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Abstract
Background: Qualitative dynamics of small gene regulatory networks have been studied in quite
some details both with synchronous and asynchronous analysis. However, both methods have their
drawbacks: synchronous analysis leads to spurious attractors and asynchronous analysis lacks
computational efficiency, which is a problem to simulate large networks. We addressed this
question through the analysis of a major biosynthesis pathway. Indeed the cholesterol synthesis
pathway plays a pivotal role in dislypidemia and, ultimately, in cancer through intermediates such
as mevalonate, farnesyl pyrophosphate and geranyl geranyl pyrophosphate, but no dynamic model
of this pathway has been proposed until now.

Results: We set up a computational framework to dynamically analyze large biological networks.
This framework associates a classical and computationally efficient synchronous Boolean analysis
with a newly introduced method based on Markov chains, which identifies spurious cycles among
the results of the synchronous simulation. Based on this method, we present here the results of
the analysis of the cholesterol biosynthesis pathway and its physiological regulation by the Sterol
Response Element Binding Proteins (SREBPs), as well as the modeling of the action of statins,
inhibitor drugs, on this pathway. The in silico experiments show the blockade of the cholesterol
endogenous synthesis by statins and its regulation by SREPBs, in full agreement with the known
biochemical features of the pathway.

Conclusion: We believe that the method described here to identify spurious cycles opens new
routes to compute large and biologically relevant models, thanks to the computational efficiency of
synchronous simulation.

Furthermore, to the best of our knowledge, we present here the first dynamic systems biology 
model of the human cholesterol pathway and several of its key regulatory control elements, hoping 
it would provide a good basis to perform in silico experiments and confront the resulting properties 
with published and experimental data. The model of the cholesterol pathway and its regulation, 
along with Boolean formulae used for simulation are available on our web site http://
Bioinformaticsu613.free.fr. Graphical results of the simulation are also shown online. The SBML 
model is available in the BioModels database http://www.ebi.ac.uk/biomodels/ with submission ID: 
MODEL0568648427.
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Background
Systems biology
Systems biology is an emerging scientific field that inte-
grates large sets of biological data derived from experi-
mental and computational approaches. In this new
paradigm, we no longer study entities of biological sys-
tems separately, but as a whole. Hence, large data sets can
be translated into sets of links representative of the inter-
actions of species from within single or multiple path-
ways. In fact, elementary functions in those systems are
the result of the inherent characteristics of the specific ele-
ments involved and the interactions they are engaged in
within the systems [1]. In biological or biomedical mat-
ters, modeling activities are strongly linked to the nature
and amount of available data on the model. Furthermore,
computational studies in systems biology rely on different
formalisms that are intimately connected to the level of
knowledge one has of a biological system. In the present
study, the cholesterol synthesis pathway, including most
of its associated reactions, is analyzed to address the effect
of either activators or inhibitors. Hence, blockade can be
attained by targeting the HMG-CoA reductase, the rate-
limiting enzyme of the mevalonate pathway, with statins,
widely used hypocholesterolemic drugs. Alternatively,
activation of the pathway can be triggered by Sterol
Response Element Binding Proteins (SREBPs), as part of a
compensatory feedback mechanism. Moreover, to better
analyze this pathway including both enzymatic reactions
and gene regulatory networks, we will focus on the
Boolean networks formalism, particularly suitable to
delineate dynamic properties from qualitative informa-
tion on regulatory interactions [2,3].

Boolean formalism for qualitative modeling and 
simulation
A model or simulation of a biological network is said to
be qualitative when each entity of this model is repre-
sented by a variable having a finite set of possible values.
We can note here that the possible values that can be
taken by the variable are not necessarily linearly correlated
to the concentration of the represented species. Those val-
ues represent qualitative states of the entities from the net-
work. In the formalism of Boolean networks, the state of
a species is described by a Boolean variable, which value
is either 1 if the species is active (i.e. its activity is detecta-
ble, in biological terms) or 0 if inactive (its activity is
undetectable). Moreover, a Boolean function allows to
compute the state of a species at time t + 1, knowing the
states of k other species at time t. If we denote by xi the
state of species i and by bi(x(t)) the associated Boolean
function, we get the following equations for the dynamics
of the Boolean network:

xi(t + 1) = bi(x(t)), 1 ≤ i ≤ n (1)

We can note here that the Boolean formalism allows us to
model various biological systems such as gene regulatory
networks and metabolic networks whose entities have
very different timescales.

Construction of a Boolean network: modeling inhibition 
and activation
Let us detail how inhibitions and activations should be
modeled in the Boolean network formalism.

• Inhibition: if A is an enzyme that produces a compound
B but can be inhibited by compound C, then the Boolean
function that predicts the presence of B at time t + 1 will
be: B(t + 1) = A(t) AND NOT(C(t))

• Activation: if A is a precursor of B and the reaction of
transformation of A to B is catalyzed by enzyme C, then
the Boolean function that predicts the presence of B at
time t + 1 will be: B(t + 1) = A(t) AND C(t)

Here is a simple example with 4 genes (A, B, C, D) and the
4 following Boolean functions:

• A(t + 1) = NOT (D(t))

• B(t + 1) = NOT (A(t))

• C(t + 1) = A(t) OR B(t)

• D(t + 1) = NOT (C(t))

The graphical representation of this network can be seen
in figure 1.

