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Abstract
Background: Inventories of small subgraphs in biological networks have identified commonly-
recurring patterns, called motifs. The inference that these motifs have been selected for function
rests on the idea that their occurrences are significantly more frequent than random.

Results: Our analysis of several large biological networks suggests, in contrast, that the
frequencies of appearance of common subgraphs are similar in natural and corresponding random
networks.

Conclusion: Indeed, certain topological features of biological networks give rise naturally to the
common appearance of the motifs. We therefore question whether frequencies of occurrences are
reasonable evidence that the structures of motifs have been selected for their functional
contribution to the operation of networks.

Background
The network or directed graph description has become the
preferred representation of the integrated activity of com-
ponents of biological processes. The exponential growth
of biological network data in the last five years has its
source in recent advances in technologies such as mass
spectrometry, genome-scale ChiP-chip experiments, yeast
two-hybrid assays, combinatorial reverse genetic screens,
and rapid literature mining techniques [1].

The science of systems biology has the aim of understand-
ing the functional constraints and design principles of
biological networks. Alon and colleagues were the first to
introduce the notion of "motifs" in biological networks
[2,3]. Motifs are small patterns observed to recur through-
out a network, with frequencies statistically higher than
expected in random networks of similar connectivity

parameters. Since the introduction of this concept, motifs
have been reported in many biological networks: meta-
bolic, signaling pathway, protein-protein interaction, and
ecological networks amongst others [2-6]. Moreover, the
prevalence of motifs is often considered as evidence for
evolutionary selection, for implementing a specific func-
tion [2,3,7]. Motifs are believed to be building blocks of
the functional architecture of a biological network [3].

Consider for example the canonical set of motifs in tran-
scription regulatory networks: Single input module (SIM),
Multiple input module (MIM), and Feedforward loop
(FFL) [3]. (See Figure 1. Originally, Alon and colleagues
[2] proposed a dense overlapping regulon (DOR) as a motif;
MIMs are special DORs that arose as a generalization of
Bifan motif). Specific functions have been ascribed to
each type of motif [2,7-11]: SIMs are commonly associ-
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ated with temporal ordering of gene expression, MIMs
with combinatorial gene regulation, and FFLs with filters
that do not pass on transient signals [2]. These functions
depend not only on the topology of the subgraph, but on
the logic at nodes receiving multiple inputs. The common
occurrence of these motifs, relative to corresponding ran-
domized graphs, has been taken as evidence for their
selection for function.

In this paper we investigate the role of small network sub-
graphs as building blocks of biological networks. We ana-
lysed several biological networks: transcription regulation
networks of Saccharomyces cerevisiae under different phys-
iological conditions, the transcription regulation network
of Escherichia coli, and a neuronal signalling pathway net-
work of the hippocampal CA1 neuron.

Contrary to previous reports, we find that commonly
accepted motifs are neither over- nor under-represented in
these real networks in comparison to their random formu-
lations. We discuss how the topology of biological net-
works automatically predisposes them to contain a certain
distribution of motifs. This suggests that the evidence for
the functional significance of motifs should be reevalu-
ated.

Methods
We use the transcription regulatory networks of Saccharo-
myces cerevisiae under various physiological conditions –
composite, cell cycle, sporulation, diauxic shift, DNA
damage, and stress response – published by Luscombe
and coworkers [5]. Their largest (composite) network con-
tains 3459 nodes and 7014 interactions (http://net
works.gersteinlab.org/regulation/dynamicindex2.html).

To aid comparison of our work with that of Shen-Orr et al.
[2], we also use their Escherichia coli transcription network
containing 424 nodes and 577 interactions (http://

www.weizmann.ac.il/mcb/UriAlon/
Network_motifs_in_coli/ColiNet-1.0/).

Additionally, we use the neuronal signalling pathway net-
work of the hippocampal CA1 neuron published by
Máayan and colleagues, containing 594 nodes and 1422
interactions [6] (http://www.mssm.edu/labs/iyengar/).

We implemented Ullmann's algorithm for subgraph iso-
morphism [12] to enumerate fixed sized subgraph pat-
terns (e.g. FFL, 3-cycle).

