysis of the contribu-
tions of the liver and the kidney to insulin degradation
and insulin clearance as well as of the activation state of
hepatic insulin receptors under varying insulin concentra-
tions.

Results and Discussion
The model
The model consists of ordinary differential equations
(ODEs) and describes the dynamic behavior of radioac-
tively labeled and unlabeled insulin in the blood and the
physiological state of hepatic insulin receptors. It can also
be used for the injection of only labeled or only unlabeled
insulin. Distinction between labeled and unlabeled insu-
lin is necessary as unlabeled insulin is synthesized in the
pancreas whereas labeled insulin is not. Therefore, in
experiments with labeled insulin, the fraction of labeled
insulin changes over time.

Almost all state variables in the model represent concen-
trations and are given in nM. Exceptions are the state var-
iables Insub and Ins*,ub that represent amounts of
substances and are given in nmol. All rates are given in
nM·s-1. The rates describing insulin receptor dynamics (rj,
ij and fj, j ε &#x2115;) refer to the hepatocyte volume vhep.
All other rates refer to blood plasma volume vp. The exe-

cutable model is given in MATLAB format in Additional
file 1. We also provide the receptor part of the model as an
independent model that can be used for the simulation of
in vitro experiments (Additional file 2).

Important tissues and processes
The liver and the kidney are the most important insulin
degrading tissues [5,9]. However, fat and muscle tissues
also contribute to insulin degradation. In the following,
we show that the insulin degradation rate of the fat tissue
is small compared to the hepatic insulin degradation rate.
According to Sedaghat et al. [37], the total receptor con-
centration in adipocytes is 10-3 nM and the rate constant
of receptor internalization is 3.5·10-5 s-1. Insulin receptors
in hepatocytes have a minimal internalization rate con-
stant of 2·10-4 s-1 [34] and a concentration of 40 nM (105

receptors per hepatocyte [44], a hepatocyte is assumed to
be a sphere with 20 μm diameter). 78% of the liver vol-
ume is occupied by hepatocytes [45]. Liver mass is about
5% of body weight [46], the mass of the fat tissue is in the
same order of magnitude. We postulate the same insulin
binding characteristics to the receptor in both tissues. The
product of receptor concentration and the kinetic param-
eter for receptor internalization in adipocytes is five orders
of magnitude lower than in hepatocytes. Therefore, the
contribution of the fat tissue to insulin degradation can be
neglected. The contribution of the muscle tissue will not
be analyzed either. No quantitative data was found and a
qualitatively similar behavior in comparison to the liver is
expected.

Hepatic insulin receptors have access to insulin molecules
in the space of Disse [46]. The space of Disse (perisinusoi-
dal space) contains blood plasma and is an extracellular
space between liver sinusoids (special blood vessels) and
hepatocytes. Insulin molecules from the space of Disse
can be bound and are internalized together with the
receptor. In the space of Disse, there is also nonspecific
insulin binding to hepatocytes. Inside the cell, in the
acidic endosomal compartment, insulin dissociates from
the receptor and is degraded. The receptor then recycles to
the cell surface [1].

Our model explicitly describes dynamic insulin receptor
activation in hepatocytes of the liver. Processes considered
are insulin binding to the receptor, receptor autophos-
phorylation, internalization and recycling. Compared to
other models of the insulin receptor which also include
these processes [37,38], we provide an extended descrip-
tion, model the in vivo situation and include reversible
nonspecific insulin binding.

The kidney's contribution to insulin clearance mainly
consists of the filtering of insulin from the blood [9]. The
filtering function of the kidney is modeled as a degrada-
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tion rate that, according to experimental data [47], does
not saturate and is proportional to insulin concentration
in the plasma.

Pancreatic insulin secretion is mainly induced by plasma
glucose [2]. As we focus on insulin degradation, glucose is
not included in the model. We model pancreatic insulin
secretion in a highly simplified way as a function of insu-
lin concentration. Due to high robustness to changes in
the parameters for insulin secretion (Additional file 3),
this simplification does not lead to significant approxima-
tion errors. In addition, insulin secretion is irrelevant for
stationary analysis at constant insulin concentrations.

Altogether, our model describes the following processes:
intravenous injection of radioactively labeled and unla-
beled insulin, pancreatic insulin secretion, hepatic and
renal insulin degradation, hepatic insulin receptor activa-
tion and nonspecific insulin binding by the liver.

Parameterization of the model
In vivo model parameters cannot be measured directly in
most cases. Taking parameters from in vitro experiments or
models for in vivo processes is a promising alternative.
Note that this can be problematic since the in vitro param-

eter values may not be similar to their in vivo counterparts.
However, it is the only possibility if there is not sufficient
experimental data and a model structure that guarantees
identifiability. Using in vitro parameters or otherwise
determined model parameters and linking kinetic models
of smaller parts of the overall system together is frequently
performed, e.g. by the Silicon Cell project [43]. This strat-
egy is structurally supported by modular modeling tools,
e.g. ProMoT [48].

In this study, model parameters (Table 1) are taken from
previously published in vitro experiments [47,49-55] and
small models of insulin binding [36], receptor internali-
zation [34] and nonspecific hepatic insulin binding [46].
The models from literature [34,36,46] were combined
and kinetic parameters for the remaining processes were
taken from in vitro data.

The parameters from the models of insulin binding [36]
and nonspecific insulin binding in the liver [46] were
directly taken for our model. The relatively simple models
for receptor internalization and recycling at high insulin
concentrations and without insulin [34] were combined
to describe receptor internalization and recycling at arbi-
trary insulin concentrations.