Example of a simple regulatory networkFigure 1
Example of a simple regulatory network. Graphical 
representation of a regulatory network with 4 genes (A, B, 
C, D). Its full dynamics is described in the associated Boolean 
functions.
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Synchronous and asynchronous paradigms in the Boolean 
formalism
In Boolean simulations, there are two main paradigms
where conception of time and transition between states
differs.

• The simplest one is the synchronous simulation. At each
step of clock (time is moving discretely in Boolean simu-
lations) all the decrease or increase calls are realized
simultaneously. This approach is computationally effi-
cient, but might lead to simulation artifacts such as spuri-
ous cycles [4,5], which are cycles that do not appear in
asynchronous simulation.

• In asynchronous simulation, only one transition occurs
at each clock step. Thus, the same reaction can occur sev-
eral times before another one is completed, which enables
the simulation of biological systems that contain slow
and fast kinetics (equivalent to a stiff system in the Ordi-
nary Differential Equations paradigm).

It is worthwhile to note that the steady states, which cor-
respond to some phenotypes, are the same in those two
paradigms. However, some dynamic behaviors can be
very different.

To sum up, synchronous simulations have fewer mode-
ling power but are more computationally efficient while
asynchronous simulations are able to predict a wider
range of biological behaviors but their exhaustive compu-
tation becomes intractable for large biological systems
[6,7].

In the synchronous paradigm simulation, our simple reg-
ulatory network gives the results partially shown in table
1. The study of this truth table shows that {1010} is a
steady state (or point attractor, or equilibrium) and that
{0010, 1100, 1011} is a state cycle (or dynamic attractor,
or cyclic attractor). This becomes more evident when con-
verting this network into a finite state machine as shown
in figure 2. The state colored in green corresponds to the
steady state and the states colored in red correspond to the
state cycle.

In the asynchronous paradigm simulation, our simple
regulatory network gives the finite state machine shown in
figure 3. The state colored in green corresponds to the

Table 1: Fragment of the truth table obtained from our simple 
regulatory network. 

(ABCD)

t 0000 0001 0010 0011 0100 0101 ...

t + 1 1101 0101 1100 0100 1111 0111 ...

For each initial array of values (initial state) at time t, the new array of 
values, obtained by evaluating the system through the Boolean 
functions, is shown on the second line (t + 1).

Finite state machine of our regulatory network taken as an example in synchronous simulationFigure 2
Finite state machine of our regulatory network taken 
as an example in synchronous simulation. The state 
[1010] colored in green corresponds to a steady state. It has 
5 states and itself in its basin of attraction (i.e. the states 
whose trajectory during the simulation lead to this steady 
state). The 3 states [0010], [1100], [1011] colored in red 
correspond to a state cycle. They have 7 states and them-
selves in their basin of attraction. All the state space is shown 
in the figure.
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steady state in both synchronous and asynchronous sim-
ulations. We recall that steady states are obviously always
the same in synchronous and asynchronous simulations.
The states colored in red are the states which correspond
to the state cycle in synchronous simulation. The purple
arrows propose one way -among many possible- to reach
cyclically those states. Note that, for some regulatory net-
works, it is not possible in asynchronous simulation to

reach cyclically states which form a state cycle in synchro-
nous simulation. This becomes obvious when looking at
the synchronous and asynchronous simulation results of
a simple negative feedback loop of size 3. The synchro-
nous state cycle {010, 101} does not exist in asynchro-
nous simulation. These results are shown on our web site
http://bioinformaticsu613.free.fr/simpleloopsn3.html.
Furthermore, we can have an intuition that this purple tra-
jectory is in some way unstable because while cycling
through the 3 states {0010, 1100, 1011}, the system
could have gone through many transitions that lead to the
steady state 1010.

