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Abstract

Background: Three methods were developed for the application of stoichiometry-based
network analysis approaches including elementary mode analysis to the study of mass and energy
flows in microbial communities. Each has distinct advantages and disadvantages suitable for
analyzing systems with different degrees of complexity and a priori knowledge. These approaches
were tested and compared using data from the thermophilic, phototrophic mat communities from
Octopus and Mushroom Springs in Yellowstone National Park (USA). The models were based on
three distinct microbial guilds: oxygenic phototrophs, filamentous anoxygenic phototrophs, and
sulfate-reducing bacteria. Two phases, day and night, were modeled to account for differences in
the sources of mass and energy and the routes available for their exchange.

Results: The in silico models were used to explore fundamental questions in ecology including the
prediction of and explanation for measured relative abundances of primary producers in the mat,
theoretical tradeoffs between overall productivity and the generation of toxic by-products, and the
relative robustness of various guild interactions.

Conclusion: The three modeling approaches represent a flexible toolbox for creating cellular
metabolic networks to study microbial communities on scales ranging from cells to ecosystems.
A comparison of the three methods highlights considerations for selecting the one most appropriate
for a given microbial system. For instance, communities represented only by metagenomic data can
be modeled using the pooled method which analyzes a community’s total metabolic potential without
attempting to partition enzymes to different organisms. Systems with extensive a priori information
on microbial guilds can be represented using the compartmentalized technique, employing distinct
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control volumes to separate guild-appropriate enzymes and metabolites. If the complexity of a
compartmentalized network creates an unacceptable computational burden, the nested analysis
approach permits greater scalability at the cost of more user intervention through multiple rounds of
pathway analysis.

Background
Complex microbial communities drive the Earth’s
biogeochemical cycles [1]. In spite of their importance,
the biochemical interactions within these communities
are not yet well understood, nor have in silico methodol-
ogies for studying them matured. An improved under-
standing of how natural microbial communities mediate
biogeochemical cycles will augment predictions of how
these processes respond to disturbances from climate
change to anthropogenic chemical deposition. Improved
understanding may also provide a rational basis for
using microbial consortia to produce biofuels and
biomaterials from renewable resources [2].

Microbial communities described in terms of their
environmental chemistry, ecophysiology, and phyloge-
netic diversity can be used as a foundation to develop,
test, and compare in silico tools for analyzing community
interactions. The phototrophic microbial mats of Octo-
pus and Mushroom Springs of Yellowstone National
Park (Wyoming, USA) represent an ideal test case due to
the extensive available data [e.g. [3-9], and numerous
other references found throughout this study]. These
alkaline siliceous hot spring mats (50-74°C) are
inhabited predominantly by unicellular cyanobacteria
related to Synechococcus spp. and filamentous anoxygenic
phototrophs (FAP) related to Chloroflexus and Roseiflexus
spp. The community also contains sulfate-reducing
bacteria (SRB) and other prokaryotes sustained by the
primary productivity of the photosynthetic bacteria [3].

Previous studies of the mat have revealed diel (day-night)
metabolic variation in various community members,
driving shifts in the concentration and fate of dissolved
metabolites [5,6,10-12]. Organic metabolites including
glycolate and other acids, along with hydrogen, form the
basis for mass and energy exchanges between community
members (Figure 1A). For example, during the day, the
photosynthetic cyanobacteria consume CO2 and produce
O2 as a by-product of photosynthesis. High levels of O2

relative to CO2 promote oxygen competition at the
ribulose-1,5-bisphosphate carboxylase/oxygenase
(rubisco) active site, leading to the production of
glycolate [9,13,14]. Other community members, includ-
ing the photoheterotrophic FAP, can use glycolate as a
carbon and energy source [15]. The cyanobacteria can also
store excess photosynthate as polyglucose [16]. This
carbon and energy storage material is fermented at night

to organic acids (Figure 1B) [10]. FAP can incorporate
fermentation products photoheterotrophical ly
[12,15,17], while SRB appear to oxidize some of these
products under anaerobic conditions [6,15,18].

Molecular level metabolic models were constructed to
represent the central metabolism of three functional
guilds thought to be important to material and energy
flows through this community [12]. A guild is a group of
species that exploit the same class of environmental
resources in a similar manner [19]. Oxygenic photo-
autotrophs related to Synechococcus spp. were selected to
represent the mat’s primary source of fixed carbon and

Figure 1
Guild interactions. Modeled consortium interactions are
shown for (A) daylight and (B) nighttime simulations.
Abbreviations: EtOH, ethanol; hv, photosynthetically-available
photons; PG, polyglucose; PHB, polyhydroxybutyrate; syn,
cyanobacteria (i.e. Synechococcus).
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nitrogen. FAP from the family Chloroflexaceae, an
important structural component of the mat community,
were incorporated as metabolically versatile (photo)
heterotrophs, capable of capturing light energy as
phosphodiester bonds (cyclic photophosphorylation),
but requiring externally supplied reducing equivalents.
An SRB guild was included as a consumer of the
metabolites produced by photosynthetic guilds. Other
sub-dominant organisms (e.g. aerobic heterotrophic
bacteria and methanogenic archaea) present in the mat
[3] were not included in this first in silico representation
of the system (see methods).

Metabolic networks were studied using the stoichiometry-
based network analysis approach known as elementary
mode analysis (EMA) [20-22]. EMA evaluates a metabolic
network by decomposing the system into a complete set
of the simplest biochemical pathways satisfying steady
state conservation constraints with enzymatic fluxes
occurring in physiologically reasonable directions (i.e.
unidirectional enzyme-catalyzed reactions are not per-
mitted to run backwards). These explicitly defined path-
ways are known as elementary modes and are frequently
represented as vectors containing relative rates for every
reaction in the metabolic network. The approach permits
the description of any sustainable physiological behavior
as a linear combination of the simplest biologically
meaningful metabolic pathways [23,24].

Metabolic network modeling methodologies have been
used extensively to analyze single organisms and
monoculture systems [e.g. [25,26]]. An alternative
stoichiometry-based technique, flux balance analysis,
has been applied to a two-species laboratory microbial
system [27]. That study used a compartmentalized
approach analogous to strategies for modeling metabolic
fluxes between organelles in eukaryotic organisms
[28,29]. Topological approaches to metabolic network
analysis have also been used at tree of life scales to
analyze evolution of metabolism and the interactions of
metabolic networks among species and with the envir-
onment [30-34]. However, these solely topological
studies implicitly assume all genome encoded genes
are simultaneously active with no consideration of
critical reaction quantitative aspects like carbon and
electron conservation relationships.

In the present study, novel methods for handling
multispecies EMA are developed and applied to a
microbial consortium representing a well-studied ther-
mophilic community from Yellowstone National Park
(YNP). To the best knowledge of the authors, this is the
first time a stoichiometry-based network analysis
approach has been applied to a natural, in situ microbial
community and the first time these approaches have

been used to analyze microbial biofilms/mats. Mass and
energy fluxes were investigated using three different
approaches each representing different levels of detail
and computational complexity. The three approaches
provide a general set of tools for studying microbial
communities that can be selected based on the levels of
available knowledge and community complexity. Each
approach has advantages and disadvantages which are
discussed along with examples illustrating how these
methods can be used to gain insight into basic
community metabolic processes. In particular, our
work demonstrates a trade-off between knowledge of
the distribution of metabolic capabilities between guilds
in a consortium and the ability to conservatively predict
and interpret limits for that community’s behavior.

Results
Development and implementation of three consortium
analysis approaches
The primary aim of this theoretical study was to develop,
analyze, and compare different in silico approaches for
molecular-level analyses of mass and energy flux through
a microbial community. The following section details
three distinct approaches, using the Yellowstone thermo-
philic phototrophic mat system as a test case. Advantages
and disadvantages of each technique are highlighted and
discussions detailing which approach is most appro-
priate for a given set of microbial data are provided. For
each of the three methodologies discussed, both day and
night scenarios were considered (Figure 1). All metabolic
models, including an explicit listing of the reactions and
metabolites, can be found in the additional file 1:
Supplement.

Compartmentalized consortium analysis approach
A compartmentalized model was constructed in which
each of the three guilds was a distinct compartment and
exchangeable metabolites were transferred through a
fourth compartment representing the extracellular envir-
onment (Figure 2A). This strategy has been used in the
past for spatially and chemically segregated eukaryotic
and microbial systems [27-29]. The approach was
implemented by assigning reactions and metabolites to
a network representing each guild (suffixes on metabo-
lite identifiers prevented sharing of compounds com-
mon to the metabolism of multiple guilds), while
explicit transport reactions accounted for the exchange
of metabolites between guild members and the extra-
cellular space. A short illustration of the separation
mechanism is provided in additional file 1: Supplement.

The compartmentalized modeling approach has the
advantage of conceptual tractability. Dividing the com-
munity into guild-level compartments linked by trans-
ferred metabolites (e.g. glycolate) is an intuitive way to
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represent interactions within a consortium. It is also an
ideal method for understanding which guild performs a
particular metabolic transformation. For example, the
fraction of total biomass (carbon moles) or total
maintenance ATP (used to account for energy-dependent
cellular processes other than growth) produced by each
guild is clear from the output.

One drawback to the compartmentalized approach is the
sheer quantity of unique interactions possible. The size
of the resulting network can lead to a ‘combinatorial
explosion’ of elementary modes [35]. To address this
limitation, the models for each guild member were
constructed to capture the necessary metabolic capabil-
ities while maintaining computational tractability (see
methods section). A second drawback of the compart-
mentalized method is the requirement for significant
a priori information or assumptions, as enzymes must be
assigned to each separate guild. The Octopus and
Mushroom Spring phototrophic mats are well-studied,
permitting the use of compartmentalized results as a
benchmark for the other two methodologies.

Pooled reactions consortium analysis approach
The second approach, referred to as the pooled reactions
consortium analysis, treated the consortium as a single
entity (Figure 2B). All metabolic reactions and metabo-
lites from the three guilds were combined into a single
compartment. Reactions catalyzed by more than one
guild were only considered once. The method captures
the metabolic constraints of the overall matter and
energy transformations without the need for detailed
knowledge of every organism in the community.

The pooled reactions approach is ideally suited for
investigating the metabolic potential of a community

based solely on metagenomic data because the assign-
ment of each reaction to a constituent guild is
unnecessary. The technique is quite flexible and can be
scaled to different levels of detail. An additional
advantage of the pooled reactions approach is the
reduction of computational burden. With these advan-
tages, the method is uniquely suited for initial and
exploratory analyses of diverse or poorly understood
communities. For scientists accustomed to well-docu-
mented laboratory microbes, this approach may seem
coarse however, the vast majority of organisms on the
planet have not been cultured in the laboratory, much
less isolated to purity [36]. This method represents a
flexible starting point for analyzing such systems.

A weakness in the pooled reactions approach is that
model output does not specify which guilds employ a
particular enzyme or produce biomass and maintenance
ATP. Instead, the results describe potential performance
of the entire consortium. The method also neglects the
logistics associated with transferring metabolites
between organisms, including conversion of the given
metabolite into one for which transporters are available.
The approach is presented here using the well character-
ized cyanobacterial mats to highlight strengths and
drawbacks to the method.

Nested pathway consortium analysis approach
The third approach, termed the nested consortium
analysis or EMA ‘squared’, uses successive rounds of
EMA to analyze potential interactions within a con-
sortium (Figure 2C). The first round of EMA is applied to
each guild model in isolation. The output data are mined
for ecologically relevant elementary modes, such as
efficient biomass production from sunlight or efficient
ATP generation from lactate and sulfate. The selected

Figure 2
Multi-species modeling approaches. Conceptual depiction of the (A) compartmentalized, (B) pooled, and (C) nested
consortium modeling approaches. Dashed red lines indicate system boundaries while thin solid lines represent guild
boundaries.
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elementary modes are then compiled and used as input
reactions for a second round of EMA to examine the
potential for interactions between guilds. Conceptually,
the first round of EMA provides guild-level stoichiome-
tries relating substrates to products. These stoichiome-
tries can be further processed in the same way that
traditional EMA uses enzymatic stoichiometries to
consider inter- and intraguild interactions. An exam-
ple of the process is provided in additional file 1:
Supplement.