Table 1: Model parameters and initial conditions

Parameter Value Source Meaning of the parameter

kins 10-3 nM-1 s-1 [36] insulin binding to the receptor
kins1d 4·10-4 s-1 [36] insulin dissociation from the receptor (I1, PM)
kins2d 4·10-2 s-1 [36] insulin dissociation from the receptor (I2, PM)

kins1den 1.925·10-3 s-1 [49] insulin dissociation from the receptor (I1, EN)
kins2den 3.85·10-3 s-1 [50] insulin dissociation from the receptor (I2, EN)

kyd 3.85·10-3 s-1 [51] receptor dephosphorylation (PM)
kyden 7.22·10-3 s-1 [52] receptor dephosphorylation (EN)
kyp 0.0231 s-1 [52] autophosphorylation of the receptor (I1 and I2)

intk1 5.5·10-4 s-1 [34] internalization of phosphorylated receptors
intk2 2·10-4 s-1 [34] internalization of unphosphorylated receptors
reck1 1.533·10-3 s-1 [34] recycling of receptors without insulin
k1ub 0.35 s-1 [46] nonspecific insulin binding in the liver
k2ub 0.2 s-1 [46] dissociation of nonspecifically bound insulin

pansec 0.0016976 nM·s-1 calc. pancreatic insulin secretion
K pan 0.5 nM ass. concentration of half-maximal insulin secretion
mliver 0.05·mbody [46] mass of the liver
vp 0.03375·10-3 l·g-1·mbody [54] plasma volume
ρliver 1.051·103 g·l-1 [53] density of the liver
vhep (mliver/ρliver)·0.78 [45] total hepatocyte volume
vd 0.272·10-3 l·g-1·vhep·ρliver [46] volume of the space of Disse

mkidney 2·0.85 g·mbody/(230 g) [55] mass of the kidney
K kidney 0.0225·10-3 l·(s·g)-1·mkidney [47] clearance of the kidney

Note that mbody (body weight in g), tin (injection time in s), nin and n*,in (amounts of injected unlabeled and labeled insulin in nmol) are also model 
parameters. We do not give values for them in this table as they depend on the analyzed scenario. Note that the model can be used for rats of 
arbitrary body weights as well as for different injection times and amounts of injected labeled and unlabeled insulin. Initial conditions are: Ins = 0.07, 
Ins* = 0, R = 31.619, IR = 0.430007, I2R = 0.000696311, Rp = 0.227528, IRp = 2.07275, I2Rp = 0.00363012, Ren = 4.88528, IRen = 0.145537, I2Ren = 
0.000121295, Rpen = 0.122602, IRpen = 0.492464, I2Rpen = 0.000433466, Insub = 1.29948·10-6·mbody, Ins*,ub = 0. The unit of Insub and Ins*,ub is nmol, the 
unit of all other state variables is nM. ass.: assumption, calc.: calculation (see Additional file 4), EN: in endosomes, PM: at the plasma membrane, I1: 
one insulin molecule bound to the receptor, I2: two insulin molecules bound to the receptor.
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The parameters for pancreatic insulin secretion were cho-
sen to guarantee the physiological basal level of insulin
(0.07 nM, Gisela Drews, personal communication) and to
cut off insulin synthesis at peak concentrations in insulin
therapy (0.5 nM [16,17]).

This study uses the rat as model organism because much
more parameters are known for rats than for humans. The
model validation is performed using experimental data
sets for rats.

All volumes are assumed to be constant. In addition, all
tissues are assumed to contact the same total insulin con-
centration, which is the sum of labeled and unlabeled
insulin. The physiological justification of this assumption
is the high heart rate of rats (320 – 480 bpm [54]) that
guarantees a fast distribution of circulating insulin.

The liver
Insulin degradation in hepatocytes is modeled in a very
detailed way. The described processes are successive bind-
ing of two insulin molecules to the insulin receptor, recep-
tor phosphorylation and receptor internalization (Figure
1). In accordance with experimental results [56], the
described processes lead to saturation of hepatic insulin
degradation at high insulin concentrations.

Model assumptions that are supported by studies from lit-
erature are:

• Insulin binding and dissociation are independent of the phos-
phorylation state of the receptor. This is directly supported by
experimental evidence [42].

• Only receptors with bound insulin show autophosphorylation
activity. Autophosphorylation is induced by insulin bind-
ing [2] and there is no experimental data quantifying
autophosphorylation of receptors without bound insulin.

• Receptor dephosphorylation is independent of insulin binding.
Receptor dephosphorylation is performed by protein
phosphatases [2]. It seems very unlikely that insulin bind-
ing to the extracellular α-chain of the receptor induces
conformational changes in the intracellular β-chain that
are large enough to significantly change the affinity of
phosphatases for their phosphorylated substrate sites.

• Insulin dissociation from endosomal receptors is irreversible.
Upon internalization, the pH in endosomes decreases
rapidly, which promotes insulin dissociation from the
receptor [9]. Free endosomal insulin is degraded by pro-
teases [9].

• Only receptors without insulin are recycled. Receptor recy-
cling is faster if there is no external insulin [34]. This leads
to the assumption that an additional step for receptors
with bound insulin is necessary before recycling is possi-
ble. A very promising candidate for this step is insulin dis-
sociation from the receptor. In this case, a single rate
constant for recycling, independent of insulin concentra-
tion is sufficient to explain the observation.

• Phosphorylated receptors are internalized faster than unphos-
phorylated receptors. In the presence of higher insulin con-
centrations, more insulin receptors are phosphorylated
[2]. Receptor internalization is faster at high insulin con-
centrations than without external insulin [34]. In addi-
tion, there are reports that receptor internalization
depends on phosphorylation [9].

• Labeled and unlabeled insulin show the same physiological
characteristics. Labeling of the insulin molecules was per-
formed with 125I [57-59]. The size of this modification is
small compared to the size of the insulin molecule and
should not change its binding characteristics, the effect on
receptor phosphorylation, the rate of nonspecific insulin
binding or the rate of renal insulin filtration.

• All processes in hepatocytes obey mass action kinetics. The
processes that were adopted from other models obey mass
action kinetics [34,36,46]. Mass action kinetics is a good

Insulin receptor activation in hepatocytesFigure 1
Insulin receptor activation in hepatocytes. The recep-
tor is denoted as R. One or two insulin molecules can bind to 
the receptor (green arrows). This is indicated by a prefix I or 
I2, respectively. Receptor phosphorylation (blue arrows) is 
indicated by a suffix p, receptor internalization to the endo-
somal compartment (red arrows) is indicated by a subscript 
en. Arrows with two heads indicate reversible reactions. 
Arrows with one head indicate irreversible reactions. Filled 
arrowheads indicate positive direction of rates.
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and frequently used approximation for processes at the
molecular level.

For the following assumptions there is no experimental
data in literature supporting them. These assumptions
were made to keep the number of parameters as low as
possible.

• Receptors with one or two bound insulin molecules show the
same autophosphorylation activity.

• Receptor recycling is independent of receptor phosphorylation.