The cholesterol biosynthesis pathway
Cholesterol is an important constituent of mammalian
cell membranes. It maintains their fluidity and allows
other molecules playing important biological roles, like
glycoproteins, to anchor to the membrane compartment.
It is also the precursor of fat-soluble vitamins, including
vitamins A, D, E and K and of various steroids hormones,
such as cortisol, aldosterone, progesterone, the various
estrogens and testosterone. It comes for about one third
from the dietary intake and for about two thirds from
endogenous synthesis from unburned food metabolites.
Its synthesis starts from acetyl CoA, through what is often
called the HMG-CoA reductase pathway. It occurs in
many cells and tissues, but with higher rates in the intes-
tines, adrenal glands, reproductive organs and liver. Cho-
lesterol synthesis is orchestrated by a protein complex
formed by the Sterol Regulatory Element Binding Protein
(SREBP), the SREBP-cleavage activating protein (SCAP)
and the insulin-induced gene 1 (Insig) [8-10]. This com-
plex is maintained in a repressed state located in the endo-
plasmic reticulum (ER). When the cholesterol level is low,
Insig1 interaction with SREBP-SCAP complex is relieved
allowing SREBP-SCAP to migrate to the Golgi apparatus
where SREBP is cleaved by two proteases called S1P and
S2P. Once SREBP is matured, it migrates to the nucleus
and acts as a transcription factor upon binding to sterol
regulatory elements (SRE) to activate the genes coding for
the main enzymes of the HMG-CoA reductase pathway
(e.g. HMG-CoA synthase, HMG-CoA reductase, FPP syn-
thase, CYP51). The synthesis of cholesterol can be regu-
lated by drugs such as HMG-CoA reductase inhibitors,
among which the most potent belong to the statins family
[11-14]. They lower cholesterol by inhibiting the enzyme
HMG-CoA reductase, which is rate-limiting.

Effects of statins on cancer activated pathways
Therefore statins are known lipopenic drugs, but they are
also drug candidates against cancer [15]. Intermediate
molecules in the HMG-CoA reductase pathway undergo
important biochemical reactions of prenylation whose
blocking will inactivate several intracellular transduction
pathways that involve Ras, Rho and small G proteins [16-

Finite state machine of our regulatory network taken as an example in asynchronous simulationFigure 3
Finite state machine of our regulatory network taken 
as an example in asynchronous simulation. The state 
[1010] colored in green also corresponds to a steady state in 
the asynchronous simulation. (All the steady states are the 
same in synchronous and asynchronous simulations) The 3 
states [0010], [1100], [1011] which correspond to a state 
cycle in the synchronous simulation are still colored in red, 
but this figure clearly shows that they do not correspond to 
a state cycle in the asynchronous simulation. Actually, even if 
there are several paths enabling to reach cyclically those 
three states (one of those paths is indicated with purple 
arrows), there are also several paths leading to the steady 
state from which there is no path back to those 3 states.
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19]. Hence, statins can block Ras activation, which occurs
in 30% of human tumours. Experimentally, statins can
stop cell growth by blocking cells at the G1 or G2/M
stages, or induce apoptosis in several cancer cell types
[20]. Important results have also been obtained using
rodent models where neuroblastoma, colic cancer and
melanoma have regressed under the effect of lovastatin.
Moreover, the combination of classical antineoplastic
drugs, like DNA topoisomerase inhibitors, and statins
increases tumour cell killing [21,22].

In this paper, we first focus on the synchronous formalism
enabling us to compute our large model of cholesterol
regulatory pathway. We next propose a methodology
based on asynchronous formalism and of Markov chains
to overcome one of its limitations: the appearance of spu-
rious cycles.

Methods
Boolean modeling of the human cholesterol regulatory 
pathway
The model shown in figure 4 has been made using data
from the literature [23-25]. It is composed of the choles-
terol synthesis pathway and its regulation by SREBPs.

After a few simplifications aimed at reducing the state
space size, our model includes 33 species (genes, mRNAs,
proteins, biochemical intermediates and statins). In par-
ticular, we assume the SREBP-SCAP-Insig1 complex to be
always present in the membranes of the endoplasmic
reticulum (ER). Therefore, in our model, the SREBP-SCAP
complex can be either present in the ER if the cholesterol
level is high, or absent if the cholesterol level is below the
physiologically relevant threshold, a situation that occurs
following its dissociation from Insig. We also assume that
S1p and S2p are always present in the membranes of the
Golgi apparatus. Hence, in our model, a non-fully
matured SREBP protein, called here pSREBP (for precur-
sor-SREBP) is automatically produced if SREBP-SCAP is
present. Likewise, matured SREBP, called mSREBP, is
automatically derived from pSREBP and then migrates to
the nucleus to enhance transcription of the genes from the
HMG-CoA reductase pathway when cholesterol levels are
perceived as insufficient.

Target genes will then be transcribed into their respective
mRNA, which will be translated into the corresponding
enzymes. The endogenous cholesterol synthesis starts
with acetyl-CoA which can, in our model, be either
present, or absent in case of deficiency. Acetyl-CoA com-
bines with itself to give CoA-SH and acetoacetyl-CoA.
Acetyl-CoA reacts then with acetoacetyl-CoA to give
HMG-CoA (3-Hydroxy-3-methylglutaryl CoA). This reac-
tion is catalyzed by the HMG-CoA synthase. Therefore,

the Boolean formula that describes the evolution of
HMG-CoA is:

HMG_CoA(t+1) = Acetoacetyl_CoA(t) AND 
Acetyl_CoA(t) AND HMG_CoA_Synthase(t)

as expressed in the formalism of equation (1).

We assume that NADPH and H+ are always present and
we have chosen not to represent them in our model. Thus,
in the presence of HMG-CoA reductase, HMG-CoA will
produce mevalonic acid. ATP is also considered to be
present in sufficient amounts so that mevalonic acid will
transform into mevalonyl pyrophosphate, which will
then transform into isopentenyl pyrophosphate.