The first round model output was explored for metabolic
strategies representing ‘selfish’ and ‘altruistic’ operation
of each guild. Selfish selection criteria were based on the
efficient production of biomass and maintenance ATP.
Altruistic selection criteria were based on efficient
production of metabolites that could be consumed by
other guilds, including for instance H2, NH3, acetate, and
glycolate. Efficiency was evaluated by normalizing the
amount of production by the required input (e.g.
amount of glycolate or sunlight). A list of the ecological
criteria considered can be found in additional file 1:
Supplement.

Stable numerical implementation of the nested approach
using CellNetAnalyzer v 9.0 required some heuristics.
Elementary modes from the first round of analysis were
normalized to vectors of unit length prior to the second
round of EMA; without this step, errors occurred during
calculation of elementary modes; specifically, the
attempted inversion of matrices that are very nearly
singular. Normalized coefficients were rounded to two
decimal places to prevent similar problems. When
rounding converted an otherwise non-zero coefficient
to zero, the entire elementary mode was scaled so the
smallest coefficient was equal to 0.01. The MATLAB
script used for normalizing and rounding intermediate
results is provided in additional file 1: Supplement. This
step was necessary although it introduced a modicum of
error. Error analysis is included in the following sections.
These steps are not necessary if EMA is performed using
the new bit pattern tree algorithm which is numerically
more stable [37].

The nested pathway approach allows for the analysis of
more complex metabolic networks and larger commu-
nities than the compartmentalized approach because
each guild is initially considered separately. It also has
the advantage of retaining guild-specific output lost in
the pooled technique. The manual selection of specific
modes permits a guided community analysis based on
ecological strategies of interest for each guild; results can
then be re-examined in light of the selection criteria
used, relating community stoichiometry and guild
strategy. The ability to assemble multiple sets of first-

round output and concatenate the results allows the
system to expand freely. The nested approach is
unrelated to the decomposition approach for the
analysis of large cellular networks with EMA [38], but
is well-suited for reconnecting the output of the resulting
subnetworks tractably.

The nested pathway analysis approach has the disadvan-
tage of requiring two rounds of processing. In addition,
manual selection of ecologically interesting modes from
individual models requires a priori knowledge and can
significantly influence the solution space. Finally, inter-
mediate processing introduces some rounding error.

Comparison of consortium analysis approaches
Two test cases were analyzed to compare the three
approaches in terms of their ability to describe and
explain the flows of carbon, nitrogen, and energy
through the mat community. The first case study
considered daylight production of biomass fueled by
solar energy, while the second case study considered the
fermentation of stored polyglucose to drive nitrogen
fixation during the night. Table 1 highlights key model
outputs associated with the different daytime simula-
tions, including the number of modes identified as well
as important parameters like maximum yield of biomass
or maintenance ATP per photosynthetically-available
photon. Table 2 shows similar results for the nighttime
simulations.

Table 1: Elementary mode analysis output summary for
comparison of daylight modeling approaches

compartment pooled nested

# of modes 74507 38216 428
YX/hv

a 0.117 0.128 0.116
YATP/hv

b 1 1 1
YXsyn/hv

c 0.117 n/a 0.116
YXFAP/hv 0.078 n/a 0.075
YXSRB/hv 0.016 n/a 0.015
YATPsyn/hv 1 n/a 1
YATPFAP/hv 0.5 n/a 0.506
YATPSRB/hv 0.033 n/a 0.031
YPG/hv 0.122 0.125 0.121
YPHB/hv

d 0.089 0.111 0.090

n/a = not applicable.
a‘Yi/j’ is the yield of i on j (i.e. production of i divided by consumption of
j). ‘X’ represents Cmoles of biomass and ‘hv’ denotes moles of
photosynthetically-available photons.
b‘ATP’ represents moles of ATP available for cellular maintenance.
c‘syn’ designates a parameter associated with the Synechococcus guild.
‘FAP’ indicates a parameter associated with the filamentous anoxygenic
phototroph guild and ‘SRB’ denotes a parameter associated with
sulfate-reducing bacteria guild.
d‘PHB’ represents Cmoles of polyhydroxybutyrate (a carbon/electron
storage compound associated with the filamentous anoxygenic
phototrophs).
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Case one: Consortium photo-efficiency
The relationship between solar energy input and com-
munity productivity is a fundamental subject of ecologi-
cal inquiry, as is the relative abundance of various species.
The model community is an example of how metabolic
knowledge feeds into these questions, providing a natural
point for comparison of the three methods. Oxygenic
photosynthesis drives primary productivity in the com-
munity by splitting water into reducing equivalents and
O2. The reducing equivalents can be used to fix CO2 via
the Calvin-Benson-Bassham cycle. The O2, however, can
compete with CO2 for the rubisco active site, resulting in
the production of glycolate instead of an additional
Cmole of reduced carbon (equations 1 and 2). A Cmole is
a mole of carbon atoms; one mole of glucose (C6H12O6)
is equivalent to six Cmoles of glucose.

CO ribulose P ATP  triose phophate ADP2 5 2+ − − + = +

(1)

O ribulose P ATP glycolate  triose phophate ADP2 5+ − − + = + +

(2)

Experimental characterization of these fluxes from the
Octopus and Mushroom Spring microbial mats has been
reported. The O2/CO2 flux ratio at the rubisco active site
is estimated to be approximately 0.03-0.07 when
dissolved gas concentrations represent mid-afternoon
conditions at the springs [9]. The derivation of these
estimates from the reported data is demonstrated in
additional file 1: Supplement.

The output from the three in silico community analysis
approaches was plotted using two physiological vari-
ables thought to be important to community interac-
tions: 1) O2 competition at the rubisco enzyme (O2/
CO2) and 2) the quantity of biomass (Cmole) synthe-
sized per mole of absorbed photons (Figure 3). Relation-
ships between these properties are examined below
as a vehicle for comparison of the three modeling
approaches.

Table 2: Elementary mode analysis output summary for
comparison of nighttime modeling approaches

compartment pooled nested

# of modes 14004 36233 46038
Ycypc/PG

a 0.063 0.103 0.063
Ycypc/SO4

b 0.259 0.265 0.203
YX/PG

c 0.218 0.229 0.209
YX/SO4 0.737 0.744 0.692
YATP/PG

d 0.958 0.958 0.976
YATP/SO4 2.25 2.25 2.11
YXsyn/PG

e 0.148 n/a 0.150
YXSRB/PG 0.218 n/a 0.184
YATPsyn/PG 0.5 n/a 0.5
YATPSRB/PG 0.625 n/a 0.638

n/a = not applicable.
a‘Yi/j’ is the yield of i on j (i.e. production of i divided by consumption of
j). ‘cypc’ denotes moles of nitrogen fixed and stored as cyanophycin,
while ‘PG’ represents Cmoles of polyglucose.
b‘SO4

’ represents moles of sulfate used as an oxidant.
c‘X’ represents Cmoles of biomass.
d‘ATP’ represents moles of ATP available for cellular maintenance.
e‘syn’ designates a parameter associated with the Synechococcus guild.
‘FAP’ indicates a parameter associated with the filamentous anoxygenic
phototroph guild and ‘SRB’ denotes a parameter associated with sulfate-
reducing bacteria guild.

Figure 3
Daytime case study output. Daylight biomass-producing
elementary modes, plotted for (A) compartmentalized,
(B) pooled, and (C) nested simulations in terms of total
consortium biomass yield on photons (Cmole/mole) and
oxygen competition at the rubisco enzyme (O2 flux relative
to CO2 flux). Each point represents a single mode. Solid line
segments in (A) connect modes combined to represent
ecological scenarios, while dashed lines represent the
experimentally-derived limits for oxygen competition at
the rubisco enzyme in the mid-afternoon. Arrows denote
modes producing cyanobacterial biomass (see text for
more details). Points are color-coded by biomass-producing
guild (A &C) or SRB-associated reductive acetyl-CoA
activity (B).
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Compartmentalized consortium analysis
The compartmentalized approach, wherein guilds inter-
act through a mass-balanced external compartment (see
section 1a, Figure 2A, and additional file 1: Supple-
ment), served as a basis for comparison of the commu-
nity modeling techniques. This method revealed only
two elementary modes (out of a total of 74,507 distinct
elementary modes) producing cyanobacterial biomass.
These modes, highlighted with arrows in Figure 3A,
differ based on ATP production strategy. The higher-
yielding elementary mode generated ATP by oxidizing
reducing equivalents from non-cyclic photophosphory-
lation, while the lower-yielding elementary mode
produced ATP through cyclic photophosphorylation.

All other biomass-producing elementary modes gener-
ated FAP, SRB, or a combination of FAP and SRB
biomass. At low levels of O2 competition at the rubisco
enzyme, Figure 3A illustrates that optimal FAP and SRB
biomass synthesis efficiency increases with oxygen
competition (positive trend for highest biomass-yielding
elementary modes for each increment of oxygen compe-
tition). This is due to an increase in glycolate production,
shuttling electrons either directly or indirectly to the
other guilds. The trend continues until a rubisco O2/CO2

flux ratio near 0.13 is reached. At O2 competition levels
greater than about 0.17, O2 interferes with the efficient
photon-based production of cellular carbon (i.e. the
reducing equivalents liberated with the oxygen are
insufficient to cover the costs of processing the addi-
tional glycolate).

Theoretical ecological studies have suggested that organ-
isms adapted to a biofilm or mat lifestyle will draw on
available resources in a manner which maximizes yields
and thus favors the whole community [39,40]. Combin-
ing this theory with the experimentally determined O2/
CO2 competition at the rubisco enzyme made it possible
to predict relative yields of the cyanobacteria and FAP.
Two different cases were considered. The first case (i)
examined the ramifications of each guild striving to
maximize its own biomass yield and the second case (ii)
examined different guilds working in concert to max-
imize biomass for the entire consortium (see Figure 3A).

Cellular metabolism can be expressed accurately as a
linear combination of distinct elementary modes
[24,41]. It is hypothesized that a consortium’s metabolic
activity can also be described using linear combinations
of the elementary modes (with non-negative coeffi-
cients). When exactly two elementary modes are con-
sidered, the contribution of each mode to the overall
metabolic process (represented by a point on the
connecting line segment) is fixed by the ratio of any
two fluxes for which the constituent modes have non-

identical ratios. That relationship is demonstrated in
additional file 1: Supplement. For each considered case,
a combined metabolism was identified using the ratio
of fluxes through rubisco (O2/CO2) derived from
experimental data [9]. The derived values were used to
bound the solution space (i.e. set of acceptable flux
distributions).

This relationship was applied to the highest-yielding
biomass-producing modes from the compartmentalized
model to predict the relative abundance of cyanobacteria
and FAP for a fixed photon input budget (line segments
in Figure 3A connect the elementary modes of interest).
Modes producing SRB biomass could easily be combined
in the same way, but were not among the highest-
yielding strategies. The scenario normalized biomass to a
per photon basis. The case i scenario predicts ratios of
cyanobacteria to FAP biomass production ranging from
2.5:1 to 6.5:1 (cyanobacteria to FAP) based on the
experimentally determined oxygen competition at the
rubisco enzyme. The case ii scenario predicts ratios from
8.2:1 to 17.7:1 on the same basis. The numerical
procedure is demonstrated in additional file 1: Supple-
ment. The analysis control volume consists of the top 1
mm of mat. The control volume growth is exactly equal
to the rate at which biomass leaves the control volume.
Physically speaking, this represents the new growth
burying the old growth.