In enumerating variable sized (maximal) subgraph pat-
terns such as SIMs and MIMs, we used our algorithms
described in [13]. We note that Bifans are counted as
MIMs with exactly two elements each in both parent and
child sets. (See Definitions.)

To generate random networks conserving the degree
sequence of the real network, we use the method
described by Shen-Orr et al. [2]: Starting with the same
number of nodes as in an original network, nodes in the
random graph are assigned a specific number of in- and
out-"edge-stubs." Randomly chosen pairs of in- and out-
edge-stubs are joined, giving rise to a random (directed)
graph.

Definitions
A FFL is a set of three nodes (source, intermediate, and tar-
get) with one direct path, and another indirect path
through an intermediate node, from source to target (See
Figure 1(a)).

A 3-cycle (3-CYC) is a three-node directed cyclic graph
(Figure 1(b)).

Single and multiple input modules (SIM and MIM) in a
directed graph are maximal subgraphs comprising two

Canonical subgraph patterns in biological networksFigure 1
Canonical subgraph patterns in biological networks. Canonical subgraph patterns in biological networks. (a) Feed-for-
ward loop (FFL): contains a "source" (at the top), "intermediate" (bottom-left), and "target" (bottom-right) nodes. (b) 3-cycle: a 
three node directed cyclic graph, (c) Single-input module (SIM). (d) Multiple-input module (MIM). (e) Bifan motif. SIM, MIM, and 
Bifan are two-layered graphs with edges from nodes in top- to bottom-layer. A Bifan is a MIM with exactly 2 parent and 2 child 
nodes.
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non-empty disjoint sets (layers):  and  (standing for
Parent and Child). By maximal we mean, for example,
that each MIM is not contained in a larger MIM.

A SIM requires that  contain only one node and  con-
tain at least two nodes, such that the full graph contains

an edge from the parent node to every ci ∈ . We also

require that the indegree – number of incoming edges – of
every ci to be strictly equal to one: within the full network,

not just within the subgraph. By this definition of a SIM,

no edges can exist between any ci, cj ∈ . It follows that

 is the only parent of all nodes in set .

A MIM requires that both  and  must contain ≥ 2

nodes, that there is an edge from every pi ∈  to every ci

∈ , no edge between any pi, pj ∈ , and no edge

between any ci, cj ∈ . A Bifan is a maximal MIM with 

and  containing exactly 2 elements [14]. (Figure 1(e))

We note that in counting both SIMs and MIMs, we ignore
self-edges.

We emphasize that we impose the criterion of maximality
when enumerating SIMs and MIMs. In case of SIM, the set

 is maximal, whereas with MIMs both  and  sets are
maximal.

These statements define the fundamental network motif
set – FFL, SIM, and MIM – as, in a sense, "orthogonal": No
subgraph can be more than one of the FFL, SIM, and MIM
[13].

Results
We enumerated the occurrences of FFL, 3-CYC, SIM, MIM,
and Bifan subgraph patterns (see Figure 1) in:

1. the transcription networks of Saccharomyces cerevi-
siae (Yeast) under various physiological states [5] (see
Table 1(a–f)).

2. the transcription network of Escherichia coli [2] (see
Table 1(g)), and

3. the signalling pathway of hippocampal CA1 neuron
[6] (see Table 1(h)).

For each network, 1000 random networks were generated
conserving the degree sequence of the original network.
Comparisons were made between the frequencies of
appearances of various patterns in the real network, and

the means and dispersions of their appearances in corre-
sponding random networks.

Table 1 presents the significance profiles of various pat-
terns. The results show that the frequencies of various sub-
graph patterns are not significantly over- or under-
represented in real networks when compared to their ran-
dom formulations. A few outliers (where |z-score| > 2)
appear in Table 1: FFLs in Yeast Sporulation (z-score =
2.31), 3-CYCs in Yeast Stress Response (z-score = 2.47)
and neuronal signalling pathway (z-score = 2.4), and
Bifans in Yeast Composite (z-score = -2.05) and Cell Cycle
(z-score = -2.33). Some outliers are slightly overrepre-
sented (z > 0), and others are slightly underrepresented (z
< 0). We observe no outliers with |z-score| ≥ 2.47.