Isopentenyl pyrophosphate will give dimethyl allyl pyro-
phosphate, and then combine with its own product to
form geranyl pyrophosphate. This last one will combine
with isopentenyl pyrophosphate to give farnesyl pyro-
phosphate. Farnesyl pyrophosphate will lose two inor-
ganic phosphates and one H+ ion to give presqualene
pyrophosphate that will get two hydrogens from NADPH
and H+ and lose two more inorganic phosphates to trans-
form into squalene.

Since we assume NAPDH and H+ to be always present in
enough quantity, farnesyl pyrophosphate will automati-
cally give squalene and presqualene pyrophosphate
which, as an intermediate of the reaction, is not men-
tioned.

The ring closure of squalene produces lanosterol. We have
then omitted several transitions and jumped from the
lanosterol to desmosterol or 7-dehydrocholesterol, which
both give cholesterol. The Boolean formula that describes
the formation of cholesterol from either desmosterol or 7-
dehydrocholesterol is:

Cholesterol(t+1) = Desmosterol(t) OR 
7_dehydrocholesterol(t)

Perturbations of the model such as blockade of the HMG-
CoA reductase by statins, widely used hypocholestero-
lemic drugs, can be readily modeled. In the case of statins
and HMG-CoA reductase, the Boolean formula is:

HMG_CoA_Reductase(t+1) = 
HMG_CoA_Reductase_RNA(t) AND NOT(Statins(t))

Encoding the model
At each time of the simulation the state of the targeted
biological system is represented by a Boolean vector. Each
coordinate represents a species in the pathway.
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Cholesterol Regulatory PathwayFigure 4
Cholesterol Regulatory Pathway. The cholesterol biosynthesis pathway is shown on this figure starting by its precursor 
Acetyl-CoA. Several of the key enzymes of this pathway regulated by SREBPs are also shown. The genetic regulation initiated 
by the effect of cholesterol on the Insig-SREBP-SCAP complex can be seen on the top of this figure. The action of statins, 
widely used hypolipidemic drugs, on the HMG-CoA-Reductase enzyme is also captured in this graph. Species of the model are 
grouped into cellular compartments as nucleus, golgi apparatus and endoplasmic reticulum. Default cellular compartment is the 
cytosol. This graphical representation has been prepared with CellDesigner [60,61].
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The evolution function takes a Boolean vector represent-
ing the state of the model at time t and returns a Boolean
vector representing the state of the model at time t + 1.

Storing the model
The study of those pathways is greatly facilitated when the
models are stored in a computer-readable format allowing
representation of a biological system. Such formats have
already been proposed like the Systems Biology Markup
Language (SBML) [26,27]. SBML files are static represen-
tations of biological systems that contain species, reac-
tions, kinetic laws and possible annotations. SBML
implements the XML (Extensible Markup Language)
standard and is now internationally supported and widely
used. It allows models of biological systems to be stored
in public or private databases. However, it has been
designed for the purpose of ODE (Ordinary Differential
Equations) simulations and thus needs some adaptations
to be used for Boolean simulations, like the possibility to
store Boolean formulae. For our purposes, we have used
SBML files with additional <BooleanLaws> </BooleanLaws>
tags which are stored within reaction tags in an annotated
section to remain compatible with SBML standard. This
SBML can be downloaded from the BioModels database
http://www.ebi.ac.uk/biomodels/[28] and has the follow-
ing submission ID: MODEL0568648427.

Simulation: point and cyclic attractors
In a synchronous simulation, every trajectory converges to
an attractor. Indeed, as the state space is finite (its size is
2N with N the number of species in the model), if we keep
the simulation running long enough it will eventually
come back to an already reached state. At that point, the
trajectory becomes periodic because the simulation is
deterministic on a finite state space.

If the periodic part of the trajectory is of size one, we call
the state a point attractor. When the system loops infi-
nitely through several states, we call the set of these states
a cycle attractor.

While non-attractor states are transient and visited at most
once on any network trajectory, states within an attractor
cycle or point are reached infinitely often. Thus, attractors
are often identified with phenotypes [2,3]. Considering
that a phenotype is an observable state, therefore stable, of
an organism or a cell, real biological systems are typically
assumed to have short attractor cycles [29].

The state-space explosion problem
In order to fully analyze the model with a simple simula-
tion approach, we would need to simulate every state of
the state-space. But the size of this space grows exponen-
tially with the number of species and thus the computa-
tion of the trajectories starting from all possible states will

rapidly become too costly. Thus, we have decided, as a
first step prior to a formal analysis, to use a random gen-
erator in order to choose a subset of start states signifi-
cantly smaller than the whole state-space and uniformly
distributed in this space. We have also taken advantage of
multiple processors computing in order to cover the max-
imum of the state space with a minimum of time. Algo-
rithms developed for Boolean simulation are very well
suited for parallel execution. For example the set of start
states used for simulation can easily be divided into sub-
sets and simulation can be run independently from those
start subsets. However, we think that parallelization is not
sufficient to overcome the combinatorial explosion.
Indeed, in order to add a species to a model, the comput-
ing capabilities must be multiplied by two.