In the following, the insulin receptor is denoted as R. The
binding of one or two insulin molecules is indicated by a
prefix I or I2, respectively. A suffix p indicates receptor
phosphorylation, a subscript en indicates internalization
to the endosomal compartment. All concentrations of
receptor species refer to vhep, the total volume of hepato-
cytes.

In general, rates denoted by the standard notation rj
describe processes at the plasma membrane of hepato-
cytes or outside the hepatocytes (nonspecific insulin bind-
ing, pancreatic insulin secretion and renal insulin
removal). Rates denoted by ij describe internal processes
occurring in endosomes of hepatocytes, and rates denoted
by fj describe flows between the plasma membrane and
endosomes of hepatocytes.

Figure 1 shows the reaction scheme of processes in hepa-
tocytes.

The hepatocyte part of the model does not distinguish
between labeled and unlabeled insulin, which reduces the
number of necessary ODEs. Hepatocytes have contact to
the total insulin concentration Ins that is the sum of
labeled and unlabeled insulin concentrations. The con-
centration of labeled insulin is denoted as Ins* . Unlabeled
insulin (Ins – Ins*) has no separate notation. The total
contribution of the liver to insulin degradation is

rliv = (-r1 - r2 - r3 - r4)·vhep/vp.

The plasma volume is denoted as vp, the total hepatocyte
volume is denoted as vhep. Strictly speaking, rliv defines
insulin removal from the blood, whereas insulin degrada-
tion is performed in hepatic endosomes. However, rliv is
the contribution of the liver to insulin dynamics. In the
stationary case, the values of the rates for insulin removal
and insulin degradation are identical.

Rates r1 – r4 describe insulin binding to the insulin recep-
tor at the plasma membrane. The values of the parameters

kins, kins1d and kins2d were directly taken from the model
of Wanant et al. [36].

Rates r5 – r7 describe receptor phosphorylation at the
plasma membrane.

Rates i1 – i4 describe insulin dissociation from the receptor
in endosomes.

Rates i5 – i7 describe receptor phosphorylation in endo-
somes.

According to our model assumptions, unphosphorylated
receptors without insulin (R and Ren) have no autophos-
phorylation activity. Therefore, the reactions represented
by the rates r5 and i5 are irreversible. Rates f1 – f6 describe
receptor internalization and recycling.

The value of the parameter intk1 was directly taken from a
model of receptor internalization and recycling at high
insulin concentrations [34]. The values of the parameters
intk2 and reck1 are from a model of receptor internaliza-
tion and recycling without insulin [34].

Altogether, the described processes result in the following
balance equations for hepatic insulin receptor species.
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The liver also performs nonspecific insulin binding. This
reversible process does not saturate [46] and dampens
rapid variations in insulin concentration. The rates rub and
r*,ub define nonspecific binding of unlabeled and labeled
insulin, respectively.

The values of the parameters k1ub and k2ub were directly
taken from the model of Hammond et al. [46]. The vol-
ume of the space of Disse, in which nonspecific insulin
binding takes place, is denoted as vd. The concentration of
unlabeled insulin is Ins – Ins* (unit: nM), while Ins*,ub and
Insub are the amounts of substance (unit: nmol) for non-
specifically bound labeled and unlabeled insulin, respec-
tively. The expressions for the forward reactions of the
rates rub and r*,ub are multiplied by vd (unit: l) as Ins and
Ins* (unit: nM) are concentrations, whereas Insub and Ins*,ub
are amounts of substance (unit: nmol). The balances of the
amounts of nonspecifically bound labeled and unlabeled
insulin are given by

In order to obtain the unit nM·s-1 for all rates, we divide
by vp within the rates rub and r*,ub and multiply the rates by
vp in the ODEs for Insub and Ins*,ub, emphasizing the need
for vp.

Note that symbols with an asterisk indicate radioactively
labeled insulin species. Species with insulin whose sym-
bols do not contain an asterisk can contain labeled or

unlabeled insulin, except for Insub, which only represents
unlabeled nonspecifically bound insulin.

The kidney
The kidney performs insulin degradation by filtering insu-
lin from the blood [5]. The degradation rate rkid is propor-
tional to insulin concentration [47].

rkid = -K kidney·Ins/vp

Insulin clearance is defined as the quotient of the degrada-
tion rate and the insulin concentration [13]. Therefore, K
kidney is the clearance of the kidney.

There are also reports that receptor-mediated transport in
man contributes about one third to total renal insulin
removal [9]. This may result in a slightly nonlinear behav-
ior of renal insulin degradation. However, the nonlinear-
ity resulting from receptor saturation is not visible in the
experimentally examined concentration interval [47].
Therefore, linear first order kinetics are a good approxima-
tion of renal insulin degradation.

Insulin injection and secretion
Pancreatic insulin secretion is induced by plasma glucose
[2], which is not included in the model. In the model,
pancreatic insulin secretion rpan is modeled as a function
of insulin concentration and turned off at high insulin
concentrations. This corresponds to the implicit assump-
tion that glucose dynamics are faster than insulin dynam-
ics. Peak concentrations in insulin therapy are about 60 –
80 μU·ml-1 [16,17], which is about 0.35 – 0.5 nM. Insulin
secretion is assumed to be cut off smoothly at K pan = 0.5
nM with Hill coefficient 10. The physiological basal insu-
lin concentration (0.07 nM) is guaranteed by adjusting
the parameter pansec such that the secretion rate equals
the sum of stationary insulin degradation rates of the liver
and the kidney at 0.07 nM insulin (Additional files 4 and
5).

Intravenous injection of labeled and unlabeled insulin
(u*,in and uin) is performed during injection time tin with a
constant injection rate that is sharply, but smoothly cut
off with Hill coefficient 50. This is an arbitrarily chosen
parameter that realizes a switching procedure. Real step
functions may cause numerical problems which can be
avoided in this way.

The amounts of injected unlabeled and labeled insulin are
nin and n*,in (unit: nmol), respectively. Each parameter can
be set to zero if no injection of labeled or unlabeled insu-
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lin is desired. The corresponding input functions uin or
u*,in then equal zero.

Note that uin and u*,in are not defined for tin = 0 s which cor-
responds to a very rapid bolus injection of insulin. If tin =
0 s is nevertheless desired, this infinitely small injection
time can be realized by setting the initial conditions
directly to the corresponding values. The rates uin and u*,in
then have to be set to zero.

Note that 0.07 nM is the basal concentration of insulin.