We employ the same random model as used in earlier
related works [2,3,5,7]. While conserving the degree
sequence of the original network, the edges in a random
network are chosen randomly so that the resultant net-
work is free from the pressure of "evolutionary selection"
which is incident on real biological networks. However, in
addition to the conservation of the degree sequence, more
sophisticated random models can be generated by embed-
ding other connectivity constraints observed in real net-
works, such as rules of clustering together of nodes in a
neighbourhood, and path-lengths between pairs of nodes.
These additional constraints will only make the random null
hypothesis more stringent to refute. Nevertheless, even using
the basic random model employed in our work, we fail to
gather any statistical evidence that the canonical patterns
appear in real networks at non-random frequencies.

We note that there are differences in the counts of various
motifs reported by Luscombe et al. [5] and this work, even
though we use the same datasets (Table 1(a–f)). Our fig-
ures supersede those reported by Luscombe et al. (see [13]
for a detailed explanation).

Our reanalysis of Escherichia coli transcription network
provides the most direct comparison of our results with
those of Alon and coworkers (see Table 1(g)). We fail to
see any statistical evidence to suggest that the canonical
subgraphs appear more frequently than random. On com-
paring our results with those published by Shen-Orr et al.
[2], we find that:

1. Our definitions of fixed size subgraphs such as FFL
and 3-CYC are consistent with those originally defined
by Alon and colleagues [2,3]. Consequently, we agree
on the absolute count of these subgraph patterns in
the real network. Surprisingly however, our results of
appearances of FFLs in random networks greatly differ.
To reconfirm our results reported in Table 1(g), we
generated another set of 1000 random networks using
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Table 1: Frequencies of canonical subgraph patterns in biological networks

FFL 3-CYC SIM MIM Bifan

(a) Yeast transcription – composite

n 997 4 107 1551 186
μ 993.5 4.2 76.8 1919.2 413.6
σ 281.4 2.4 27.0 233.1 111.1
z 0.0123 -0.0977 0.6734 -1.5792 -2.0479

(b) Yeast transcription – Cell Cycle

n 103 3 27 56 15
μ 79.3 1.9 28.0 76.6 31.7
σ 22.6 1.3 6.9 11.3 7.2
z 1.0491 0.9133 -0.1397 -1.8144 -2.3325

(c) Yeast transcription – Sporulation

n 67 2 27 41 26
μ 38.0 0.6 30.7 53.0 28.8
σ 12.5 0.8 5.1 7.8 7.8
z 2.3148 1.7739 -0.7303 -1.5336 -0.3544

(d) Yeast transcription – Diauxic Shift

n 64 1 48 137 54
μ 63.2 0.3 47.8 141.1 64.4
σ 27.2 0.6 13.7 18.2 16.6
z 0.0301 1.0626 0.0167 -0.2230 -0.6260

(e) Yeast transcription – DNA Damage

n 70 1 45 117 51
μ 49.0 0.2 44.9 117.1 53.4
σ 25.8 0.5 12.1 17.0 14.4
z 0.8149 1.6548 0.0076 -0.0073 -0.1679

(f) Yeast transcription – Stress Response

n 42 2 32 46 21
μ 36.1 0.3 40.5 52.7 24.0
σ 14.2 0.7 9.3 11.7 6.3
z 0.4123 2.4005 -0.9102 -0.5698 -0.4761

(g) Escherichia coli transcription

n 40 0 2 45 17
μ 24.1 0.4 4.7 29.0 17.5
σ 12.3 0.7 2.8 9.7 5.5
z 1.2928 -0.6379 -0.9663 1.6463 -0.1001

(h) Hippocampal CA1 neuronal signalling pathway

n 266 37 5 240 92
μ 219.3 21.7 4.6 181.1 103.7
σ 54.9 6.2 2.1 35.5 14.7
z 0.8499 2.4664 0.1994 1.6590 0.7992

Frequencies of FFL, 3-CYC, SIM, MIM, and Bifan in (a-f) various transcription networks of Saccharomyces cerevisiae, (g) transcription network of 
Escherichia coli, and (h) signalling pathway of hippocampal CA1 neuron. The observed frequencies, n, of these patterns in each of the networks 
were compared with the corresponding mean frequency (μ) in 1000 random networks having same degree sequences. The standard deviation (σ), 

and z-score  show the statistical relevance of various patterns. Positive and negative values of z signify the extent of over- and 

under-representation respectively, of n from μ (in σ units).

z n=( )−μ
σ
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an alternative method of random network generation
– starting with the original network, over a large
number of repetitions, two randomly chosen interac-
tions are swapped. (i.e., interactions: (P1,C1), and
(P2,C2) become (P1,C2), and (P2,C1)). Indeed we get
similar statistical significance results using this alter-
native method, compared to those reported in Table
1(g).