The ratio of cyanobacterial to FAP biovolume in a
Mushroom Spring mat sample was experimentally
measured to be 1.6:1 [16]. It is assumed here that
biomass and biovolume are related in the same manner
for both species. The relative abundances of metage-
nomic reads suggest biomass ratios for these guilds
between about 1.5:1 and 3.5:1 in the top 1 mm of
Octopus and Mushroom Spring mats, assuming no bias
in the sampling and sequencing pipeline (Klatt et al., in
preparation). The reported ratios are closer to the
modeled scenario where each individual guild seeks to
maximize its own biomass yields rather than the
scenario optimizing biomass yield of the entire con-
sortium. A potential explanation for the modest dis-
crepancy between prediction and experimental data is
the experimental underestimation of glycolate produc-
tion due to consumption of radiolabeled photosynthate
during incubation. Increasing the flux ratio (O2/CO2)
at rubisco (to correspond with higher glycolate produc-
tion rates) drives the solution space for the case i
scenario into stronger agreement with experimental
values much more quickly than for the case ii scenario.
It should also be noted that in situ environmental
systems vary considerably in both space and time, and
the flux ratios were derived from measurements at a
single condition.
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Pooled reactions consortium analysis
The same variables were plotted for elementary modes
identified with the pooled technique, wherein all
reactions and metabolites were combined into a single
metabolic unit (Figure 3B). The predicted maximum
community biomass efficiency was 9.4% higher for the
pooled approach than the compartmentalized approach.
The cyanobacteria (responsible for the highest-yielding,
compartmentalized biomass mode) do not possess a full
citric acid cycle; with the pooled treatment, however, the
entire cycle becomes available, efficiently catabolizing
photosynthate without the usual logistical costs of
metabolite transport between guilds. The genome of
RS-1, a FAP isolated from a hot spring microbial mat,
appears to code for the enzyme missing from OS-A and
OS-B’, sequenced cyanobacteria from Octopus Spring.

Contrary to the compartmentalized approach, the
pooled output suggests that oxygen competition at the
rubisco active site does not necessarily affect the biomass
yield per photon (note the nearly flat trend of uppermost
points in Figure 3B). This represents an uncoupling of
heterotrophy and photorespiration, neglecting the role
of glycolate as a transfer metabolite. These seemingly
contradictory elementary modes all utilized the SRB-
associated reductive acetyl-CoA CO2 fixation pathway,
and are striped gray in Figure 3B. This pathway is
metabolically inexpensive in the pooled approach due to
the direct availability of reducing equivalents derived
from oxygenic photosynthesis. These enzymes are gen-
erally very sensitive to O2 [42], calling the feasibility of
these particular elementary modes into question. SRB
activity has been reported in the upper 0.5 cm of the mat
during day [6], but the activity may be limited to small
anoxic microenvironments and is unlikely to represent a
major daytime CO2 fixation strategy.

Filtering out elementary modes using the reductive
acetyl-CoA pathway leaves a trend of decreasing optimal
biomass per photon yields with increasing O2/CO2 flux
ratios at the rubisco enzyme. The trend appears very
similar to case ii from the compartmentalized analysis as
a result of the pooled approach’s treatment of biomass.
A non-guild-specific biomass term means that maximiz-
ing the yield optimizes production of biomass for the
consortium as a whole, the same criteria used to generate
the case ii scenario.

This analysis highlights potential challenges associated
with the pooled community approach. First, pooled
reactions can result in higher predicted yields than
compartmentalized reactions because there are no
logistical costs associated with inter-guild metabolite
transfer. The second challenge is the combination of
enzymatic activities that are not compatible. The use of

oxygenic photosynthesis to drive extremely oxygen-
sensitive enzymes, for instance, seems unreasonable.
The pooled analysis generates more appropriate trends if
a priori information regarding the oxygen sensitivity of
the reductive acetyl-CoA enzymes is applied as a filter. In
addition, because enzymatic activities are shared rather
than apportioned between individual guilds, maximiz-
ing any yield does so for the entire consortium rather
than a single guild. This approach is well suited for
initial work on systems lacking sufficient a priori data to
construct a compartmentalized model. The fact that such
data is lacking for the vast majority of all natural
ecosystems emphasizes the usefulness of this approach.

Nested consortium analysis
The nested approach produces similar results to the
compartmentalized method. While this may not be
readily apparent from a cursory comparison of Figures
3A and 3C, connecting the extreme upper-left and upper-
right points on each subfigure shows that the limits of
the solution space (in terms of biomass yield on photons
and oxygen competition at the rubisco enzyme) are quite
comparable, although the nested approach identifies
fewer suboptimal solutions. The biomass yield on
photons decreases with increasing O2/CO2 flux ratios
at the rubisco enzyme. The initial increasing trend seen
in the compartmentalized model consisted of subopti-
mal solutions not identified as ecologically relevant in
the first-round processing. Those metabolic behaviors
are all outperformed by linear combinations denoted by
the case i line in Figure 1A. The optimal biomass yield on
photons is equivalent (within the error introduced by
rounding) to the compartmentalized prediction. Com-
bination of modes, as in the case i compartmentalized
scenario, identifies very similar ratios of biomass
productivity for cyanobacteria to FAP (from 2.0:1 to
5.9:1) at the O2/CO2 flux ratios of 0.03-0.07 suggested
by experiment (calculations are demonstrated on the
compartmentalized output in additional file 1: Supple-
ment). The total number of elementary modes is lower
than the compartmentalized approach (428 vs. 74,507)
because the initial round of EMA selects only strategies
deemed ecologically competitive or relevant. The first
round of processing removes many mathematical solu-
tions that are not necessarily of interest for additional
analysis. Caution is required; neglect during first-round
selection can prevent discovery of interactions or cause
underestimations of metabolic potential.

Any system characterized well enough to construct a
compartmentalized model can also be analyzed using
the nested approach. The approach is best suited for
complex systems that prove computationally difficult to
analyze using a compartmentalized simulation. In
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addition, the nested community analysis approach
facilitates interrogation of the competitive strategies
employed by individual guilds to produce a compart-
mentalized modeling result. For instance, the experi-
mentally relevant case i results shown in Figure 3A
(biomass production efficiency optimized by guild
rather than as a community) require the FAP guild to
maximize biomass yield (based on carbon influx) for the
strictly heterotrophic co-metabolism of glycolate and
acetate. The cyanobacterial guild must concurrently
operate a metabolism comprised of three distinct
elementary modes: the highest yielding strategies for
biomass, glycolate, and acetate production all based on
photons. This information is embedded in the criteria
used to select the first-round elementary modes.

The nested community analysis approach requires the
elementary mode coefficients to be normalized and
rounded. Error analysis was performed to gauge the
effect of this processing on the results. Each mode was
examined for the error in carbon fixed and the amount
of absorbed energy. The maximum error introduced was
0.004 Cmoles per mole of photons. The complete error
results from both case studies are included in additional
file 1: Supplement.

Case two: Nitrogen fixation
Nitrogen fixation fueled by the fermentation of poly-
glucose is thought to be an important process in the mat
during night and early morning [5,11]. The presented
models only consider nitrogen fixation at night, since the
oxygen sensitivity of nitrogenase should render it inoper-
able during the day when the mat is superoxic. Future
modeling efforts will consider the morning separately,
acknowledging evidence that suggests a large fraction of
nitrogen fixation in situ occurs after sunrise but before O2

production exceeds consumption [5].

The second case study examined the efficiency of N2

reduction with polyglucose and the corresponding
production of five potentially inhibitory or toxic
fermentation by-products: formate, acetate, ethanol,
lactate, and propionate. Their toxicities have not been
explicitly characterized in this system, but their total
molar yield on polyglucose represents a convenient
‘toxicity parameter’ for comparison of modeling
approaches. It should be noted, however, that nitrogen
fixation and the incidental production and fate of
fermentation products are separately questions of
ecological interest.

The FAP guild was included in the night-time simula-
tions. They were inactive however, because unlike the
SRB, they are incapable of drawing on sulfate as an

electron acceptor. While the FAP guild can jettison
electrons as hydrogen, this requires energy input from
light or an alternative oxidant (oxygen was assumed to
be unavailable during the night scenario).

Figure 4A depicts the relationship between the secretion
of fermentation products and the efficiency of the
metabolic strategy according to the compartmentalized
results. The high density of points is an explicit
illustration of the system robustness. As the yield of
NH3 synthesis increases, more fermentation products are
produced. If heterotrophic guilds such as the SRB rapidly
metabolize the fermentation products (or those products
are removed efficiently through physical transport
processes), the high-yielding strategy would likely be
the most ecologically competitive strategy for the
cyanobacteria. If, alternatively, fermentation products

Figure 4
Night case study output. Nighttime nitrogen-fixing
elementary modes, plotted for (A) compartmentalized,
(B) pooled, and (C) nested consortium simulations in terms
of total fixed nitrogen yields on polyglucose (Nmole/Cmole)
and fermentation byproduct loading (total moles of
fermentation by-products produced for each Cmole of
polyglucose consumed). Each point represents a single mode.
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are building up to toxic levels, than the mode associated
with lowest by-product loading could be preferred.

The pooled results in Figure 4B demonstrate the effects
of neglecting constraints on the exchange of metabolites
between guilds. The results suggest, in contrast to
predictions by the other two models, that nitrogen
fixation at night is possible without associated produc-
tion of potentially inhibitory or toxic fermentation
products (all points in Figure 4B located on the y-axis
above the origin). Similar to the photo-efficiency test
case, the pooled analysis provides a less conservative
solution space than the other approaches. Less informa-
tion is required to build the pooled model, but predicted
yields have to be viewed as theoretical upper limits, with
the actual consortium probably operating at lower
yields. The approach offers a rational, constraint-based
approximation to the metabolic potential of a poorly
characterized microbial consortium.

The night nested results have nitrogen-fixing efficiencies
similar to the compartmentalized approach. The simi-
larity of the shape and size of the solution spaces
between nested and compartmentalized techniques
(Figures 4A and 4C) indicates that modes of interest
were selected appropriately during first-round proces-
sing. Considering the corresponding first-round criteria
allows mapping of results into ecological strategies for
individual guilds. For example, in the elementary mode
resulting in the highest yield of fixed nitrogen on
polyglucose, the cyanobacteria guild uses two strategies,
maximizing production of free NH3 and cyanophycin
and co-producing acetate, formate, and ethanol. Three
distinct SRB physiologies are employed, maximizing
biomass production on each fermentation product
individually. Error analysis on the night nested model
was performed by comparing error in the carbon balance
with polyglucose consumption for every mode. The
largest error due to rounding was a reasonable 0.033
Cmoles for every Cmole of polyglucose consumed. The
complete error results from both case studies are
included in additional file 1: Supplement.

Consortium food web robustness analysis
The compartmentalized consortium analysis approach
was used to explore additional community properties.
Metabolic networks within individual cells are highly
branched, forming robust and decidedly redundant
systems thought to be resilient to perturbations and
disruptions [34,43-45]. Figure 5 details how the 74,507
unique daytime elementary modes can be divided into
16 different inter-guild mass and energy exchanges.
Interactions associated with a large number of elemen-
tary modes are more likely to remain functional during
environmental perturbations [46,47].