Insulin concentration in plasma
The balances of the concentrations of labeled (Ins*) and
total insulin (Ins) are given by:

Note that rliv and rkid refer to total insulin. Therefore, only
their fractions Ins*/Ins that correspond to labeled insulin
have to be considered in the balance of Ins*.

Dynamic model validation
Insulin dynamics
The dynamic insulin degradation behavior of the model
was compared to experimentally determined time courses
of insulin concentration in plasma after an intravenous
insulin injection. Experimental data sets with extremely
high [58] and extremely low [59] amounts of injected
insulin were used. The extremely low amount (1.65·10-6

nmol) was radioactively labeled. Therefore, the dynamics
of injected insulin can be tracked though the amount of
injected insulin is small compared to endogenous insulin.
Measured concentrations of labeled insulin were about
0.5·10-4 nM [59] (see Figure 2). The extremely high
amount of injected insulin (47.5 nmol) resulted in meas-
ured insulin concentrations above 1600 nM [58] (see Fig-
ure 3). Note that the basal concentration of insulin is 0.07
nM and peak concentrations in insulin therapy are below
1 nM [16,17].
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Dynamic model validation: extremely high insulin concentra-tionsFigure 3
Dynamic model validation: extremely high insulin 
concentrations. Simulation of plasma insulin concentration 
after the injection of a large amount of insulin is shown and 
compared to experimental data [58]. Note that the model 
does not match the experimental data set. This results from 
the presence of unmodeled effects at highly supraphysiologi-
cal insulin concentrations and limitations in the detection 
quality of the experiment. Therefore, the model is not valid 
at these extremely high insulin concentrations.
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Dynamic model validation: physiological insulin concentra-tionsFigure 2
Dynamic model validation: physiological insulin con-
centrations. Simulation of the concentration of radioac-
tively labeled insulin in plasma after the injection of a very 
low amount of radioactively labeled insulin is shown and 
compared to experimental data [59].
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Simulated insulin concentrations for low amounts of
injected insulin [59] are relatively close to the experimen-
tal data set (Figure 2). When examining Figure 2 on a log-
linear scale, it can be seen that the relatively low absolute
errors at later points in time correspond to large relative
errors (not shown). Note that these high relative errors for
low absolute values could at least partly result from man-
ual extraction of the data points from Figure 3 in [59]. As
the absolute errors are moderate, Figure 2 is regarded as a
qualitative validation of the dynamic model at physiolog-
ical insulin concentrations.

Simulation results for the injection of unphysiologically
high amounts of insulin [58] are not very close to the
experimental data set (Figure 3). When examining Figure
3 on a log-linear scale, it can also be seen that the relative
errors at later points in time are large (not shown).

Note that an insulin concentration of 1600 nM is four
orders of magnitude higher than peak concentrations in
insulin therapy (below 1 nM) and far above physiological
values. In this concentration range new unmodeled effects
occur. As an example, pinocytosis (fluid-phase endocyto-
sis) significantly contributes to hepatic insulin uptake at
high concentrations of insulin [9,60]. In correspondence
to nonspecific insulin binding by the liver, nonspecific
insulin binding could also occur in other tissues. A result
of this additional nonspecific binding would be reversible
insulin removal at high insulin concentrations and subse-
quent insulin release at lower insulin concentrations. Fur-
thermore, the assay of Desbuquois et al. [58] is not able to
distinguish between insulin fragments and native insulin.
However, after a few minutes, insulin fragments contrib-
ute significantly to total insulin, as shown for the injection
of small amounts of labeled insulin (see Figure 3 in [59]).
Assuming that this holds also for the injection of high
amounts of insulin, the assay of Desbuquois et al. overes-
timates insulin concentrations at later points in time.
Note that this is surely not sufficient to explain the whole
extent of the error at later points in time.

The effects of pinocytosis and additional nonspecific insu-
lin binding at high insulin concentrations are not quanti-
fied in literature and not included in the model.
Neglecting these processes (and maybe others that are
important at high insulin concentrations) leads to an
incorrect model structure for high insulin concentrations.
Therefore, the model is not valid at extremely high insulin
concentrations.

Hepatic insulin receptor internalization
Simulation results for hepatic insulin receptor internaliza-
tion at 100 nM insulin as well as those without insulin
were compared to experimental data from literature [34].
As it can be seen in Figure 4, simulation results match the

experimental data sets very well. Assuming that simulated
insulin binding to the receptor mirrors physiological
processes well (we show below that it does), receptor
internalization can be used as a direct indicator for
hepatic insulin degradation.

It should be stated that the model parameters for receptor
internalization and recycling are from the same source as
the experimental data sets in Figure 4. Backer et al. took
the experimental data sets to estimate the parameters for
two separate models of receptor internalization and recy-
cling at 100 nM insulin as well as without insulin [34]. We
adopted three parameters of these models.

Note that the experimental data sets for receptor internal-
ization result from experiments with Fao cells that are
tumor cells of hepatic origin. Though simulations match
the experimental data sets almost quantitatively, this can
only be regarded as a qualitative model validation for
hepatocytes.

Stationary model validation
Simulation results for stationary insulin receptor activa-
tion and insulin binding were compared to experimental
data sets [57]. Klein et al. determined cell-associated radi-
oactively labeled insulin as a function of unlabeled insu-
lin concentration (Figure 4A in [57]). This was done in a
competition assay with constant concentration of radioac-

Dynamic model validation: receptor internalizationFigure 4
Dynamic model validation: receptor internalization. 
Simulation results for receptor internalization at 100 nM 
insulin (blue) as well as those without insulin (red) are shown 
and compared to experimental data [34]. Surface receptors 
were radioactively labeled. This was simulated by setting the 
initial conditions such that all receptors are in the state R at 
the plasma membrane. Note that the receptor model is lin-
ear for constant insulin concentration. Therefore, the assay 
can be simulated with this choice of initial conditions.
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tively labeled insulin and variable concentrations of unla-
beled insulin. In silico reproduction of this assay and
projection of the result on the experimental data set
results in a high accordance (Figure 5, left).

Klein et al. also determined the stationary dependency of
receptor activity on the insulin concentration (Figure 4B
in [57]). We regard receptor activity as an indicator for
receptor phosphorylation. Projection of the experimental
data set on the stationary fraction of phosphorylated
receptors also shows high accordance (Figure 5, right). See
Additional file 4 for details about the stationary model
validation.