2. Our definition of Bifan ensures that we count only
those patterns where a pair of target genes are strictly
regulated by a pair of transcription factors – Bifans are
maximal MIMs where  =  = 2. We believe Shen-
Orr et al. [2] fail to maintain this strictness, thereby
overcounting Bifans by including in their count two
parent, two child subMIMs of larger maximal MIMs.
(See Discussion.)

3. Similarly, our definitions and enumeration meth-
ods of SIMs and MIMs are mathematically more rigor-
ous than those used by Shen-Orr and colleagues [2].
Our counts of maximal MIMs and SIMs could be con-
verted directly to counts of non-maximal MIMs and
SIMs (see below). We note therefore that the non-
observance of statistically significant differences
between natural and randomized networks in counts
of maximal MIMs and SIMs implies that there are no
statistically significant differences between natural
and randomized networks in counts of non-maximal
MIMs and SIMs. This comment, together with the
reminder that our definitions (and counts) of FFLs
and 3-CYCs are identical with those of Alon et al.,
shows clearly that the discrepancies are not a simple
effect of alternative definitions of SIMs, MIMs and
Bifans.

Discussion
The observed discrepancy in occurrence frequency of FFLs 
and 3-CYCs is a natural consequence of topological 
properties of networks
Occurrences of FFLs and 3-CYCs in various biological net-
works (see Table 1) show patterns: there are a relatively
large number of FFLs and relatively small number of 3-
CYCs. In this section we explain the topological basis for
these differences in their frequencies.

First we note that random connectivity within three-node
subgraphs itself favours FFLs. Consider a directed, com-
plete – there is an edge between every pair of nodes – three
node graph (3-graph). Excluding bidirectional edges, for
any set of 3 nodes there are 23 = 8 possible directed 3-
graphs. Each of these configurations is isomorphic to
either a FFL or a 3-CYC – any directed complete 3-graph is
either a FFL or 3-CYC. Out of 8 possibilities, 6 form FFLs,

and 2 form 3-CYCs. Allowing bidirectional edges, there
are an extra 19 possible configurations containing at least
one bidirectional edge. Each of these possibilities gives
multiple FFLs or 3-CYCs or both. With or without bidirec-
tional edges, there is a natural 3:1 bias towards forming an
FFL over a 3-CYC in a 3-graph.

Global properties of biological networks also favour FFLs
over 3-CYCs. Most biological networks, such as those used
in our study, are scale-free [15]. In scale-free networks, the
connectivity of nodes follows the power law: the probabil-
ity of a node having k neighbours is P(k) ~ k-γ. Only a few
nodes in such a network are highly-connected (and form
hubs), while most nodes are sparsely connected [15].

We asked how many of the FFLs in various networks con-
tain hubs among their nodes. (We consider as hubs the
top 10% of nodes in the network that are highly-con-
nected, having more than 10 neighbours.) Table 2 con-
tains the percentages of FFLs enumerated in various
networks, having n = {0, 1, 2, 3} nodes as hubs. A large
majority of the FFLs contain at least one hub; most com-
mon being the FFLs with hubs at two of their nodes. In the
Yeast composite network, 961 of 997 FFLs have at least
one common source-intermediate edge between them.
These 961 FFLs can be grouped into 114 clusters (contain-
ing distinct source-intermediate edges) revealing that con-
nected hubs often share many common children,
automatically giving rise to FFLs. We believe that the prin-
ciple of preferential attachment predisposes a biological
network to have connected hubs that have shared chil-
dren. This gives a network its robustness to random node
failure [15].