Figure 5 indicates that a large number of metabolic
strategies (93.9% of elementary modes revealed by the
compartmentalized simulation) exist for the daytime
transfer of carbon and electrons from the cyanobacterial
guild to the FAP guild with associated FAP production of
H2 providing electrons to the SRB guild. In fact, daylight
SRB activity in silico is overwhelmingly dependent on
such hydrogen (97.1% of compartmentalized elemen-
tary modes with non-zero SRB fluxes). There are only 58
unique elementary modes involving the transfer of
acetate from the cyanobacteria to SRB which do not
involve any FAP activity. The interaction analysis also
highlights the importance of the well-connected and
functionally versatile FAP guild in the mat community
metabolism. Only 74 out of the 74,507 unique
elementary modes (0.1%) identified by the daytime
compartmentalized simulation can function without the
FAP guild.

Discussion
Three in silico consortium analysis methods were devel-
oped and applied to a thermophilic phototrophic mat
community from Yellowstone National Park as a test
case. The results of this systems ecology study demon-
strate the applicability of consortium EMA, explicitly
mapping the genes-to-function emergent properties
associated with the connectivity of metabolic reactions
via the exchange of mass and energy. Since the presented
techniques are culture-independent, they are compatible
with metagenomic approaches and other studies in
which culturing or isolation has proven difficult. This
study provides a foundation for further work to refine
and test the models using co-culture studies; potential
inquiries include the measurement of substrate uptake
and growth rates, biomass compositions, mRNA and
protein expression, and quantification of internal fluxes.
Toxicity profiles of the various fermentation products to
representative microbes would also be of interest.
Representative organisms or enrichment cultures are
available for each guild, and the results of such
experimentation will be quite useful for model valida-
tion and improvement. That work, however, is beyond
the scope of the current study, which seeks only to
provide methods for the extension of EMA to microbial
consortia.

An alternative approach to the mass-balance-based
analysis of large networks, flux balance analysis[48,49],
has been applied to genome-scale metabolic networks
[50], which is currently not possible with EMA [37]. Flux
balance analysis has been used to investigate central
carbon and energy metabolism of a two species
consortium [27]. Flux balance analysis could likely be
applied to the presented model system and could be
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used to ask similar questions. The output, however,
would be a single flux distribution denoting an optimal
use of the network as defined by an objective function,
rather than a generating set for all flux distributions
allowed by the network (although methods have been
established to examine the effects of variations in
external constraints on the value of the objective
function[51]). As the choice of an appropriate objective

function is not always clear prior to extensive experi-
mentation [52,53], a generating set is useful for
exploratory modeling. The utility of a generating set for
explanatory modeling has also been recently demon-
strated [24]. These benefits justify the development of
methods for the application of EMA to multispecies
systems alongside large-scale network methods. It is
worth considering how the methods developed here will

Figure 5
Daytime compartmentalized guild interaction classes. All 74,507 elementary modes identified in the daylight
compartmentalized model, binned into 16 classes of guild interactions. Number of modes belonging to each classification is
listed in lower right. Columns from left to right contain interaction classes requiring an increasing number of inter-guild
metabolite transfers. Abbreviations: PG, polyglucose; PHB, polyhydroxybutyrate; syn, cyanobacteria (i.e. Synechococcus).
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be affected by larger network sizes. This is important
because potential applications include more diversified
communities and more complex cellular metabolisms.
Systems cast as compartmentalized models which prove
to be too computationally heavy for current EMA
algorithms can be analyzed using the nested approach.

The compartmentalized community analysis method has
the advantage of intuitive tractability and separates
activity and function by guild, but requires substantially
more knowledge of the community than the pooled
reactions approach. Tables 1 and 2 illustrate how the
energy added to electrons during oxygenic photosynth-
esis is dissipated with the movement of mass and energy
through the consortium. The cyanobacteria exhibit a
predicted maximum biomass yield of 0.117 Cmoles for
each mole of photons absorbed by the mat. This value is
0.078 for the FAP guild, with the difference providing a
rough measure of the cost of transferring reducing
equivalents between guilds. The SRB also rely on the
by-products of the primary producer guilds for electrons,
but are further constrained by an inability to derive
energy from light or respiration on O2. The highest SRB
biomass yield predicted by the daytime compartmenta-
lized model is 0.016 Cmoles per absorbed mole of
photons, slightly more than one tenth of the cyanobac-
terial yield. The ratio between theoretical optima for
photosynthetic and SRB biomass yields is similar to
observed ratios between primary producers and the
secondary productivity of consumers in macroscale
ecological systems [19,54].

The compartmentalized method also lends itself
uniquely to investigation of the robustness of specific
consortium interaction types (see Figure 5). Investigating
interactions in the model showed that the FAP are
central to the metabolic capabilities of the consortium as
a whole; FAP involvement was required for the vast
majority (99.9%) of elementary modes. Finally, the
highest-yielding biomass-producing modes from the
compartmentalized approach were combined to show
that experimental data supports strategies optimizing
productivity by individual guilds more strongly than
strategies optimizing productivity for the entire con-
sortium [[9,16]; Klatt et al., in preparation].

The pooled reactions consortium analysis method
modeled community metabolic potential by treating all
enzymatic activities and metabolites as residents of the
same physical space, without membrane boundaries.
The pooled reactions approach represents the coarsest-
scale methodology, requires the least a priori informa-
tion, and is easier to implement than alternative
approaches. The pooled approach can often be used
when other approaches cannot (due to complexity) or

should not (due to lack of detailed data). These
advantages are balanced against a tendency to over-
estimate the metabolic potential. This is unsurprising, as
real communities are not super-organisms; individuals
are membrane-separated and must contend with the
logistics associated with matter and energy transport. The
pooled technique is best for initial work on ‘poorly’
characterized systems. The vast majority of ecosystems
are not characterized to a level permitting a compart-
mentalized analysis, suggesting the pooled approach will
be relevant for a long time to come.

Finally, the nested community analysis has properties
very similar to the compartmentalized approach, but
with the important advantage of easy scalability,
achieved by concatenating multiple rounds of EMA
analysis. The approach also provides additional ecologi-
cal insight into the competitive strategies underlying
each guild’s function. This information is contained
within the criteria used to select first-round building
blocks. The nested method also easily captures interac-
tions between different guilds as well as between
members of the same guild expressing different physiol-
ogies. For instance, different cyanobacterial elementary
modes can combine, representing exchange of metabo-
lites between cyanobacteria expressing different meta-
bolic activity due to differing positions across spatial
gradients of light, temperature, and concentration. This
type of exchange appears to be very relevant to actual
mat function, as other work suggests the presence of
functionally distinct Synechococcus populations that are
adapted to particular microenvironments [55]. As with
the compartmentalized approach, the daylight case study
found that optimal guild strategies were more strongly
supported by experimental data than optimal consor-
tium strategies.

Combinations of the pooled and compartmentalized
methods can be used to provide information not easily
obtainable with any single approach. As an ecologically
relevant example, a cost-benefit relationship was quan-
tified for a complete citric acid cycle in the cyanobacter-
ial guild, as opposed to the incomplete cycle indicated
by the genomic sequence of relevant isolates. Synecho-
coccus spp. OS-A and OS-B’ genomes do not contain the
oxaloacetate-producing malate dehydrogenase. The
pooled reactions modeling approach identified a cluster
of optimal elementary modes using a primarily cyano-
bacterial metabolism along with the missing citric acid
cycle enzyme, which is FAP-derived. The biomass yields
in this cluster are a 9.4% improvement relative to purely
cyanobacterial metabolic potential, given by the com-
partmentalized methodology. This is a large difference in
yields and laboratory evolution experiments have shown
that much smaller differences (0.5% difference in growth
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rate) are selectable under competitive conditions [56].
These hot spring mat communities are thought to be
modern derivatives of ancient prokaryotic communities,
and the long history of cyanobacterial and FAP
cohabitation suggests the potential for horizontal gene
transfer. Evidence for actual horizontal gene transfer
events between cyanobacteria and FAP has been pub-
lished elsewhere [57]. The cyanobacteria in our study
have not acquired and passed on the missing Krebs cycle
gene, suggesting that the costs of production, main-
tenance, and regulation for malate dehydrogenase are
unlikely to be offset by the benefit of a 9.4% improve-
ment in biomass yield.

Conclusion
Each of the three in silico modeling approaches devel-
oped in this study provides a mathematical description
of physical constraints on metabolic activity in a
consortium. These techniques allow the extension of
EMA to ecologically relevant multi-species, biofilm
systems. Their contrasting strengths can be combined
to arrive at a more holistic description than is possible
with any of the methods alone, allowing a broad
perspective from which to frame observations and base
predictions. These approaches can be adapted to a wide
range of microbial communities including both natural
and anthropogenic systems. Potential applications
include modeling communities involved in wastewater
treatment, bioprocess engineering, and environmental
remediation, as well as the study of host-pathogen
interactions in medicine and symbiotic relationships
such as nitrogen-fixing root communities.

Methods
Metabolic models
The metabolic models presented in this study exist in a
control volume consisting of the upper 1 mm of the
microbial mat. The steady state control volume considers
biomass production but does not include an explicit
biomass degradation term. To maintain steady state,
biomass would leave the control volume at the same rate
it is produced. This would correspond with the physical
process of new growth burying old growth. Central
carbon and energy metabolism network models for each
guild considered to be in the control volume were
constructed from literature reviews and annotated
genomes of representative organisms including Synecho-
coccus spp. OS-A and OS-B’ [58] as well as Roseiflexus sp.
RS-1 [59]. GenBank accession numbers are CP000686.1,
CP000239.1, and CP000240.1 for the RS-1, OS-A, and
OS-B’ genomes, respectively. These genomes are highly
representative (>90% nucleotide identity to metage-
nomic reads) of native dominant FAP and cyanobacterial
populations in these mats (Klatt et al., in preparation).

The metabolic potential of the SRB guild was based on
several well-studied organisms (Desulfovibrio vulgaris
Hildenborough, Desulfotalea psychrophila, Desulfovibrio
desulfuricans G20, Desulfobacterium sp., and Archaeoglobus
fulgidus), as well as Thermodesulfovibrio yellowstonii, a
thermophilic SRB related to isolates from Mushroom
Spring [6,60-63]. GenBank accession numbers for these
genomes, in the stated order, are AE017285.1,
CR522870.1, CP000112.1, CP001087.1, AE000782.1,
and CP001147.1.

The use of guilds to minimize community complexity is
useful for the compartmentalized approach. For the
current study, guilds were defined based on four
important parameters: energy sources, carbon sources,
electron donors and electron acceptors. Each guild
utilized a different combination of metabolites to satisfy
these parameters. Subdominant guilds were not included
in the model (e.g. methanogenic archaea). Here it is
assumed that the methanogens would be responsible for
degrading phototroph biomass buried within the mat.
Since the control volume only considers the active
phototrophic region, the decaying biomass would
occur outside this control volume removing any possible
role played by this subdominant guild.

The metabolic model input consists of the carbon and
electron balanced substrates and products for each
considered reaction. It should be noted that these
organisms are not characterized at a level which would
justify genome-scale reproductions. While such models
are admirable for well documented organisms, problems
with inaccurate, automated genome annotations call
into question the benefit of such attempts with any but
the best studied microbes [64]. The biomass composi-
tions of these functional guilds have not been experi-
mentally determined due to tight physical coupling of
the cells within the microbial mats. The functional guilds
reside within a distance of 100 μm. Biomass reactions
were written to represent bacterial biosynthetic require-
ments for a composition of 78% proteins, 16% nucleic
acids, and 10% other macromolecules. While the
biomass compositions of actual mat constituents were
not measured, previous published accounts [e.g. [48]] as
well as unpublished observations from the authors
suggest that overall yields are relatively insensitive to
the biomass equation as long as the biomass has a
biologically relevant degree of reduction (e.g. approxi-
mately 4.8 on an N2 basis). The supplemental material
contains a degree of reduction analysis of the utilized
biomass expression. Its degree of reduction is 4.7. The
methods developed here could be applied with alter-
native biomass synthesis reactions based on future
experimental knowledge. Carbon storage consisting of
polyglucose or polyhydroxybutyrate was considered
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separately from biomass production. The metabolic
models used in this study are included in additional
file 1: Supplement.