Changes in tin or in the parameters for the pancreas have
no effect on the results of stationary model validation, as
the system is analyzed at constant insulin concentrations
in the stationary case.

Altogether, the model is able to match the experimental
data sets for receptor activity and insulin binding very
well. Note that the model parameters were not estimated
to get these results.

Model analysis
Insulin degradation
The fractions of insulin that are degraded by the liver and
the kidney were investigated in several studies. Values for
the relative contribution of the liver to insulin degrada-
tion in man range from below 50% to 70%, and those for
the kidney from 30% to above 50% [5,9,12]. We investi-
gate the reason for this diversity by stationary model anal-
ysis.

Renal insulin degradation does not saturate [9,47],
whereas hepatic insulin degradation saturates [5,9,56].
The physiological situation is mirrored by the model,
where hepatic insulin degradation saturates, whereas
renal insulin degradation does not (Figure 6). It can be
clearly seen that the relative contributions of the liver and
the kidney to total insulin degradation strongly depend
on the insulin concentration.

In stationary model analysis, the relative contribution of
the liver to overall insulin degradation ranges between
81% for insulin concentration tending to zero and 0% for
insulin concentration tending to infinity. The relative con-
tribution of the kidney ranges between 19% and 100%
(Additional file 4). A significant part of these changes hap-
pens beyond physiological insulin levels. However, the
fractions vary strongly in the physiological range of insu-
lin concentrations. Between 0 nM and 1 nM insulin, the
relative contribution of the liver is between 81% and 63%,
while the contribution of the kidney is between 19% and
about 37% (Figure 6 and Additional file 4). Only the liver
and the kidney are considered in the analysis of insulin
degradation. Other insulin degrading tissues, in particular
fat and muscle, are neglected. Therefore, the sum of the
relative contributions of the liver and the kidney to insu-
lin degradation is one (100%).

Note that changes in tin or in the parameters for the pan-
creas do not affect the results of stationary model analysis,
as the system is analyzed at constant insulin concentra-
tions. The rate of nonspecific insulin binding equals zero
in the unique stationary case. Therefore, it also has no
influence on stationary insulin degradation. The station-

Stationary model validation: insulin binding and receptor phosphorylationFigure 5
Stationary model validation: insulin binding and receptor phosphorylation. Left: Cell-associated radioactively 
labeled insulin is shown as a function of the stationary insulin concentration and compared to experimental data (Figure 4 A in 
[57]). Almost no labeled insulin should bind to receptors at maximal concentrations of unlabeled insulin. Therefore, the value 
for the highest concentration of unlabeled insulin was treated as background and subtracted from all values. Right: The frac-
tion of phosphorylated receptors is shown as a function of the stationary insulin concentration and compared to experimental 
data for receptor activation (Figure 4 B in [57]). We regard receptor phosphorylation as a good indicator for receptor activity.
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ary analysis of degradation rates and relative contribu-
tions to insulin degradation is also independent of the
parameter mbody (Additional file 4).

Quantitative results regarding relative contributions to
insulin degradation are sensitive to changes in the param-
eter K kidney, as increasing K kidney by 10% also increases
the renal insulin degradation rate (rkid) by 10%. However,
changes in K kidney only change the values of the relative
contributions to insulin degradation but do not lead to a
qualitatively different result.

Altogether, relative contributions of the tissues to insulin
degradation depend on the insulin concentration. At low
insulin concentrations, hepatic insulin degradation is pre-
dominant, whereas at high insulin concentrations overall
insulin degradation is mainly performed by the kidney.
Therefore, different results for the relative contributions of
the liver and the kidney to insulin degradation are
expected for different experimental settings.

Insulin clearance
The quotient of insulin degradation rate and insulin con-
centration is denoted as insulin clearance c [13], which is
a widely used quantity to characterize the state of insulin
metabolism.

The physiological range of insulin clearance in man (70
kg) is 700 – 3350 ml·min-1 [12,13]. We use stationary
model analysis to investigate the reason for this diversity.

Insulin clearance strongly depends on the insulin concen-
tration (Figure 7). Due to receptor saturation, hepatic
insulin clearance decreases for increasing insulin concen-
trations. The effect of Ins-1 in hepatic insulin clearance (-
rliv·vp·Ins-1) strongly dominates the effect of the saturating
degradation rate rliv (compare Figures 6, left and 7). Renal
insulin clearance is independent of the insulin concentra-
tion, as it is a first order process in which the degradation

c
rliv rkid vp

Ins
=

− − ⋅( )

Renal and hepatic insulin clearanceFigure 7
Renal and hepatic insulin clearance. Insulin clearance is 
defined as the quotient of insulin degradation rate and insulin 
concentration. Total stationary insulin clearance (black) is a 
function of insulin concentration because hepatic insulin 
clearance (liver, red) depends on the insulin concentration, 
whereas renal insulin clearance (kidney, blue) is independent 
of insulin concentration. A body weight of mbody = 200 g was 
used in the computations.
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Renal and hepatic insulin degradationFigure 6
Renal and hepatic insulin degradation. Left: Stationary insulin degradation rates of the liver (red) and the kidney (blue) 
and the total insulin degradation rate (black) are shown as functions of insulin concentration. Right: Stationary relative contri-
butions of the liver (red) and the kidney (blue) to total insulin degradation depend on the insulin concentration. Note that 
these fractions are slightly lower in reality. Other tissues, in particular fat and muscle, also contribute to insulin degradation but 
are not analyzed here. The fractions in this plot refer to the sum of the degradation rates of liver and kidney.
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rate is proportional to the insulin concentration. There-
fore, the quotient of rate and concentration is constant.

As an example, in a rat whose body weight is 200 g, insu-
lin clearance ranges between 10.7 ml·min-1 for insulin
concentration tending to zero and 2.0 ml·min-1 for insulin
concentration tending to infinity (Additional file 4).

Insulin clearance is often used to characterize the state of
insulin metabolism. However, its value for analysis of
processes that are dominated by saturable components, in
particular hepatic insulin degradation, is very limited. A
strong dependence on the insulin concentration hampers
precise analysis, especially if one cannot guarantee that
the insulin concentration is constant during the experi-
ment. This problem does not occur when analyzing first
order processes such as renal insulin degradation, where
insulin clearance is independent of insulin concentration
(Figure 7).

Altogether, the strong dependency of insulin clearance on
the insulin concentration is able to explain the wide range
of reported values.