We also observe that there is an imbalance between inde-
gree and outdegree around hubs – there are significantly
more outgoing edges than incoming edges. We have seen
above that FFLs are naturally favoured over 3-CYCs in 3-
graphs. The imbalances between in- and out-degree
around the hubs further enhances the formation of FFLs.
Consider a hub with m incoming edges and n outgoing
edges. With a random addition of an edge between any

 

Table 2: Percentage of FFLs in various networks having exactly n 
of its nodes as hubs

n = 1 n = 2 n = 3 n = 0

Yeast Composite 15.7 80.1 2.2 1.9
Yeast Sporulation 22.4 67.2 4.5 6.0
Yeast Cell Cycle 9.7 68.0 15.5 6.8
Yeast Diauxic 12.5 81.2 6.2 0.0
Yeast DNA damage 24.3 68.6 5.7 1.4
Yeast Stress response 21.4 59.5 19.0 0.0
Hippocampal pathway 20.9 58.7 15.5 4.9
Page 5 of 8
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pair of (m + n) nodes adjacent to this hub, the probability
of forming an FFL in this system is:

  while that of forming a cycle is:

. Then,

, which is symmetric in m and

n. If there is a large disparity between m and n (i.e., m <<

n, or m Ŭ n), then one of the terms  or  domi-

nates, resulting in . For exam-

ple, when m = 2 and n = 20, PFFL = 0.91, and P3-CYC = 0.09.

This shows the odds against the formation of a 3-CYC in
networks with structures typical of biological networks.

There have been suggestions that 3-CYC is an "anti-motif"
– a motif that is selected against in many biological net-
works [14]. But, as described above, the suppression of 3-
CYCs is an expected consequence of topological proper-
ties of biological networks.

These properties are sufficient to account for the observed pro-
files of FFLs and 3-CYCs.

Assemblies of motifs
Kashtan and colleagues [16] observed that regulatory net-
works contain multi-output FFL generalizations (see Fig-
ure 2(a)) in frequencies much higher than multi-input
(Figure 2(d)) and multi-intermediate (Figure 2(f)) gener-
alisations. (These authors also suggested that multi-out-
put FFLs were selected to achieve some information
processing role [16].)

We, in contrast, observe that the varied frequencies of
assemblies of multiple FFLs are a consequence of the

occurrence of FFLs around hubs. Figure 2 shows all possi-
ble assemblies involving two FFLs sharing a common
edge. In Table 3 we enumerate the occurrences of each
such assembly in various networks. Clearly, the multi-out-
put assembly of two FFLs abounds over other possibilities,
simply because a large number of FFLs share a common
source-intermediate edge.

Thus the numbers of multi-output FFLs grow combinato-
rially with the number of FFLs sharing a common source-
intermediate edge. The count of (k<n)-output assembly of
FFLs, where n is the number of FFLs sharing two common
(source and intermediate) nodes, is expected to increase
as nCk. For example, 5 FFLs having a common source-
intermediate edge (see Figure 3) will give rise to 10 non-
redundant bi-output FFLs. Table 4 shows the statistical
significance of finding bi-ouput FFLs in various real net-
works used in this work, by comparing the occurrences
with those observed in their corresponding random net-
works. Statistically, their frequencies are not significantly
greater than in random networks.

On SIMs, MIMs and Bifans
SIMs and MIMs are variable sized subgraphs. Alon and
colleagues [2] defined the dense overlapping regulon
(DOR) as a two-layered subgraph with not necessarily com-
plete connections between them. MIMs are special DORs,
a concept that arose as a generalization of the Bifan (Fig-
ure 1(e)) subgraph. These Bifans were observed to be
present in large numbers in biological networks. How-
ever, some investigators fail to impose the criterion of
maximality while counting MIMs. This can lead to signif-
icant inflation of counts [2,5]. Note that this applies equally
to natural graphs and random ones (Hence we emphasize
that the differences between our results and those of Alon
et al. are not explicable solely on the basis of alternative
definitions of some of the motifs).

A maximal MIM with m parents and n children contains
[2m - (m + 1)] × [2n - (n + 1)] - 1 easily enumerable non-
maximal "subMIMs". Our definition of a Bifan ensures
that we are only counting (maximal) MIMs that contain 2
parents and 2 children. Counting subMIMs as Bifans will

P
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Self-Assemblies of two FFLsFigure 2
Self-Assemblies of two FFLs. Various possible self-assem-
blies of two FFLs sharing a common edge.