Separate models were constructed to represent two
distinct phases of a diel cycle, day and night. Differences
between the modeled phases were based on the extensive
geo- and biochemical data at these sites [5,11,12,55,65]
and included sources and shuttles for carbon and energy
as well as oxygen and light availability (see Figure 1 for
graphical summary). The day and night metabolisms are
connected through the fluxes of reduced carbon and
fixed nitrogen. The amount of CO2 fixed during the day
determines the mat’s overall dark phase reduced carbon
budget while the nitrogen fixed during the night using
energy stored as polyglucose sets the consortium’s fixed
nitrogen budget.

Briefly, during the day, the Synechococcus spp. convert
solar energy, CO2, and water into oxygen, ATP, and
reduced carbon. Concurrently, the anoxygenic FAP
derive energy from sunlight and exploit the reduced
carbon (glycolate and acetate) produced by the Synecho-
coccus guild. By-products of cyanobacterial activity also
serve as carbon and energy sources for SRB. These
interactions were used to guide selection of relevant
organismal modes for the day nested approach.

At night, the mat was treated as anoxic due to the lack of
oxygenic photosynthesis and low oxygen solubility at
60°C. This is a simplification: low levels of oxygen are
actually available at the mat surface while most of the
mat is anaerobic. The model Synechococcus guild fer-
ments stored polyglucose into a variety of organic
compounds including lactate, propionate, acetate, and
formate as well as ethanol. In addition to being the
primary producer of reduced carbon, Synechococcus is
also thought to be the primary producer of fixed
nitrogen for the mat [11]. These were the interactions
used to guide first-round selection of modes for the night
nested method. The nitrogen fixation reactions are
considered solely in the night model because of the
sensitivity of nitrogenase to oxygen. This could be a
simplification of actual mat behavior: mRNA expression
evidence and in situ activity assays suggest that a large
fraction of nitrogenase synthesis occurs in the morning,
when light-derived reducing equivalents are available
but before the mat becomes oxic [5].

The Mushroom and Octopus Spring phototrophic mat
communities are found within flowing geothermal
springs. Consequently, it was assumed that the mass of
each metabolite lost from the control volume due to
convective transport was exactly equal to that gained by
the control volume through convective transport from

upstream microbes. The gases CO2, O2 and H2 were not
constrained by this treatment and could vent to the
atmosphere.

The nested models require the defining of ‘transfer
metabolites’, which are permitted to serve as metabolic
sinks and sources for the individual guild simulations,
but not for the community simulation. They were chosen
based on knowledge of the springs and compounds
commonly transported across bacterial membranes and
are shown in Figure 1, associated with arrows between
guilds. Individual guild networks were then evaluated for
elementary modes with ‘transfer metabolites’ allowed to
accumulate (or deplete). This was accomplished by
defining them as external metabolites in CellNetAnaly-
zer. The resulting modes were sorted in Excel based on
product synthesis yields considered relevant to the
system. These criteria are listed in additional file 1:
Supplement. The modes with high yields, which
represent overall guild stoichiometries, were then used
as inputs for the second round of EMA (with ‘transfer
metabolites’ now treated as internal metabolites in
CellNetAnalyzer). The first round of EMA used enzyme
substrate and product stoichiometries to determine how
the numerous enzymes can work together as a system,
while the second round of EMA used guild stoichiome-
tries to determine how the guilds could work together as
a system.