Parameter estimation
As shown above, insulin degradation at high insulin con-
centrations is mainly performed by the kidney. Nonspe-
cific insulin binding dampens rapid variations in insulin
concentration at all insulin concentrations (Additional
file 3). Therefore, the most important parameters at high
insulin concentrations are those for the kidney and non-
specific insulin binding.

In order to investigate whether the model structure can
reproduce the experimental data set for high amounts of
injected insulin [58], we estimated the parameters for the
kidney and nonspecific insulin binding. The model with
estimated parameter values matches the experimental
data set for high amounts of injected insulin significantly
better than the model with parameter values from litera-
ture (Additional file 3). However, from a physiological
point of view, we are convinced that this does not reflect
increased model quality. As discussed above, there are
unmodeled effects which are not important at physiolog-
ical insulin concentrations and there is detection of insu-
lin fragments in the assay.

Thus, taking the experimental data set for high amounts of
injected insulin [58] to estimate parameter values for our
model (Additional file 3) results in parameters that reflect
more than the processes they represent. The estimated
parameter values also include the effects of processes that
are not explicitly described in the model and detection
errors of the assay. Therefore, we performed our analysis
using the parameter values from literature (Table 1).

Sensitivity analysis
We showed that the parameters for the kidney and non-
specific insulin binding are most important at high insu-
lin concentrations (Figure 6 and Additional file 3). Now,
we investigate robustness to small changes in these
parameters (Additional file 3). Increasing or decreasing
the values of k1ub, k2ub and K kidney by 20% results in
moderate differences in simulation results for the injec-
tion of high amounts of insulin. Changing K kidney by
20% has practically no effect on simulation results for the
injection of small amounts of insulin, whereas the effect
of small changes (up to 20%) in the parameter values for
nonspecific insulin binding is moderate. All simulation
results match the experimental data set in an acceptable
way (Additional file 3).

On the other hand, the values of k1ub, k2ub and K kidney
cannot be arbitrarily chosen. A nice example for this is
that simulation results using an estimated parameter set
fail to match the experimental data set for small amounts
of injected insulin (Figure 6, top in Additional file 3). This
supports our previous argument that the experimental
data set for high amounts of injected insulin [58] should
not be used for parameter estimation.

The values from literature of k1ub, k2ub and K kidney are
surely not determined with extremely high precision.
Small deviations from their nominal values do not lead to
dramatic differences in the simulation results for insulin
dynamics (Additional file 3), whereas larger changes do.
Therefore, the values from literature are at least acceptable
estimates for parameterization of the processes they repre-
sent.

The parameters for the pancreas (pansec, K pan, Hill coef-
ficient) are chosen to guarantee that insulin secretion is
turned off at peak concentrations in insulin therapy. They
have negligible influence on the simulation results for
insulin dynamics, as long as the physiological basal level
of insulin (0.07 nM) is guaranteed by adjusting pansec
(Additional file 3).

Changes in the parameter tin (for which no value is given)
have practically no influence on the simulation results for
high amounts of injected insulin [58] (Additional file 3).
Simulation results for small amounts of injected insulin
[59] are sensitive to changes in tin. If one assumes that t =
0 s corresponds to the end of insulin injection, simulation
results are in each case relatively close to the experimental
data set (Additional file 3). However, if one assumes that
insulin injection starts at t = 0 s, simulation results for
large injection times are not close to the experimental data
set any more (Additional file 3). Unfortunately, the exact
procedure of injection is not described in either study
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(page number not for citation purposes)



BMC Systems Biology 2008, 2:43 http://www.biomedcentral.com/1752-0509/2/43
[58,59]. We assume a bolus injection at t = 0 s for both
experiments.

Altogether, simulation results for insulin dynamics are
sensitive to changes in tin. However, they are robust to
changes in the other unknown parameters and in the
parameters that are most important at high insulin con-
centrations.

Comparison with other models
Comparison of our model predictions for insulin dynam-
ics with those of other models [12-17] (all of which
describe insulin dynamics in humans) is only possible if
the amount of injected insulin and the model parameters
are scaled to reflect differences in body mass between rats
and humans. However, compensating the difference
between rats and humans solely by scaling body weights
and amounts of injected insulin will result in unreliable
model predictions because differences in physiology are
neglected. Parameter estimation is a possible way of com-
pensating for the differences in physiology between rats
and humans, however, experimental data sets used for
parameter estimation cannot be reused for the model val-
idation. Therefore, more experimental data sets are neces-
sary to adapt the parameter values from models of insulin
dynamics in humans [12-17] to the physiological situa-
tion in rats and to perform the model validation with
independent data sets.

Estimating the parameters of our model to match experi-
mental data sets for humans as accurately as the models of
human insulin dynamics should be possible. The reason
for this is that our model considers more processes and
therefore has more degrees of freedom. However, the
model parameters are not identifiable if only experimen-
tal data sets for insulin concentration are used. Therefore,
the estimated parameter values are not physiologically rel-
evant.

We investigate whether the analysis of the other models of
insulin receptor activation [37,38] leads to the same
results as the analysis of our model. The receptor model of
Sedaghat et al. [37] shows stationary insulin binding char-
acteristics that match the experimental data set of Klein et
al. [57] well, but not as accurately as our model (compare
Figure 5 and Additional file 6). Stationary receptor phos-
phorylation characteristics show significant deviations
from the experimental data set (Additional file 6). Note
that this only indicates that the model of Sedaghat et al.,
which describes receptor dynamics in adipocytes, cannot
be used for hepatocytes. It should be mentioned that the
model of Sedaghat et al. [37] is not suited for stationary
model analysis as the total receptor concentration in the
stationary case is unphysiologically high. The worst case is
a total stationary receptor concentration of 100 M in the

absence of insulin (Additional file 6). Note that the initial
condition for the total receptor concentration (10-12 M) is
not a stationary solution of the model equations. How-
ever, simulation results converge very slowly to the steady
state (not shown) as the first order constant for receptor
synthesis is about 10-17 M·min-1.

Insulin degradation of adipocytes (i.e. with initial condi-
tions taken from the model of Sedaghat et al.) is five
orders of magnitude lower than hepatic insulin degrada-
tion (see above). At physiological insulin concentrations,
insulin degradation is mainly performed by the liver (Fig-
ure 6). Therefore, it is obvious that replacing our receptor
model by the model of Sedaghat et al. makes it impossible
to match the experimental data set for low amounts of
injected insulin.