Table 3: Number of occurrences of various assemblies shown in 
Figure 2

Frequencies of patterns in Figure 2
(a) (b) (c) (d) (e) (f)

Yeast Composite 9232 259 184 288 280 152
Yeast Sporulation 113 3 8 21 8 4
Yeast Cell Cycle 419 22 17 38 12 15

Yeast Diauxic Shift 214 2 2 3 4 5
Yeast DNA damage 140 6 6 11 4 8

Yeast Stress Response 41 9 6 5 4 1
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combinatorially increase their counts, as each maximal
MIM will contribute to mC2 × nC2 Bifans. For example, the
Yeast composite network contains a large MIM containing
2 parents and 119 children. This alone contributes to
7021 non-maximal Bifans. The same consistency is main-
tained when counting SIMs. The list of subgraphs occur-
rences in various networks used in this paper can be
downloaded from http://hollywood.bx.psu.edu/net
works/analysis/.

The natural appearance of bipartite graphs in dense gen-
eral graphs has received some attention in graph theory
[17]. It has also been demonstrated, using Ramsey theory
[18], that bipartite cliques appear in sufficiently dense
bipartite graphs [19,20]. MIMs are bipartite cliques. Bio-
logical networks contain regions in which dense bipartite
graphs naturally appear, and hence giving rise to bipartite
cliques. This in itself speaks against the notion of evolu-
tionary selection of MIMs [2].

Evidence for selection of motifs?
Analysis of natural networks shows that several com-
monly observed subgraphs identified as motifs do not

appear at frequencies significantly greater than in corre-
sponding random graphs. Instead, their frequency of
occurrence is the result of the small-world character of
many biological networks, and of the associated degree
distribution.

What does this imply about the idea that motifs have been
selected, by evolution, for function? The statement that
motifs are selected for function has two possible interpre-
tations, not necessarily incompatible:

1. It might be asserted that the general type of motif –
for instance FFL rather than 3-cycle – is selected
because of a general propriety to serve a particular
function (For example, Alon et al. [1] pointed out that
a FFL with AND logic at the output node can function
as a filter rejecting transient stimuli).

2. Or it might be asserted that individual FFLs (or 3-
cycles) within a network play specific functional roles
at specific points.

Statistics of frequency of occurrences of specific motifs,
and the comparison of observed frequencies in natural
networks relative to random networks, do not – no matter
what numerical results emerge – provide evidence for or
against assertions of type 2. If any individual subgraph at
some node plays an essential functional role in a network,
it could be selected – whether it is a commonly-occurring
subgraph or not. Conversely, an observation of signifi-
cantly non-random occurrence frequencies of motifs
would suggest the action of positive or negative selection,
acting at the level of assertions of type 1 or type 2. Indeed
it seems inescapable that if assertions of type 1 are true,
then at least some assertions of type 2 must also be true,
but not vice versa.

Our results suggest that there is no evidence for type 1
assertions.

Conclusion
We have analysed several biological networks. Our results
suggest that there is no evidence suggesting selection for
or against subgraph patterns such as FFL, 3-CYC, SIM,
MIM, Bifan. We have shown that, in contrast to the need
to invoke selection to explain the structure of observed
networks, it is the topological properties of networks that
automatically favour the observed frequency profiles of
various subgraph patterns.

Authors' contributions
Both the authors contributed equally to the planning and
execution of this study; both authors contributed to the
draft, and have read and approved the final manuscript.

Table 4: Frequencies of Bi-FFL assembly in various networks

n μ σ z

Yeast Composite 9232 17278.2 13537.5 -0.6
Yeast Sporulation 113 52.4 48.1 1.3
Yeast Cell Cycle 419 173.8 132.2 1.9
Yeast Diauxic Shift 214 238.4 334.3 -0.1
Yeast DNA Damage 140 189.6 295.8 -0.2
Yeast Stress Response 41 67.2 69.3 -0.4
Ecoli transcription 0 0.6 1.1 -0.6
Hippocampal pathway 85 327.0 223.6 -1.1

See Table 1 legend for explanation of symbols.