Elementary mode analysis
Algorithms for calculating elementary modes from
metabolic network topology are described elsewhere
[46]. These algorithms are based on a field of mathe-
matics known as convex analysis. Calculation of ele-
mentary modes in this work was performed using the
software CellNetAnalyzer 9.0 and MATLAB v 7.6 [66].
CellNetAnalyzer is freely available to academics at http://
www.mpi-magdeburg.mpg.de/projects/cna/cna.html,
but requires MATLAB version 6.1 or higher. Due to
computational burden, the models had to be constructed
to avoid missing essential enzymatic activity while still
permitting a computationally tractable network. Neces-
sary simplifications included rounding, neglecting the
accumulation of fermentation products at night, com-
bining macromolecular syntheses into ‘lumped’ reac-
tions based on draws from the central metabolism, using
a proxy for cellular maintenance energy requirements,
and streamlining treatment of nitrogen storage. The
models presented in additional file 1: Supplement were
used to produce all discussed results. A new algorithm
for EMA has been recently described that permits the use
of a 64 bit Linux based system [37]; this will likely
permit analysis of larger networks than was previously
possible. Algorithms for parallel processing have been
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proposed and will likely reduce the need for simplifica-
tion, but are not yet publically available [67].
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BackgroundComplex microbial communities drive the Earth�s biogeochemical cycles 1. In spite of their importance, the biochemical interactions within these communities are not yet well understood, nor have in silico methodologies for studying them matured. An improved understanding of how natural microbial communities mediate biogeochemical cycles will augment predictions of how these processes respond to disturbances from climate change to anthropogenic chemical deposition. Improved understanding may also provide a rational basis for using microbial consortia to produce biofuels and biomaterials from renewable resources 2.Microbial communities described in terms of their environmental chemistry, ecophysiology, and phylogenetic diversity can be used as a foundation to develop, test, and compare in silico tools for analyzing community interactions. The phototrophic microbial mats of Octopus and Mushroom Springs of Yellowstone National Park (Wyoming, USA) represent an ideal test case due to the extensive available data [e.g. 3456789, and numerous other references found throughout this study]. These alkaline siliceous hot spring mats (50-74�C) are inhabited predominantly by unicellular cyanobacteria related to Synechococcus spp. and filamentous anoxygenic phototrophs (FAP) related to Chloroflexus and Roseiflexus spp. The community also contains sulfate-reducing bacteria (SRB) and other prokaryotes sustained by the primary productivity of the photosynthetic bacteria 3.Previous studies of the mat have revealed diel (day-night) metabolic variation in various community members, driving shifts in the concentration and fate of dissolved metabolites 56101112. Organic metabolites including glycolate and other acids, along with hydrogen, form the basis for mass and energy exchanges between community members (Figure 1A). For example, during the day, the photosynthetic cyanobacteria consume CO2 and produce O2 as a by-product of photosynthesis. High levels of O2 relative to CO2 promote oxygen competition at the ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) active site, leading to the production of glycolate 91314. Other community members, including the photoheterotrophic FAP, can use glycolate as a carbon and energy source 15. The cyanobacteria can also store excess photosynthate as polyglucose 16. This carbon and energy storage material is fermented at night to organic acids (Figure 1B) 10. FAP can incorporate fermentation products photoheterotrophically 121517, while SRB appear to oxidize some of these products under anaerobic conditions 61518.Molecular level metabolic models were constructed to represent the central metabolism of three functional guilds thought to be important to material and energy flows through this community 12. A guild is a group of species that exploit the same class of environmental resources in a similar manner 19. Oxygenic photoautotrophs related to Synechococcus spp. were selected to represent the mat�s primary source of fixed carbon and nitrogen. FAP from the family Chloroflexaceae, an important structural component of the mat community, were incorporated as metabolically versatile (photo)heterotrophs, capable of capturing light energy as phosphodiester bonds (cyclic photophosphorylation), but requiring externally supplied reducing equivalents. An SRB guild was included as a consumer of the metabolites produced by photosynthetic guilds. Other sub-dominant organisms (e.g. aerobic heterotrophic bacteria and methanogenic archaea) present in the mat 3 were not included in this first in silico representation of the system (see methods).Metabolic networks were studied using the stoichiometry-based network analysis approach known as elementary mode analysis (EMA) 202122. EMA evaluates a metabolic network by decomposing the system into a complete set of the simplest biochemical pathways satisfying steady state conservation constraints with enzymatic fluxes occurring in physiologically reasonable directions (i.e. unidirectional enzyme-catalyzed reactions are not permitted to run backwards). These explicitly defined pathways are known as elementary modes and are frequently represented as vectors containing relative rates for every reaction in the metabolic network. The approach permits the description of any sustainable physiological behavior as a linear combination of the simplest biologically meaningful metabolic pathways 2324.Metabolic network modeling methodologies have been used extensively to analyze single organisms and monoculture systems [e.g. 2526]. An alternative stoichiometry-based technique, flux balance analysis, has been applied to a two-species laboratory microbial system 27. That study used a compartmentalized approach analogous to strategies for modeling metabolic fluxes between organelles in eukaryotic organisms 2829. Topological approaches to metabolic network analysis have also been used at tree of life scales to analyze evolution of metabolism and the interactions of metabolic networks among species and with the environment 3031323334. However, these solely topological studies implicitly assume all genome encoded genes are simultaneously active with no consideration of critical reaction quantitative aspects like carbon and electron conservation relationships.In the present study, novel methods for handling multispecies EMA are developed and applied to a microbial consortium representing a well-studied thermophilic community from Yellowstone National Park (YNP). To the best knowledge of the authors, this is the first time a stoichiometry-based network analysis approach has been applied to a natural, in situ microbial community and the first time these approaches have been used to analyze microbial biofilms/mats. Mass and energy fluxes were investigated using three different approaches each representing different levels of detail and computational complexity. The three approaches provide a general set of tools for studying microbial communities that can be selected based on the levels of available knowledge and community complexity. Each approach has advantages and disadvantages which are discussed along with examples illustrating how these methods can be used to gain insight into basic community metabolic processes. In particular, our work demonstrates a trade-off between knowledge of the distribution of metabolic capabilities between guilds in a consortium and the ability to conservatively predict and interpret limits for that community�s behavior.ResultsDevelopment and implementation of three consortium analysis approachesThe primary aim of this theoretical study was to develop, analyze, and compare different in silico approaches for molecular-level analyses of mass and energy flux through a microbial community. The following section details three distinct approaches, using the Yellowstone thermophilic phototrophic mat system as a test case. Advantages and disadvantages of each technique are highlighted and discussions detailing which approach is most appropriate for a given set of microbial data are provided. For each of the three methodologies discussed, both day and night scenarios were considered (Figure 1). All metabolic models, including an explicit listing of the reactions and metabolites, can be found in the additional file 1: Supplement.Compartmentalized consortium analysis approachA compartmentalized model was constructed in which each of the three guilds was a distinct compartment and exchangeable metabolites were transferred through a fourth compartment representing the extracellular environment (Figure 2A). This strategy has been used in the past for spatially and chemically segregated eukaryotic and microbial systems 272829. The approach was implemented by assigning reactions and metabolites to a network representing each guild (suffixes on metabolite identifiers prevented sharing of compounds common to the metabolism of multiple guilds), while explicit transport reactions accounted for the exchange of metabolites between guild members and the extracellular space. A short illustration of the separation mechanism is provided in additional file 1: Supplement.The compartmentalized modeling approach has the advantage of conceptual tractability. Dividing the community into guild-level compartments linked by transferred metabolites (e.g. glycolate) is an intuitive way to represent interactions within a consortium. It is also an ideal method for understanding which guild performs a particular metabolic transformation. For example, the fraction of total biomass (carbon moles) or total maintenance ATP (used to account for energy-dependent cellular processes other than growth) produced by each guild is clear from the output.One drawback to the compartmentalized approach is the sheer quantity of unique interactions possible. The size of the resulting network can lead to a �combinatorial explosion� of elementary modes 35. To address this limitation, the models for each guild member were constructed to capture the necessary metabolic capabilities while maintaining computational tractability (see methods section). A second drawback of the compartmentalized method is the requirement for significant a�priori information or assumptions, as enzymes must be assigned to each separate guild. The Octopus and Mushroom Spring phototrophic mats are well-studied, permitting the use of compartmentalized results as a benchmark for the other two methodologies.Pooled reactions consortium analysis approachThe second approach, referred to as the pooled reactions consortium analysis, treated the consortium as a single entity (Figure 2B). All metabolic reactions and metabolites from the three guilds were combined into a single compartment. Reactions catalyzed by more than one guild were only considered once. The method captures the metabolic constraints of the overall matter and energy transformations without the need for detailed knowledge of every organism in the community.The pooled reactions approach is ideally suited for investigating the metabolic potential of a community based solely on metagenomic data because the assignment of each reaction to a constituent guild is unnecessary. The technique is quite flexible and can be scaled to different levels of detail. An additional advantage of the pooled reactions approach is the reduction of computational burden. With these advantages, the method is uniquely suited for initial and exploratory analyses of diverse or poorly understood communities. For scientists accustomed to well-documented laboratory microbes, this approach may seem coarse however, the vast majority of organisms on the planet have not been cultured in the laboratory, much less isolated to purity 36. This method represents a flexible starting point for analyzing such systems.A weakness in the pooled reactions approach is that model output does not specify which guilds employ a particular enzyme or produce biomass and maintenance ATP. Instead, the results describe potential performance of the entire consortium. The method also neglects the logistics associated with transferring metabolites between organisms, including conversion of the given metabolite into one for which transporters are available. The approach is presented here using the well characterized cyanobacterial mats to highlight strengths and drawbacks to the method.Nested pathway consortium analysis approachThe third approach, termed the nested consortium analysis or EMA �squared�, uses successive rounds of EMA to analyze potential interactions within a consortium (Figure 2C). The first round of EMA is applied to each guild model in isolation. The output data are mined for ecologically relevant elementary modes, such as efficient biomass production from sunlight or efficient ATP generation from lactate and sulfate. The selected elementary modes are then compiled and used as input reactions for a second round of EMA to examine the potential for interactions between guilds. Conceptually, the first round of EMA provides guild-level stoichiometries relating substrates to products. These stoichiometries can be further processed in the same way that traditional EMA uses enzymatic stoichiometries to consider inter- and intraguild interactions. An exam�ple�of the process is provided in additional file 1: Supplement.The first round model output was explored for metabolic strategies representing �selfish� and �altruistic� operation of each guild. Selfish selection criteria were based on the efficient production of biomass and maintenance ATP. Altruistic selection criteria were based on efficient production of metabolites that could be consumed by other guilds, including for instance H2, NH3, acetate, and glycolate. Efficiency was evaluated by normalizing the amount of production by the required input (e.g. amount of glycolate or sunlight). A list of the ecological criteria considered can be found in additional file 1: Supplement.Stable numerical implementation of the nested approach using CellNetAnalyzer v 9.0 required some heuristics. Elementary modes from the first round of analysis were normalized to vectors of unit length prior to the second round of EMA; without this step, errors occurred during calculation of elementary modes; specifically, the attempted inversion of matrices that are very nearly singular. Normalized coefficients were rounded to two decimal places to prevent similar problems. When rounding converted an otherwise non-zero coefficient to zero, the entire elementary mode was scaled so the smallest coefficient was equal to 0.01. The MATLAB script used for normalizing and rounding intermediate results is provided in additional file 1: Supplement. This step was necessary although it introduced a modicum of error. Error analysis is included in the following sections. These steps are not necessary if EMA is performed using the new bit pattern tree algorithm which is numerically more stable 37.The nested pathway approach allows for the analysis of more complex metabolic networks and larger communities than the compartmentalized approach because each guild is initially considered separately. It also has the advantage of retaining guild-specific output lost in the pooled technique. The manual selection of specific modes permits a guided community analysis based on ecological strategies of interest for each guild; results can then be re-examined in light of the selection criteria used, relating community stoichiometry and guild strategy. The ability to assemble multiple sets of first-round output and concatenate the results allows the system to expand freely. The nested approach is unrelated to the decomposition approach for the analysis of large cellular networks with EMA 38, but is well-suited for reconnecting the output of the resulting subnetworks tractably.The nested pathway analysis approach has the disadvantage of requiring two rounds of processing. In addition, manual selection of ecologically interesting modes from individual models requires a priori knowledge and can significantly influence the solution space. Finally, intermediate processing introduces some rounding error.Comparison of consortium analysis approachesTwo test cases were analyzed to compare the three approaches in terms of their ability to describe and explain the flows of carbon, nitrogen, and energy through the mat community. The first case study considered daylight production of biomass fueled by solar energy, while the second case study considered the fermentation of stored polyglucose to drive nitrogen fixation during the night. Table 1 highlights key model outputs associated with the different daytime simulations, including the number of modes identified as well as important parameters like maximum yield of biomass or maintenance ATP per photosynthetically-available photon. Table 2 shows similar results for the nighttime simulations.Case one: Consortium photo-efficiencyThe relationship between solar energy input and community productivity is a fundamental subject of ecological inquiry, as is the relative abundance of various species. The model community is an example of how metabolic knowledge feeds into these questions, providing a natural point for comparison of the three methods. Oxygenic photosynthesis drives primary productivity in the community by splitting water into reducing equivalents and O2. The reducing equivalents can be used to fix CO2 via the Calvin-Benson-Bassham cycle. The O2, however, can compete with CO2 for the rubisco active site, resulting in the production of glycolate instead of an additional Cmole of reduced carbon (equations 1 and 2). A Cmole is a mole of carbon atoms; one mole of glucose (C6H12O6) is equivalent to six Cmoles of glucose.Experimental characterization of these fluxes from the Octopus and Mushroom Spring microbial mats has been reported. The O2/CO2 flux ratio at the rubisco active site is estimated to be approximately 0.03-0.07 when dissolved gas concentrations represent mid-afternoon conditions at the springs 9. The derivation of these estimates from the reported data is demonstrated in additional file 1: Supplement.The output from the three in silico community analysis approaches was plotted using two physiological