The situation is different when considering a modified
model of Hori et al. [38]. Note that all parameterized
models of Hori et al. are only valid at 100 nM insulin.
Only one of the models of Hori et al. can handle variable
insulin concentrations. However, no parameterization is
given for this model structure. We parameterized each
process of this model structure by taking the average value
of the estimated parameter values from the other models
of Hori et al. As there are no parameters for insulin bind-
ing in the study of Hori et al. [38], we took the parameter
values for insulin binding from the model of Wanant et al.
[36]. This modified model of Hori et al. is not able to
reproduce the stationary insulin binding and receptor
activation characteristics from literature as well as our
model (compare Figure 4 and Additional file 7). However,
all models of Hori et al. reproduce the experimental data
set for receptor internalization (compare Figure 5B in [38]
and Figure 4). Note that Hori et al. used this data set to
estimate model parameters [38].

As the receptor concentrations in the models of Hori et al.
[38] are normalized to one, we set the total receptor con-
centration to 40 nM as we do in our model. We replaced
the hepatocyte part of our model by the modified model
of Hori et al. and left all other processes (nonspecific insu-
lin binding, renal insulin degradation and pancreatic
insulin secretion) unchanged. This led to simulation
results for low amounts of injected insulin that match the
experimental data set [59] about as well as our original
model (not shown). The modified model of Hori et al.
shows slightly higher hepatic insulin degradation than
our model. Therefore, when comparing the simulation
results with those of our model, the simulation performs
better at the first two points in time, the simulation and
our model perform equally well at the third point in time
(2 min), and our model performs better for the remaining
points in time (not shown). For the experiment with high
amounts of injected insulin [58], the difference between
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the models is negligible (not shown) as insulin degrada-
tion at high insulin concentrations is mainly performed
by the kidney (Figure 6 and Additional file 4).

Note that our model is not able to quantitatively repro-
duce the dynamic phosphorylation characteristics in
endosomes that were measured by Backer et al. in Fao
cells [34] and used by Hori et al. [38] for parameter esti-
mation (not shown). However, Fao cells have different
physiological characteristics as hepatocytes and therefore
quantitative matching of our hepatocyte model to experi-
mental data sets for Fao cells is not necessary. In this case,
we rely on the in vitro measurements of receptor phospho-
rylation and dephosphorylation in hepatocytes [51,52]
that we used to parameterize our model.

Note that the modified model of Hori et al. corresponds to
a reduced model of our receptor model where some param-
eters and the total receptor concentration are identical.

Both receptor models from literature [37,38] are not able
to match all experimental data sets. Therefore, we assume
that the additional complexity included in our model, in
particular binding of the second insulin molecule, could
be necessary. We further investigate this by stationary
model analysis. The fraction of insulin receptors with two
bound insulin molecules rises with insulin concentration
(Additional file 4). At 100 nM insulin, which is a common
situation in in vitro experiments, almost 50% of all recep-
tors have two bound insulin molecules. At the basal insu-
lin concentration, the fraction of receptors with two
bound insulin molecules is negligible (0.01%). Therefore,
a reduced model structure that neglects all receptor states
with two bound insulin molecules is sufficient at low
insulin concentrations. However, at insulin concentra-
tions larger that 5 – 10 nM insulin receptors with two
bound insulin molecules represent a significant fraction
and should not be neglected. As in many cases simulation
speed is not a limiting factor, we recommend to use our
model for small insulin concentrations as well.

Therapeutic insulin concentrations
The aim of insulin therapy is to achieve sufficient glucose
uptake with minimal amounts of insulin [5,10,11]. An
interesting question is whether an upper bound for rea-
sonable insulin concentrations exists. We investigate this
by combining the results of stationary model analysis and
experimental studies from literature.

At about 10 nM insulin, the insulin receptor in hepato-
cytes of rats is almost maximally phosphorylated (Figure
5). Almost 80% of insulin is degraded by the kidney
(Additional file 4) and does not contribute to insulin
receptor activation. The fraction of insulin that is
degraded by the kidney further increases with increasing
insulin concentration (Additional file 4).

Half-maximal insulin receptor phosphorylation in rat adi-
pocytes is at 7 ± 1 nM insulin (experimental: [61], simula-
tion study: [37]). Glucose uptake in adipocytes is half-
maximal at 170 pM insulin and saturates at about 3 nM
insulin [61]. These findings are expected to hold qualita-
tively also for human adipocytes. As the aim of insulin
therapy is to achieve the desired physiological effect (glu-
cose uptake) with minimal amounts of insulin, an upper
bound for therapeutic insulin concentrations in man
seems to exist. This upper bound is the insulin concentra-
tion where a higher insulin concentration does not result
in a higher glucose uptake but only leads to increased
insulin degradation. Characteristics of glucose uptake in
rats imply that this upper bound is at about 3 nM and not
at about 10 nM as implied by receptor phosphorylation
characteristics.

Relatively large amounts of insulin or insulin analogues
are injected or infused in postprandial glucose control.
This mimics the physiological response of healthy indi-
viduals [62,63]. Postprandial insulin concentration after a
standard meal peaks at 60 – 80 μU·ml-1 [16,17], which is
about 0.35 – 0.5 nM. Hepatic insulin degradation is pre-
dominant in this concentration interval (Figure 6). Addi-
tionally, glucose uptake is strongly, but not fully activated
[61]. Overnight control of glucose concentration is per-
formed with basal insulins that show slow absorption
kinetics or with continuous injection of short acting insu-
lins [5]. In both cases only insulin concentrations close to
the physiological basal concentration are expected.

Therefore, the theoretical upper bound for reasonable
therapeutic insulin concentrations in rats (about 3 nM)
lies significantly above therapeutic insulin levels in
humans (about 0.5 nM). We suppose that the upper
bound for reasonable therapeutic insulin concentrations
in man is relatively close to the value postulated for rats.

Altogether, mathematical analysis and experimental
results indicate that peak concentrations in insulin ther-
apy are below the upper bound where a higher insulin
concentration does not result in a stronger physiological
effect.

Conclusion
We present a detailed dynamic model that describes in
vivo insulin dynamics and hepatic insulin receptor activa-
tion in the rat. Model parameters are taken from in vitro
experiments and other models. The model is able to
reproduce experimental data sets from literature without
parameter estimation.