Example of FFLs sharing two hub nodesFigure 3
Example of FFLs sharing two hub nodes. Example of 
FFLs sharing two hub nodes that are connected.
Page 7 of 8
(page number not for citation purposes)

http://hollywood.bx.psu.edu/networks/analysis/
http://hollywood.bx.psu.edu/networks/analysis/


BMC Systems Biology 2008, 2:73 http://www.biomedcentral.com/1752-0509/2/73
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

References
1. Sharan R, Ideker T: Modeling cellular machinery through bio-

logical network comparison.  Nature Biotechnology 2006,
24(4):427-430.

2. Shen-Orr SS, Milo R, Mangan S, Alon U: Network motifs in the
transcriptional regulation network of Escherichia coli.  Nature
Genetics 2002, 31:64-68.

3. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U:
Network motifs: simple building blocks of complex net-
works.  Science 2002, 298(5594):824-827.

4. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK,
Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jen-
nings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert
TL, Fraenkel E, Gifford DK, Young RA: Transcriptional regulatory
networks in Saccharomyces cerevisiae.  Science 2002,
298(5594):799-804.

5. Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein
M: Genomic analysis of regulatory network dynamics reveals
large topological changes.  Nature 2004, 431(7006):308-312.

6. Máayan A, Jenkins SL, Neves S, Hasseldine A, Grace E, Dubin-Thaler
B, Eungdamrong NJ, Weng G, Ram PT, Rice JJ, Kershenbaum A, Stolo-
vitzky GA, Blitzer RD, Iyengar R: Formation of regulatory pat-
terns during signal propagation in a mammalian cellular
network.  Science 2005, 309:1078-1083.

7. Mangan S, Alon U: Structure and function of the feed-forward
loop network motif.  Proc Natl Acad Sci USA 2003,
100:11980-11985.

8. Mangan S, Itzkovitz S, Zaslaver A, Alon U: The incoherent feed-
forward loop accelerates the response-time of the gal sys-
tem of Escherichia coli.  J Mol Biol 2006, 356:1073-1081.

9. Mangan S, Zaslaver A, Alon U: The coherent feedforward loop
serves as a sign-sensitive delay element in transcription net-
works.  J Mol Biol 2003, 334:197-204.

10. Kalir S, Mangan S, Alon U: A coherent feed-forward loop with a
SUM input function prolongs flagella expression in
Escherichia coli.  Mol Syst Biol 2005, 1:E1-E6.

11. Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M,
Surette MG, Alon U: Just-in-time transcription program in
metabolic pathways.  Nature Genetics 2004, 36:486-491.

12. Ullmann JR: An Algorithm for Subgraph Isomorphism.  J. ACM
1976, 23:31-42.

13. Konagurthu AS, Lesk AM: Single and Multiple input modules in
regulatory networks.  Proteins 2008 in press. 2008 Apr 23

14. Alon U: An Introduction to Systems Biology: Design Principles of Biological
Circuits (Chapman & Hall/Crc Mathematical and Computational Biology
Series) Chapman & Hall/CRC; 2006. 

15. Barabási AL, Albert R: Emergence of scaling in random net-
works.  Science 1999, 286(5439):509-512.

16. Kashtan N, Itzkovitz S, Milo R, Alon U: Topological generaliza-
tions of network motifs.  Phys Rev E Stat Nonlin Soft Matter Phys
2004, 70(3 Pt 1):031909.

17. Holyer I: The NP-completeness of some edge partitioning
problems.  SIAM J Computing 1981, 10:713-717.

18. Graham RL, Rothschild BL, Spencer JH: Ramsey theory. Discrete math-
ematics and optimization New York, NY: John Wiley; 1980. 

19. Erdős P, Spencer JH: Probabilistic methods in combinatorics New York,
NY: Academic press; 1974. 

20. Feder T, Motwani R: Clique partitions, graph compression and
speeding-up algorithms.  In STOC '91: Proceedings of the twenty-third
annual ACM symposium on Theory of computing New York, USA: ACM;
1991:123-133. 
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16601728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16601728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15372033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15372033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16406067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14607112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14607112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14607112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16729041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15107854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15107854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18433061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18433061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15524551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15524551
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Definitions

	Results
	Discussion
	The observed discrepancy in occurrence frequency of FFLs and 3-CYCs is a natural consequence of topological properties of networks
	Assemblies of motifs
	On SIMs, MIMs and Bifans
	Evidence for selection of motifs?

	Conclusion
	Authors' contributions
	References