Relative importance of cycles: A Markovian approach 
based on asynchronous perturbations
We propose here a methodology based on Markov proc-
esses that computes the stability of cycles. Markov proc-
esses have already been used for controlling and analyzing
gene networks [30,31]. Our approach differs from what is
done in Probabilistic Boolean Networks (PBN) by the
choice of the state space: instead of classically using the
state space of the system itself (i.e. the 2N possible values
of the state vector), we will use the set of state cycles and
equilibria which is typically much smaller [2,3]. This
allows us to compute Markov chain-based algorithms on
large biological systems and thus to take into account the
substantial and still growing amount of data we have on
those networks and pathways. However, as a price for scal-
ability and unlike PBN, the framework of synchronous
Boolean networks does not represent the possible stochas-
ticity of state transitions. Let S be the set of results of our
Boolean analysis (S is composed of point attractors and
cyclic attractors). S is the state-space of the finite discrete
time-homogeneous Markov chain we want to study. In
order to define the transitions of this Markov chain, we
apply a perturbation on each cycle C in S. C has k states (k
can be 1 in the case of a point attractor), say (s1, s2, ..., sk).
For each state si of the cycle (s1, s2, ..., sk) the perturbation
consists in reevaluating each species by its own Boolean
function triggered asynchronously. Thus we obtain N new
states (si,1, si,2, ..., si,N) for each state in C. When we perturb
every state with every perturbation, we obtain a new set of
perturbed states of size kN.

We can note here that some of the states in (si,1, si,2, ..., si,N)
are equal to the perturbed state si. Those states will be
taken into account similarly to the states different from si.
We then simulate synchronously all the states in (si,1, si,2,
..., si,N) until they reach one of the attractors of the system
(i.e. an element of S). The transition probability from a
cycle to another is defined as the ratio of the number of
perturbed states of the first cycle that reach the second one
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over the total number of perturbed states of the first cycle.
We also take into account the transitions from a cycle to
itself. By this mean, we add some asynchronous dynamics
in our synchronous analysis. We can then compute the
stationary distribution of this Markov process and inter-
pret it as a measure of the relative importance of each
cycle. We achieve this computation with an initial vector
of size n and of value [1/n, 1/n, ..., 1/n] where n is the size
of S. By this mean, we make sure that all the absorbing
states are taken into consideration. The aim of this meth-
odology is to provide a measure of the stability of each
synchronous attractor, using an asynchronous perturba-
tion. Expecting that all the resulting attractors of synchro-
nous Boolean analysis are biologically relevant would
mean that all the biochemical reactions in the network
happened simultaneously. Yet we know that it is not the
case. Furthermore, it is well known that, within a biologi-
cal pathway, some reactions are triggered with higher fre-
quency than others (that is why, in the ODE paradigm, a
lot of systems are stiff). Thus, Boolean analysis should, in
some way, take into consideration the asynchronous char-
acter of biochemical reactions. Under this assumption,
asynchronous perturbations seem a logical and conven-
ient way to provide a hint of the biological relevance of
the state cycles found.

Results
Dynamical synchronous analysis of the model
Based on the simulations obtained from 105 random
states (out of 233 . 8.6 × 109 possible states), we predict 3
equilibria or steady states:

• one with the complex SREBP-SCAP-Insig1 activated but
a lack of precursor (Acetyl-CoA) preventing cholesterol
synthesis;

• one with the presence of cholesterol precursor (Acetyl-
CoA), but also the presence of statins blocking the choles-
terol synthesis by inhibiting the HMG-CoA reductase
enzyme;

• and one with a lack of precursor and the presence of stat-
ins.

Furthermore, we found 4 state cycles corresponding to the
physiological regulation of cholesterol synthesis: when
the cholesterol level is too low (equivalent to the absence
of cholesterol in a Boolean formalism) there is activation
of the SREBP-SCAP complex and (enhancement of the)
production of all the enzymes of the cholesterol synthesis
regulated by SREBP. Then, the endogenous synthesis of
cholesterol starts again and when its level becomes too
high (equivalent to the presence of cholesterol in a
Boolean formalism) it inhibits the release of the SREBP-

SCAP complex and thus the production of the above
enzymes.

Among those 4 cycles one has size 29 (named cycle_0 fur-
ther in this article) and the others have size 33. In the cycle
of size 29 the cholesterol changes from false to true (i.e.
the cholesterol gets above the threshold indicative of the
activation of its synthesis by the complex SREBP-SCAP-
Insig) only once per cycle, while in the cycles of size 33,
the cholesterol becomes true 5 times per cycle.