The vast majority of statements about insulin degradation
and insulin clearance in the literature is given without
explicitly defining the corresponding insulin concentra-
tion, and the reported values widely vary. Mathematical
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analysis shows that relative contributions of the liver and
the kidney to total insulin degradation highly depend on
the insulin concentration. At low insulin concentrations,
insulin is mainly degraded by the liver, whereas renal
insulin degradation is predominant at high insulin con-
centrations. This explains variations in reported values of
relative contributions to insulin degradation.

Mathematical analysis also shows that insulin clearance
strongly depends on the insulin concentration, which
explains variations in reported values. Due to the concen-
tration dependence of insulin clearance, its value for char-
acterizing insulin metabolism is very limited.

The analysis of relative contributions to insulin degrada-
tion and the dose-response characteristics of insulin
receptor activation and glucose uptake imply the existence
of an upper bound for reasonable therapeutic insulin con-
centrations. Higher insulin concentrations do not result in
higher glucose uptake and additional insulin is degraded
without having therapeutic effect. However, the upper
bound for reasonable therapeutic insulin concentrations
is above peak concentrations in insulin therapy.

The detailed model presented here can be used as a start-
ing point for modeling and analysis of the signaling cas-
cades emerging from the hepatic insulin receptor (e.g.
MAP kinase cascade and PI3K pathway). This will signifi-
cantly contribute to understanding the effect of insulin on
hepatocytes in vivo.

Methods
Model parameters and initial conditions
In vitro insulin receptor autophosphorylation has a half-
life of about 0.5 min (Figure 1 in [52]). Assuming first
order kinetics, this corresponds to a rate constant of kyp =
0.0231 s-1. In vitro insulin receptor dephosphorylation at
the plasma membrane has a half-life of about 3 min (Fig-
ure 2 in [51]). Assuming first order kinetics, this corre-
sponds to a rate constant of kyd = 0.00385 s-1. In vitro
insulin receptor dephosphorylation at endosomal mem-
branes has a half-life of 1.6 min (Figure 2 in [52]). Assum-
ing first order kinetics, this corresponds to a rate constant
of kyden = 0.00722 s-1.

We compared weights of livers and bodies given in litera-
ture [46]. In average, the liver contributes about 5% to the
body weight of rats. There are 105 insulin receptors per
hepatocyte [44]. Assuming that the hepatocyte is a sphere
with a diameter of 20 μm, this corresponds to a receptor
concentration of 40 nM. Basal insulin concentration in
fasted mice is 0.3 – 0.5 ng·ml-1 (Gisela Drews, personal
communication). As the molecular weight of insulin is
5.7 kDa, 0.4 ng·ml-1 corresponds to 0.07 nM. The same
basal insulin concentration is assumed for rats. All other

parameters were directly taken from the cited references.
As discussed above, all parameters are taken from previ-
ously published smaller models, in vitro experiments or
chosen to guarantee the physiological basal level of insu-
lin (0.07 nM) and to cut off insulin synthesis at high insu-
lin concentrations. A list of all model parameters is given
in Table 1.

Stationary model equations (all derivatives set to zero)
were solved for the state variables under the basal insulin
concentration as a constraint to get initial conditions that
correspond to the basal insulin concentration (Additional
files 4 and 5, Table 1). This resulted in a unique solution
and was done with the software package Mathematica
(Wolfram Research).

Dynamic model validation
Kruse et al. [59] used rats with a body weight of 238 ± 20
g. Insulin injection was 100 μl of 12 – 21 pM radioactively
labeled insulin. A body weight of mbody = 238 g and an
insulin injection of n*,in = 100 μl·16.5 pM = 1.65·10-6

nmol and nin = 0 nmol was used for the simulation. The
experimental data set is given in % dose per ml serum.
Multiplied by the amount of injected labeled insulin and
divided by 100, these values give the concentrations of
labeled insulin in plasma [nmol/ml]. Desbuquois et al.
[58] used rats with a body weight of 180 – 200 g. Insulin
injection was 25 nmol/100 g body weight. A body weight
of mbody = 190 g and an insulin injection of nin = 47.5 nmol
and n*,in = 0 nmol was used for the simulation. The exper-
imental data set is already given as concentration values.
As the exact procedure of injection is not described in
either study, we assumed that the injection was given as a
bolus at t = 0 s.

Backer et al. investigated receptor internalization in Fao
hepatoma cells [34]. Surface receptors were radioactively
labeled at low temperature (on ice), stopping receptor
internalization. Incubation at 37°C initiated receptor
internalization in the assay. This experiment was simu-
lated by setting initial conditions such that all receptors
are at the surface (R = 40). If the insulin concentration is
constant, the receptor model is linear and the superposi-
tion principle holds. Therefore, the assay can be simulated
with this choice of initial conditions.

Dynamic simulation was performed with the software
package MATLAB (The MathWorks). The executable in
vivo and in vitro models are given in MATLAB format in
Additional files 1 and 2, respectively.

Stationary analysis
The liver is a dynamic system. Its physiological state and
its contribution to insulin degradation depend on the
insulin concentration. However, the rate of hepatic insu-
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lin degradation is not uniquely defined by the present
insulin concentration. The hepatic insulin degradation
rate strongly depends on the amount of free receptors at
the plasma membrane. Assume that the system is not in
steady state. In this case, for the model, insulin concentra-
tions from all points in time since the system left the
steady state affect the physiological state of the liver and
in particular the amount of free insulin receptors at the
plasma membrane.

The steady state of our model is uniquely defined by the
steady state insulin concentration. Note that the station-
ary case corresponds to the steady state of the system. In
the stationary case, all characteristics of the system (e.g.
insulin degradation rates, insulin clearance, receptor acti-
vation or insulin binding) can be expressed as functions
of the stationary insulin concentration. Thus, stationary
analysis gives insights into the system that are not biased
by dynamic effects.

All stationary computations were performed with the soft-
ware package Mathematica (Wolfram Research) and are
given in Additional files 4, 6, and 7. Additional file 5 is a
PDF version of Additional file 4.

Abbreviations
ass: assumption; bpm, beats per minute; calc: calculated;
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nmol: nano mol (10-9 mol); ODE: ordinary differential
equation; EN: in endosomes; PM: at the plasma mem-
brane; I1: one insulin molecule bound to the receptor; I2:
two insulin molecules bound to the receptor.
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