variables thought to be important to community interactions: 1) O2 competition at the rubisco enzyme (O2/CO2) and 2) the quantity of biomass (Cmole) synthesized per mole of absorbed photons (Figure 3). Relationships between these properties are examined below as�a�vehicle for comparison of the three modeling approaches.Compartmentalized consortium analysisThe compartmentalized approach, wherein guilds interact through a mass-balanced external compartment (see section 1a, Figure 2A, and additional file 1: Supplement), served as a basis for comparison of the community modeling techniques. This method revealed only two elementary modes (out of a total of 74,507 distinct elementary modes) producing cyanobacterial biomass. These modes, highlighted with arrows in Figure 3A, differ based on ATP production strategy. The higher-yielding elementary mode generated ATP by oxidizing reducing equivalents from non-cyclic photophosphorylation, while the lower-yielding elementary mode produced ATP through cyclic photophosphorylation.All other biomass-producing elementary modes generated FAP, SRB, or a combination of FAP and SRB biomass. At low levels of O2 competition at the rubisco enzyme, Figure 3A illustrates that optimal FAP and SRB biomass synthesis efficiency increases with oxygen competition (positive trend for highest biomass-yielding elementary modes for each increment of oxygen competition). This is due to an increase in glycolate production, shuttling electrons either directly or indirectly to the other guilds. The trend continues until a rubisco O2/CO2 flux ratio near 0.13 is reached. At O2 competition levels greater than about 0.17, O2 interferes with the efficient photon-based production of cellular carbon (i.e. the reducing equivalents liberated with the oxygen are insufficient to cover the costs of processing the additional glycolate).Theoretical ecological studies have suggested that organisms adapted to a biofilm or mat lifestyle will draw on available resources in a manner which maximizes yields and thus favors the whole community 3940. Combining this theory with the experimentally determined O2/CO2 competition at the rubisco enzyme made it possible to predict relative yields of the cyanobacteria and FAP. Two different cases were considered. The first case (i) examined the ramifications of each guild striving to maximize its own biomass yield and the second case (ii) examined different guilds working in concert to maximize biomass for the entire consortium (see Figure 3A).Cellular metabolism can be expressed accurately as a linear combination of distinct elementary modes 2441. It is hypothesized that a consortium�s metabolic activity can also be described using linear combinations of the elementary modes (with non-negative coefficients). When exactly two elementary modes are considered, the contribution of each mode to the overall metabolic process (represented by a point on the connecting line segment) is fixed by the ratio of any two fluxes for which the constituent modes have non-identical ratios. That relationship is demonstrated in additional file 1: Supplement. For each considered case, a combined metabolism was identified using the ratio of�fluxes through rubisco (O2/CO2) derived from experimental data 9. The derived values were used to bound the solution space (i.e. set of acceptable flux distributions).This relationship was applied to the highest-yielding biomass-producing modes from the compartmentalized model to predict the relative abundance of cyanobacteria and FAP for a fixed photon input budget (line segments in Figure 3A connect the elementary modes of interest). Modes producing SRB biomass could easily be combined in the same way, but were not among the highest-yielding strategies. The scenario normalized biomass to a per photon basis. The case i scenario predicts ratios of cyanobacteria to FAP biomass production ranging from 2.5:1 to 6.5:1 (cyanobacteria to FAP) based on the experimentally determined oxygen competition at the rubisco enzyme. The case ii scenario predicts ratios from 8.2:1 to 17.7:1 on the same basis. The numerical procedure is demonstrated in additional file 1: Supplement. The analysis control volume consists of the top 1 mm of mat. The control volume growth is exactly equal to the rate at which biomass leaves the control volume. Physically speaking, this represents the new growth burying the old growth.The ratio of cyanobacterial to FAP biovolume in a Mushroom Spring mat sample was experimentally measured to be 1.6:1 16. It is assumed here that biomass and biovolume are related in the same manner for both species. The relative abundances of metagenomic reads suggest biomass ratios for these guilds between about 1.5:1 and 3.5:1 in the top 1 mm of Octopus and Mushroom Spring mats, assuming no bias in the sampling and sequencing pipeline (Klatt et al., in preparation). The reported ratios are closer to the modeled scenario where each individual guild seeks to maximize its own biomass yields rather than the scenario optimizing biomass yield of the entire consortium. A potential explanation for the modest discrepancy between prediction and experimental data is the experimental underestimation of glycolate production due to consumption of radiolabeled photosynthate during incubation. Increasing the flux ratio (O2/CO2) at�rubisco (to correspond with higher glycolate production rates) drives the solution space for the case i scenario into stronger agreement with experimental values much more quickly than for the case ii scenario. It should also be noted that in situ environmental systems vary considerably in both space and time, and the flux ratios were derived from measurements at a single condition.Pooled reactions consortium analysisThe same variables were plotted for elementary modes identified with the pooled technique, wherein all reactions and metabolites were combined into a single metabolic unit (Figure 3B). The predicted maximum community biomass efficiency was 9.4% higher for the pooled approach than the compartmentalized approach. The cyanobacteria (responsible for the highest-yielding, compartmentalized biomass mode) do not possess a full citric acid cycle; with the pooled treatment, however, the entire cycle becomes available, efficiently catabolizing photosynthate without the usual logistical costs of metabolite transport between guilds. The genome of RS-1, a FAP isolated from a hot spring microbial mat, appears to code for the enzyme missing from OS-A and OS-B�, sequenced cyanobacteria from Octopus Spring.Contrary to the compartmentalized approach, the pooled output suggests that oxygen competition at the rubisco active site does not necessarily affect the biomass yield per photon (note the nearly flat trend of uppermost points in Figure 3B). This represents an uncoupling of heterotrophy and photorespiration, neglecting the role of glycolate as a transfer metabolite. These seemingly contradictory elementary modes all utilized the SRB-associated reductive acetyl-CoA CO2 fixation pathway, and are striped gray in Figure 3B. This pathway is metabolically inexpensive in the pooled approach due to the direct availability of reducing equivalents derived from oxygenic photosynthesis. These enzymes are generally very sensitive to O2 42, calling the feasibility of these particular elementary modes into question. SRB activity has been reported in the upper 0.5 cm of the mat during day 6, but the activity may be limited to small anoxic microenvironments and is unlikely to represent a major daytime CO2 fixation strategy.Filtering out elementary modes using the reductive acetyl-CoA pathway leaves a trend of decreasing optimal biomass per photon yields with increasing O2/CO2 flux ratios at the rubisco enzyme. The trend appears very similar to case ii from the compartmentalized analysis as a result of the pooled approach�s treatment of biomass. A�non-guild-specific biomass term means that maximizing the yield optimizes production of biomass for the consortium as a whole, the same criteria used to generate the case ii scenario.This analysis highlights potential challenges associated with the pooled community approach. First, pooled reactions can result in higher predicted yields than compartmentalized reactions because there are no logistical costs associated with inter-guild metabolite transfer. The second challenge is the combination of enzymatic activities that are not compatible. The use of oxygenic photosynthesis to drive extremely oxygen-sensitive enzymes, for instance, seems unreasonable. The pooled analysis generates more appropriate trends if a priori information regarding the oxygen sensitivity of the reductive acetyl-CoA enzymes is applied as a filter. In addition, because enzymatic activities are shared rather than apportioned between individual guilds, maximizing any yield does so for the entire consortium rather than a single guild. This approach is well suited for initial work on systems lacking sufficient a priori data to construct a compartmentalized model. The fact that such data is lacking for the vast majority of all natural ecosystems emphasizes the usefulness of this approach.Nested consortium analysisThe nested approach produces similar results to the compartmentalized method. While this may not be readily apparent from a cursory comparison of Figures 3A and 3C, connecting the extreme upper-left and upper-right points on each subfigure shows that the limits of the solution space (in terms of biomass yield on photons and oxygen competition at the rubisco enzyme) are quite comparable, although the nested approach identifies fewer suboptimal solutions. The biomass yield on photons decreases with increasing O2/CO2 flux ratios at the rubisco enzyme. The initial increasing trend seen in the compartmentalized model consisted of suboptimal solutions not identified as ecologically relevant in the first-round processing. Those metabolic behaviors are all outperformed by linear combinations denoted by the case i line in Figure 1A. The optimal biomass yield on photons is equivalent (within the error introduced by rounding) to the compartmentalized prediction. Combination of modes, as in the case i compartmentalized scenario, identifies very similar ratios of biomass productivity for cyanobacteria to FAP (from 2.0:1 to 5.9:1) at the O2/CO2 flux ratios of 0.03-0.07 suggested by experiment (calculations are demonstrated on the compartmentalized output in additional file 1: Supplement). The total number of elementary modes is lower than the compartmentalized approach (428 vs. 74,507) because the initial round of EMA selects only strategies deemed ecologically competitive or relevant. The first round of processing removes many mathematical solutions that are not necessarily of interest for additional analysis. Caution is required; neglect during first-round selection can prevent discovery of interactions or cause underestimations of metabolic potential.Any system characterized well enough to construct a compartmentalized model can also be analyzed using the nested approach. The approach is best suited for complex systems that prove computationally difficult to analyze using a compartmentalized simulation. In addition, the nested community analysis approach facilitates interrogation of the competitive strategies employed by individual guilds to produce a compartmentalized modeling result. For instance, the experimentally relevant case i results shown in Figure 3A (biomass production efficiency optimized by guild rather than as a community) require the FAP guild to maximize biomass yield (based on carbon influx) for the strictly heterotrophic co-metabolism of glycolate and acetate. The cyanobacterial guild must concurrently operate a metabolism comprised of three distinct elementary modes: the highest yielding strategies for biomass, glycolate, and acetate production all based on photons. This information is embedded in the criteria used to select the first-round elementary modes.The nested community analysis approach requires the elementary mode coefficients to be normalized and rounded. Error analysis was performed to gauge the effect of this processing on the results. Each mode was examined for the error in carbon fixed and the amount of absorbed energy. The maximum error introduced was 0.004 Cmoles per mole of photons. The complete error results from both case studies are included in additional file 1: Supplement.Case two: Nitrogen fixationNitrogen fixation fueled by the fermentation of polyglucose is thought to be an important process in the mat during night and early morning 511. The presented models only consider nitrogen fixation at night, since the oxygen sensitivity of nitrogenase should render it inoperable during the day when the mat is superoxic. Future modeling efforts will consider the morning separately, acknowledging evidence that suggests a large fraction of nitrogen fixation in situ occurs after sunrise but before O2 production exceeds consumption 5.The second case study examined the efficiency of N2 reduction with polyglucose and the corresponding production of five potentially inhibitory or toxic fermentation by-products: formate, acetate, ethanol, lactate, and propionate. Their toxicities have not been explicitly characterized in this system, but their total molar yield on polyglucose represents a convenient �toxicity parameter� for comparison of modeling approaches. It should be noted, however, that nitrogen fixation and the incidental production and fate of fermentation products are separately questions of ecological interest.The FAP guild was included in the night-time simulations. They were inactive however, because unlike the SRB, they are incapable of drawing on sulfate as an electron acceptor. While the FAP guild can jettison electrons as hydrogen, this requires energy input from light or an alternative oxidant (oxygen was assumed to be unavailable during the night scenario).Figure 4A depicts the relationship between the secretion of fermentation products and the efficiency of the metabolic strategy according to the compartmentalized results. The high density of points is an explicit illustration of the system robustness. As the yield of NH3 synthesis increases, more fermentation products are produced. If heterotrophic guilds such as the SRB rapidly metabolize the fermentation products (or those products are removed efficiently through physical transport processes), the high-yielding strategy would likely be the most ecologically competitive strategy for the cyanobacteria. If, alternatively, fermentation products are building up to toxic levels, than the mode associated with lowest by-product loading could be preferred.The pooled results in Figure 4B demonstrate the effects of neglecting constraints on the exchange of metabolites between guilds. The results suggest, in contrast to predictions by the other two models, that nitrogen fixation at night is possible without associated production of potentially inhibitory or toxic fermentation products (all points in Figure 4B located on the y-axis above the origin). Similar to the photo-efficiency test case, the pooled analysis provides a less conservative solution space than the other approaches. Less information is required to build the pooled model, but predicted yields have to be viewed as theoretical upper limits, with the actual consortium probably operating at lower yields. The approach offers a rational, constraint-based approximation to the metabolic potential of a poorly characterized microbial consortium.The night nested results have nitrogen-fixing efficiencies similar to the compartmentalized approach. The similarity of the shape and size of the solution spaces between nested and compartmentalized techniques (Figures 4A and 4C) indicates that modes of interest were selected appropriately during first-round processing. Considering the corresponding first-round criteria allows mapping of results into ecological strategies for individual guilds. For example, in the elementary mode resulting in the highest yield of fixed nitrogen on polyglucose, the cyanobacteria guild uses two strategies, maximizing production of free NH3 and cyanophycin and co-producing acetate, formate, and ethanol. Three distinct SRB physiologies are employed, maximizing biomass production on each fermentation product individually. Error analysis on the night nested model was performed by comparing error in the carbon balance with polyglucose consumption for every mode. The largest error due to rounding was a reasonable 0.033 Cmoles for every Cmole of polyglucose consumed. The complete error results from both case studies are included in additional file 1: Supplement.Consortium food web robustness analysisThe compartmentalized consortium analysis approach was used to explore additional community properties. Metabolic networks within individual cells are highly branched, forming robust and decidedly redundant systems thought to be resilient to perturbations and disruptions 34434445. Figure 5 details how the 74,507 unique daytime elementary modes can be divided into 16 different inter-guild mass and energy exchanges. Interactions associated with a large number of elementary modes are more likely to remain functional during environmental perturbations 4647.Figure 5 indicates that a large number of metabolic strategies (93.9% of elementary modes revealed by the compartmentalized simulation) exist for the daytime transfer of carbon and electrons from the cyanobacterial guild to the FAP guild with associated FAP production of H2 providing electrons to the SRB guild. In fact, daylight SRB activity in silico is overwhelmingly dependent on such hydrogen (97.1% of compartmentalized elementary modes with non-zero SRB fluxes). There are only 58 unique elementary modes involving the transfer of acetate from the cyanobacteria to SRB which do not involve any FAP activity. The interaction analysis also highlights the importance of the well-connected and functionally versatile FAP guild in the mat community metabolism. Only 74 out of the 74,507 unique elementary modes (0.1%) identified by the daytime compartmentalized simulation can function without the FAP guild.DiscussionThree in silico consortium analysis methods were developed and applied to a thermophilic phototrophic mat community from Yellowstone National Park as a test case. The results of this systems ecology study demonstrate the applicability of consortium EMA, explicitly mapping the genes-to-function emergent properties associated with the connectivity of metabolic reactions via the exchange of mass and energy. Since the presented techniques are culture-independent, they are compatible with metagenomic