Results verification through a formal analysis using a SAT 
solver
The results detailed in the previous paragraph are
obtained using a start space for the simulation around 105

times smaller than the state space. This method has the
advantage to quickly provide some attractors for the bio-
logical system. However, when using a sample of the
whole state space, there is no assurance of finding all the
system attractors. Formal analysis is one way to ensure
that all the attractors have been found with a computa-
tional cost that could be lower than the cost of performing
simulation on the whole state space. We decided to per-
form such a formal analysis by running a SAT solver on
our Boolean network. We recall here that the Boolean sat-
isfiability problem (commonly called SAT-problem) [32]
determines if there is a set of variables for which a given
Boolean formula can be evaluated to TRUE and identifies
this precise set if existing. This is an NP-complete problem
for which some instance solvers have been developed. To
achieve this formal analysis, we wrote our system of
Boolean equations into a suitable dimacs file format [33]
(some dimacs files used for simulation can be down-
loaded at http://Bioinformaticsu613.free.fr). In that way,
we were able to confirm that the only attractors of size 1,
29 and 33 were those detected by our simulation tool with
a random start space of size 105.

Why did we need to go further: detection of spurious cycles
The simulation performed with our model results in 4
state cycles. We believe that all those cycles do not corre-
spond to a phenotype. These outcomes of different simu-
lations, which are not biologically relevant, are typical of
the synchronous Boolean paradigm, and are called spuri-
ous cycles [4,5]. Therefore, there is a need to measure the
relative importance of the cycles found using the previous
methods.

Markov chains-based stability analysis of the previous 
synchronous simulation
Let us use our stability analysis on the results of the syn-
chronous simulation of the cholesterol regulatory path-
way. We perturb the cyclic attractors found during this
simulation and then simulate synchronously the states
resulting from the perturbation. We interpret the ratio of
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the number of perturbed states of a given cyclic attractor
that reach a second cyclic attractor over the total number
of perturbed states of the given cyclic attractor as a transi-
tion probability. Afterwards, we use all the computed
transition probabilities obtained previously to build the
Markov chain shown in figure 5.

The stationary probability vector is [1, 0, 0, 0]. This reflects
the fact that the state cycle 0 is absorbing (i.e. it has no
outgoing transitions). We interpret this result as state
cycles 1, 2 and 3 are spurious.

Markov chains-based stability analysis of simple regulatory 
networks
Furthermore, to validate our method of Markov chains-
based stability analysis, we applied it on simple positive
and negative regulatory loops of different sizes, which are
well known to contain spurious cycles. In the example of
a negative feedback loop of size 3, the state cycle {010,
101} is found in synchronous simulation but does not
exist in asynchronous simulation. It is obviously spurious,
as detected by our method. All the detailed results and
graphs can be found on our web site: http://
bioinformaticsu613.free.fr/simpleloopsn3.html.

Markov chain of the transition probabilities between state cycles in the cholesterol regulatory pathwayFigure 5
Markov chain of the transition probabilities between state cycles in the cholesterol regulatory pathway. Let k be 
the number of states within an attractor (k can be 1 in the case of a point attractor) and N be the number of species in the 
model. For each attractor of this finite time-homogeneous Markov chain, we perturb each species of each state by triggering its 
own Boolean function asynchronously. Thus there are kN perturbations per attractor. In the cholesterol regulatory pathway, 
one cyclic attractor found by the synchronous analysis has 29 states and the three other cyclic attractors have 33 states. The 
number of species in the model is 33. The weight of the edge from an attractor X to an attractor Y is the ratio between the 
number of perturbations of X which lead to Y over the total number of perturbations of X.
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When we perform this analysis on our example of a sim-
ple regulatory network (figures 1, 2 and 3) we obtain the
results shown in table 2. The transition probabilities asso-
ciated to the simple regulatory network shown in table 1
allow us to build the Markov chain shown in figure 6. The
resulting stationary distribution of the Markov chain
shown in figure 6 is [1, 0]. Thus we interpret the state cycle
of our simple regulatory network as spurious.

Benchmarking of our method
The lack of a common file format for qualitative analysis
is an important issue for the benchmark of such methods.
This is clearly stated in the article about the SQUAD soft-
ware by Di Cara et al [34]: "With the increase of published
signaling networks, it will be possible in the future to realize a
benchmark among these software packages to compare their
strengths and weaknesses. For doing that, however, it would be
very useful to develop a common file format." Since Di Cara's
article, this issue of a common file format for qualitative
analysis is still important because the current SBML for-
mat cannot encode logical models. However, work is
ongoing to extend SBML such that version 3 could sup-
port information for qualitative simulation. The solution
we have found to overcome this current limitation was to
use a proprietary annotation with a specific namespace to
remain compatible with the SBML standard. This allowed
us to read and write annotated SBML files from our com-
putational tool. However, other software cannot use our
annotated SBML to perform the qualitative analysis of a
biological network, unless specific code is developed to
read our annotations. SQUAD can generate SBML, but it
cannot use its own generated SBML to perform qualitative
analysis. All the information concerning qualitative anal-
ysis is stored only in MML files (the file format used by

SQUAD). This is why we could not use the current SBML
version to perform the benchmark.

Furthermore, except for some well-known problems
which have been well formulated and thus accepted by
the community (like the test for Initial Value Problems
(IVPs) solvers of the Bari University [35] or the ISCAS89
benchmark for circuits [36]), any type of benchmark
would be partial and its results could be seen as unfair by
other authors. For example, as mentioned by Naldi et al.
in [37], some methods are only suited for a subset of bio-
logical problems: "Garg et al. have already represented
Boolean state transition graphs in terms of BDD. They consid-
ered the particular case of networks where genes are expressed
provided all their inhibitors are absent and at least one of their
activators is present " [7]. The Naldi et al.'s method, regard-
less of its computational efficiency, is a more powerful
modeling tool thanks to the use of logical evolution rules
and multi-valued species. Even if it is always possible to
use Boolean formalism to model multi-valued networks
(by leveraging the number of Boolean species by the
number of wished values, e.g.
{Boolean_species_A_low_level,
Boolean_species_A_middle_level,
Boolean_species_A_high_level}), the use of multi-valued
logical networks greatly eases the modeling process.

However, despite all the restrictions discussed above, we
believe that benchmarking our method is an important
issue. We have then developed a program that generates a
random network whose size is a user input. For the sake
of simplicity, the obtained network contains species that
can have 0, 1, 2 or 3 species influencing it. This means
that, to compute the state of a species at time t + 1, we only

Table 2: Computation of the transition probabilities associated to our simple regulatory network. 

Attractors Steady State (SS) State Cycle (SC)

States 1010 0010 1100 1011

Perturbed states and their limit cycles 1010 → SS 1010 → SS 1100 → SC 0011 → SC
0110 → SS 1000 → SC 1011 → SC
0000 → SC 1110 → SS 1011 → SC
0010 → SC 1101 → SC 1010 → SS

Resulting probability transition P(SS → SS) = 1 P(SC → SC) = 8/12 . 0.67
P(SC → SS) = 4/12 . 0.33

This table shows both the principle of our newly introduced stability analysis and its application on the simple regulatory network shown in figure 1. 
It has 2 main columns: the steady state column and the state cycle column. As the state cycle found during the dynamical synchronous analysis 
contains 3 states (see figure 2), the last column is divided into 3 sub-columns. In the line "Perturbed states and their limit cycles" we show the 
perturbation results of each state of each attractor by re-evaluating each species by its own Boolean function triggered asynchronously. 
Perturbations are done from species A to species D. There are 4 species in our simple regulatory model, therefore 4 new states are generated 
from 1 perturbed state. We then synchronously simulate each new state and note if their simulation leads to the attractor they are derived from or 
to the other attractor of the system. In other words, we watch in which basin of attraction are those new states (see figure 2). The arrows 
following by "SC" (state cycle) or "SS" (steady state) give those responses. For the steady state no perturbation has an effect because a steady state 
in synchronous analysis remains a steady state in asynchronous analysis. Thus we simplify the presentation, showing that all the perturbations 
applied to state [1010] leave this state unchanged.
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need to know the state of a maximum of 3 other species at
time t. Our benchmarking tool has 3 parameters that can
modify the connection density of the network :

• the probability of being a "source" (i.e. the probability
for a species to be influenced by no other species in the
network),

• the probability to be under the influence of only one
other species in the network,

• the probability to be under the influence of exactly two
other species in the network.

The complementary probability is the probability for a
species to be influenced by three other species in the net-
work.

Then our benchmarking tool generates the files describing
this network for our software as well as in MML and
GINML formats for SQUAD [34,38] and GINsim [39,40],
respectively.

We have analyzed networks of sizes ranging from 33 (the
number of species in our cholesterol regulatory pathway)
up to 2500 species.

The CPU times obtained with our method on a Intel®

Core™ 2 Duo E6600 processor (2.4 GHz) with 2 GBytes of
RAM are shown in table 3. The performance of other
tested software did not compare favorably with our appli-
cation. With GINsim, we were able to simulate networks
as large as 1000 species, but we obtained an "out of mem-
ory" error message for the network of 2500 species. When
we used the SQUAD software, we were unable to simulate
a network of 1000 species or above. It is however possible
that the parameters used to build the automatically gener-
ated networks might have an impact on the results of the
benchmarking. Nevertheless, under the conditions used,
our application is appropriate for the analysis of large bio-
logical networks.

Discussion
The results reported here are in accordance with the bio-
logical knowledge we have on the cholesterol biosynthe-
sis pathway. The steady states found correspond to either
a lack of precursor (Acetyl-CoA) or arise from the effect of
statins blocking the endogenous synthesis of cholesterol,

Markov chain of the transition probabilities between the steady state and the state cycle in our simple regulatory networkFigure 6
Markov chain of the transition probabilities between the steady state and the state cycle in our simple regula-
tory network. Let k be the number of states within an attractor (k can be 1 in the case of a point attractor) and N be the 
number of species in the model. For each attractor of this finite time-homogeneous Markov chain, we perturb each species of 
each state by triggering its own Boolean function asynchronously. Thus there are kN perturbations per attractor. In our simple 
regulatory network the cyclic attractor has 3 states. The number of species in the model is 4. The weight of the edge from an 
attractor X to an attractor Y is the ratio between the number of perturbations of X which lead to Y over the total number of 
perturbations of X.