approaches and other studies in which culturing or isolation has proven difficult. This study provides a foundation for further work to refine and test the models using co-culture studies; potential inquiries include the measurement of substrate uptake and growth rates, biomass compositions, mRNA and protein expression, and quantification of internal fluxes. Toxicity profiles of the various fermentation products to representative microbes would also be of interest. Representative organisms or enrichment cultures are available for each guild, and the results of such experimentation will be quite useful for model validation and improvement. That work, however, is beyond the scope of the current study, which seeks only to provide methods for the extension of EMA to microbial consortia.An alternative approach to the mass-balance-based analysis of large networks, flux balance analysis4849, has been applied to genome-scale metabolic networks50, which is currently not possible with EMA 37. Flux balance analysis has been used to investigate central carbon and energy metabolism of a two species consortium 27. Flux balance analysis could likely be applied to the presented model system and could be used to ask similar questions. The output, however, would be a single flux distribution denoting an optimal use of the network as defined by an objective function, rather than a generating set for all flux distributions allowed by the network (although methods have been established to examine the effects of variations in external constraints on the value of the objective function51). As the choice of an appropriate objective function is not always clear prior to extensive experimentation 5253, a generating set is useful for exploratory modeling. The utility of a generating set for explanatory modeling has also been recently demonstrated 24. These benefits justify the development of methods for the application of EMA to multispecies systems alongside large-scale network methods. It is worth considering how the methods developed here will be affected by larger network sizes. This is important because potential applications include more diversified communities and more complex cellular metabolisms. Systems cast as compartmentalized models which prove to be too computationally heavy for current EMA algorithms can be analyzed using the nested approach.The compartmentalized community analysis method has the advantage of intuitive tractability and separates activity and function by guild, but requires substantially more knowledge of the community than the pooled reactions approach. Tables 1 and 2 illustrate how the energy added to electrons during oxygenic photosynthesis is dissipated with the movement of mass and energy through the consortium. The cyanobacteria exhibit a predicted maximum biomass yield of 0.117 Cmoles for each mole of photons absorbed by the mat. This value is 0.078 for the FAP guild, with the difference providing a rough measure of the cost of transferring reducing equivalents between guilds. The SRB also rely on the by-products of the primary producer guilds for electrons, but are further constrained by an inability to derive energy from light or respiration on O2. The highest SRB biomass yield predicted by the daytime compartmentalized model is 0.016 Cmoles per absorbed mole of photons, slightly more than one tenth of the cyanobacterial yield. The ratio between theoretical optima for photosynthetic and SRB biomass yields is similar to observed ratios between primary producers and the secondary productivity of consumers in macroscale ecological systems 1954.The compartmentalized method also lends itself uniquely to investigation of the robustness of specific consortium interaction types (see Figure 5). Investigating interactions in the model showed that the FAP are central to the metabolic capabilities of the consortium as a whole; FAP involvement was required for the vast majority (99.9%) of elementary modes. Finally, the highest-yielding biomass-producing modes from the compartmentalized approach were combined to show that experimental data supports strategies optimizing productivity by individual guilds more strongly than strategies optimizing productivity for the entire consortium [916; Klatt et al., in preparation].The pooled reactions consortium analysis method modeled community metabolic potential by treating all enzymatic activities and metabolites as residents of the same physical space, without membrane boundaries. The pooled reactions approach represents the coarsest-scale methodology, requires the least a priori information, and is easier to implement than alternative approaches. The pooled approach can often be used when other approaches cannot (due to complexity) or should not (due to lack of detailed data). These advantages are balanced against a tendency to overestimate the metabolic potential. This is unsurprising, as real communities are not super-organisms; individuals are membrane-separated and must contend with the logistics associated with matter and energy transport. The pooled technique is best for initial work on �poorly� characterized systems. The vast majority of ecosystems are not characterized to a level permitting a compartmentalized analysis, suggesting the pooled approach will be relevant for a long time to come.Finally, the nested community analysis has properties very similar to the compartmentalized approach, but with the important advantage of easy scalability, achieved by concatenating multiple rounds of EMA analysis. The approach also provides additional ecological insight into the competitive strategies underlying each guild�s function. This information is contained within the criteria used to select first-round building blocks. The nested method also easily captures interactions between different guilds as well as between members of the same guild expressing different physiologies. For instance, different cyanobacterial elementary modes can combine, representing exchange of metabolites between cyanobacteria expressing different metabolic activity due to differing positions across spatial gradients of light, temperature, and concentration. This type of exchange appears to be very relevant to actual mat function, as other work suggests the presence of functionally distinct Synechococcus populations that are adapted to particular microenvironments 55. As with the compartmentalized approach, the daylight case study found that optimal guild strategies were more strongly supported by experimental data than optimal consortium strategies.Combinations of the pooled and compartmentalized methods can be used to provide information not easily obtainable with any single approach. As an ecologically relevant example, a cost-benefit relationship was quantified for a complete citric acid cycle in the cyanobacterial guild, as opposed to the incomplete cycle indicated by the genomic sequence of relevant isolates. Synechococcus spp. OS-A and OS-B� genomes do not contain the oxaloacetate-producing malate dehydrogenase. The pooled reactions modeling approach identified a cluster of optimal elementary modes using a primarily cyanobacterial metabolism along with the missing citric acid cycle enzyme, which is FAP-derived. The biomass yields in this cluster are a 9.4% improvement relative to purely cyanobacterial metabolic potential, given by the compartmentalized methodology. This is a large difference in yields and laboratory evolution experiments have shown that much smaller differences (0.5% difference in growth rate) are selectable under competitive conditions 56. These hot spring mat communities are thought to be modern derivatives of ancient prokaryotic communities, and the long history of cyanobacterial and FAP cohabitation suggests the potential for horizontal gene transfer. Evidence for actual horizontal gene transfer events between cyanobacteria and FAP has been published elsewhere 57. The cyanobacteria in our study have not acquired and passed on the missing Krebs cycle gene, suggesting that the costs of production, maintenance, and regulation for malate dehydrogenase are unlikely to be offset by the benefit of a 9.4% improvement in biomass yield.ConclusionEach of the three in silico modeling approaches developed in this study provides a mathematical description of physical constraints on metabolic activity in a consortium. These techniques allow the extension of EMA to ecologically relevant multi-species, biofilm systems. Their contrasting strengths can be combined to arrive at a more holistic description than is possible with any of the methods alone, allowing a broad perspective from which to frame observations and base predictions. These approaches can be adapted to a wide range of microbial communities including both natural and anthropogenic systems. Potential applications include modeling communities involved in wastewater treatment, bioprocess engineering, and environmental remediation, as well as the study of host-pathogen interactions in medicine and symbiotic relationships such as nitrogen-fixing root communities.MethodsMetabolic modelsThe metabolic models presented in this study exist in a control volume consisting of the upper 1 mm of the microbial mat. The steady state control volume considers biomass production but does not include an explicit biomass degradation term. To maintain steady state, biomass would leave the control volume at the same rate it is produced. This would correspond with the physical process of new growth burying old growth. Central carbon and energy metabolism network models for each guild considered to be in the control volume were constructed from literature reviews and annotated genomes of representative organisms including Synechococcus spp. OS-A and OS-B� 58 as well as Roseiflexus sp. RS-1 59. GenBank accession numbers are CP000686.1, CP000239.1, and CP000240.1 for the RS-1, OS-A, and OS-B� genomes, respectively. These genomes are highly representative (>90% nucleotide identity to metagenomic reads) of native dominant FAP and cyanobacterial populations in these mats (Klatt et al., in preparation). The metabolic potential of the SRB guild was based on several well-studied organisms (Desulfovibrio vulgaris Hildenborough, Desulfotalea psychrophila, Desulfovibrio desulfuricans G20, Desulfobacterium sp., and Archaeoglobus fulgidus), as well as Thermodesulfovibrio yellowstonii, a thermophilic SRB related to isolates from Mushroom Spring 660616263. GenBank accession numbers for these genomes, in the stated order, are AE017285.1, CR522870.1, CP000112.1, CP001087.1, AE000782.1, and CP001147.1.The use of guilds to minimize community complexity is useful for the compartmentalized approach. For the current study, guilds were defined based on four important parameters: energy sources, carbon sources, electron donors and electron acceptors. Each guild utilized a different combination of metabolites to satisfy these parameters. Subdominant guilds were not included in the model (e.g. methanogenic archaea). Here it is assumed that the methanogens would be responsible for degrading phototroph biomass buried within the mat. Since the control volume only considers the active phototrophic region, the decaying biomass would occur outside this control volume removing any possible role played by this subdominant guild.The metabolic model input consists of the carbon and electron balanced substrates and products for each considered reaction. It should be noted that these organisms are not characterized at a level which would justify genome-scale reproductions. While such models are admirable for well documented organisms, problems with inaccurate, automated genome annotations call into question the benefit of such attempts with any but the best studied microbes 64. The biomass compositions of these functional guilds have not been experimentally determined due to tight physical coupling of the cells within the microbial mats. The functional guilds reside within a distance of 100 �m. Biomass reactions were written to represent bacterial biosynthetic requirements for a composition of 78% proteins, 16% nucleic acids, and 10% other macromolecules. While the biomass compositions of actual mat constituents were not measured, previous published accounts [e.g. 48] as well as unpublished observations from the authors suggest that overall yields are relatively insensitive to the biomass equation as long as the biomass has a biologically relevant degree of reduction (e.g. approximately 4.8 on an N2 basis). The supplemental material contains a degree of reduction analysis of the utilized biomass expression. Its degree of reduction is 4.7. The methods developed here could be applied with alternative biomass synthesis reactions based on future experimental knowledge. Carbon storage consisting of polyglucose or polyhydroxybutyrate was considered separately from biomass production. The metabolic models used in this study are included in additional file 1: Supplement.Separate models were constructed to represent two distinct phases of a diel cycle, day and night. Differences between the modeled phases were based on the extensive geo- and biochemical data at these sites 511125565 and included sources and shuttles for carbon and energy as well as oxygen and light availability (see Figure 1 for graphical summary). The day and night metabolisms are connected through the fluxes of reduced carbon and fixed nitrogen. The amount of CO2 fixed during the day determines the mat�s overall dark phase reduced carbon budget while the nitrogen fixed during the night using energy stored as polyglucose sets the consortium�s fixed nitrogen budget.Briefly, during the day, the Synechococcus spp. convert solar energy, CO2, and water into oxygen, ATP, and reduced carbon. Concurrently, the anoxygenic FAP derive energy from sunlight and exploit the reduced carbon (glycolate and acetate) produced by the Synechococcus guild. By-products of cyanobacterial activity also serve as carbon and energy sources for SRB. These interactions were used to guide selection of relevant organismal modes for the day nested approach.At night, the mat was treated as anoxic due to the lack of oxygenic photosynthesis and low oxygen solubility at 60�C. This is a simplification: low levels of oxygen are actually available at the mat surface while most of the mat is anaerobic. The model Synechococcus guild ferments stored polyglucose into a variety of organic compounds including lactate, propionate, acetate, and formate as well as ethanol. In addition to being the primary producer of reduced carbon, Synechococcus is also thought to be the primary producer of fixed nitrogen for the mat 11. These were the interactions used to guide first-round selection of modes for the night nested method. The nitrogen fixation reactions are considered solely in the night model because of the sensitivity of nitrogenase to oxygen. This could be a simplification of actual mat behavior: mRNA expression evidence and in situ activity assays suggest that a large fraction of nitrogenase synthesis occurs in the morning, when light-derived reducing equivalents are available but before the mat becomes oxic 5.The Mushroom and Octopus Spring phototrophic mat communities are found within flowing geothermal springs. Consequently, it was assumed that the mass of each metabolite lost from the control volume due to convective transport was exactly equal to that gained by the control volume through convective transport from upstream microbes. The gases CO2, O2 and H2 were not constrained by this treatment and could vent to the atmosphere.The nested models require the defining of �transfer metabolites�, which are permitted to serve as metabolic sinks and sources for the individual guild simulations, but not for the community simulation. They were chosen based on knowledge of the springs and compounds commonly transported across bacterial membranes and are shown in Figure 1, associated with arrows between guilds. Individual guild networks were then evaluated for elementary modes with �transfer metabolites� allowed to accumulate (or deplete). This was accomplished by defining them as external metabolites in CellNetAnalyzer. The resulting modes were sorted in Excel based on product synthesis yields considered relevant to the system. These criteria are listed in additional file 1: Supplement. The modes with high yields, which represent overall guild stoichiometries, were then used as inputs for the second round of EMA (with �transfer metabolites� now treated as internal metabolites in CellNetAnalyzer). The first round of EMA used enzyme substrate and product stoichiometries to determine how the numerous enzymes can work together as a system, while the second round of EMA used guild stoichiometries to determine how the guilds could work together as a system.Elementary mode analysisAlgorithms for calculating elementary modes from metabolic network topology are described elsewhere 46. These algorithms are based on a field of mathematics known as convex analysis. Calculation of elementary modes in this work was performed using the software CellNetAnalyzer 9.0 and MATLAB v 7.6 66. CellNetAnalyzer is freely available to academics at http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html, but requires MATLAB version 6.1 or higher. Due to computational burden, the models had to be constructed to avoid missing essential enzymatic activity while still permitting a computationally tractable network. Necessary simplifications included rounding, neglecting the accumulation of fermentation products at night, combining macromolecular syntheses into �lumped� reactions based on draws from the central metabolism, using a proxy for cellular maintenance energy requirements, and streamlining treatment of nitrogen storage. The models presented in additional file 1: Supplement were used to produce all discussed results. A new algorithm for EMA has been recently described that permits the use of a 64 bit Linux based system 37; this will likely permit analysis of larger networks than was previously possible. Algorithms for parallel processing have been proposed and will likely reduce the need for simplification, but are not yet publically available 67.Authors� contributionsDMW, RG, RPC, and WPI were the authors responsible for conception and design of the experiment. Data was acquired, analyzed, and interpreted by CGK, JEA, KB, NM, RPC, RT, SM, SM, and ZJ. The manuscript was drafted by CGK, JEA, KB, NM, RPC, RT, SM, SM, and ZJ. DMW, RG, RPC, and WPI revised the manuscript critically for intellectual content. All authors read and approved the final manuscript.
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