Steady 
State

State 
Cycle

4/12

12/12 8/12

Table 3: Benchmark of our method for qualitative analysis of biological networks. 

number of species 33 100 250 500 1000 2500

CPU time 7.515s 15.874s 39.999s 90.295s 173.107s 569.511s

This table shows the benchmarking results of our qualitative analysis methods on automatically generated networks. Its has been done on a Intel® 

Core™ 2 Duo E6600 processor (2.4 GHz) with 2 GBytes of RAM.
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and the cyclic attractor corresponds to a physiological reg-
ulation of cholesterol synthesis. Based on these data, we
will be able to evaluate the putative impacts of additional
modifications along the pathway. For instance, we may
evaluate the effect of compensatory intermediates such as
farnesyl pyrophosphate or geranylgeranyl pyrophosphate,
which are expected to both restore cholesterol synthesis
and prevent the deleterious effects of its absence [25,41-
44]. These compounds may compensate for the lack of
mevalonate, a condition that could readily be introduced
in our computerized scheme and assayed experimentally
at the same time. This would be particularly relevant in
the field of cancer research, for defects in lipid signalling
are of primary importance [19,45-47]. Hence, secondary
protein modifications, including farnesylation or geranyl
geranylation, which depend on the availability of farnesyl
and geranyl geranyl pyrophosphate, respectively, are
known to play pivotal roles in the progression of tumours
that depend on Ras functional status (for review see [15]).
However, it would require further studies to integrate our
cholesterol regulatory pathway with oncological path-
ways, like the Ras activation pathway. We believe that this
would be a particularly interesting perspective, bearing in
mind that signal transduction pathways with G proteins
have been extensively studied [48-52] and modeling
efforts have already been made [53,54]. Furthermore, the
method described here to identify spurious cycles opens
new routes to compute large and biologically relevant
models thanks to the computational efficiency of syn-
chronous simulation. An important aspect was to bench-
mark our method in order to determine if its
computational efficiency is comparable to those of GIN-
sim and SQUAD. Our results show that our method can
analyze networks containing as many as 2500 species and
was time efficient. Indeed, the approach could well be
applied to other regulatory pathways, either from other
metabolic routes or from transduction signaling. How-
ever, the current model is purely a Boolean model where
a gene is either active or inactive, a protein either present
or not. An obvious limitation of Boolean formalism
comes, for example, from the difficulty or the impossibil-
ity to model a simultaneous and antagonist influence on
a species, e.g. if a gene is under the influence of a silencer
and an activator. In that case, we would like to be able to
model a threshold above which there is activation or inhi-
bition of the targeted species, e.g. there is RNA production
when there is at least twice as much activator as silencer.
Boolean formalism is not suitable for this purpose. This
limitation could however be alleviated by expressing the
presence of a molecular species with an enumeration of
values ranging from the complete lack to a highly over-
expressed level such as in the generalized logical modeling
approach of Thomas and D'Ari [4]. This would also ena-
ble to address, with a more realistic approach, the effect of
an inhibitor or the effect of an enzyme, and to predict the

preponderance of one or the other species in case of antag-
onistic regulation. The multi-level approach was success-
fully applied to many experimentally studied biological
regulatory networks (e.g. [55-58]). We can note here, that
our Markov chains-based stability analysis could readily
be extended on the analysis of a multilevel qualitative
simulation. Other work seems to be ongoing on choles-
terol on cholesterol modeling using a set of ordinary dif-
ferential equations thanks to a huge effort of
identification of biochemical kinetics and this should add
further insights on the understanding of this pathway
[59]. Those two last approaches would allow us, for exam-
ple, to analyze different cholesterol levels.

Conclusion
To the best of our knowledge, this is the first description
of a dynamic systems biology model of the human choles-
terol pathway and several of its key regulatory control ele-
ments. This study was designed with a formal
methodology and was challenged through the use of an
important biochemical pathway. To efficiently analyze
this model and ensure further analysis even after its com-
plexification and possible merge with other pathway
models like Ras signaling cascade models, we associate a
classical and computationally efficient synchronous
Boolean analysis with a newly introduced method based
on Markov chains, which identifies spurious cycles among
the results of the synchronous analysis. The in silico exper-
iments show the blockade of the cholesterol endogenous
synthesis by statins and its regulation by SREPBs, in full
agreement with the known biochemical features of the
pathway. Furthermore, because high throughput experi-
ments give rise to increased complexification of biological
systems, there are major needs for new computational
developments for their dynamical analysis. Our method-
ology is one answer to this new challenge.
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