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Abstract
Background: Ordinary differential equations (ODEs) are an important tool for describing the
dynamics of biological systems. However, for ODE models to be useful, their parameters must first
be calibrated. Parameter estimation, that is, finding parameter values given experimental data, is an
inference problem that can be treated systematically through a Bayesian framework. 

A Markov chain Monte Carlo approach can then be used to sample from the appropriate posterior
probability distributions, provided that suitable prior distributions can be found for the unknown
parameter values. Choosing these priors is therefore a vital first step in the inference process. We
study here a negative feedback loop in gene regulation where an ODE incorporating a time delay
has been proposed as a realistic model and where experimental data is available. Our aim is to show
that a priori mathematical analysis can be exploited in the choice of priors.

Results: By focussing on the onset of oscillatory behaviour through a Hopf Bifurcation, we derive
a range of analytical expressions and constraints that link the model parameters to the observed
dynamics of the system. Computational tests on both simulated and experimental data emphasise
the usefulness of this analysis.

Conclusion: Mathematical analysis not only gives insights into the possible dynamical behaviour of
gene expression models, but can also be used to inform the choice of priors when parameters are
inferred from experimental data in a Bayesian setting.

Background
Aims
Mathematical models can help biologists understand the
mechanisms and dynamics behind their experimental
observations (Tomlin et al. [1]). The most widely used
approach to modelling the dynamics of a genetic network
is to employ systems of ordinary differential equations
(ODEs) (Voit [2] and de Jong [3]). These models have bio-
logical parameters, some of which can be measured exper-
imentally and some of which cannot. Parameter
estimation, that is, recovering unknown parameters from

experimental data, is an important step towards obtaining
a good model that can not only explain observed results
but can also be used for prediction and "what if" scenar-
ios.

The inference of parameters, from real biological data,
within a Bayesian framework is a relatively new, albeit cur-
rently very active area. Bayesian inference and Markov
chain Monte Carlo (MCMC) methods have been recently
advocated for the estimation of model parameters from
biological systems described by ODEs (Rogers et al. [4]).
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This paper aims to show that a general technique, using
dynamical systems analysis to inform the choice of priors,
can add value. The negative feedback loop studied here is a
key feature of many complex biological networks and is
referred to as a motif by Alon [5]. Hence our work will be
of interest whenever larger networks are dealt with by a
modular 'divide and conquer' approach. A Bayesian setting
links the quantity that we are interested in, the probability
that our parameters take certain values given the data, to
two quantities that we can assign, the probability that we
would have observed the measured data if the parameters
took those values and our prior biological knowledge or
ignorance about these parameters (Sivia [6]). Whereas tra-
ditional parameter estimation methods are deterministic
and point valued (for example, COPASI [7]), these new
methods use Bayes' Theorem to assign probabilities to
parameter values and can handle noise inherently.

Using a Bayesian approach to parameter estimation for
nonlinear dynamical systems throws up several chal-
lenges, and these typically increase when time delays are
included. Key issues are

• dimensionality: models may involve several undeter-
mined parameters,

• identification: different parameter combinations may
produce similar dynamics, for example, increasing a pro-
duction rate may be almost equivalent to decreasing a
decay rate,

• local maxima: the likelihood function may have many
locally optimal values.

MCMC methods [8] can go some way to addressing these
difficult issues. In this work we show that a priori mathe-
matical analysis can also be an effective tool. Our focus is
on oscillatory time series, and we use the standard and
widely applicable tools of Hopf bifurcation analysis and
Lindstedt's method [9] in order to inform the choice of
priors, thereby simplifying and focussing the parameter
estimation process in order to find a particular parameter
regime. More precisely, we follow the approach of Ver-
dugo and Rand [10] in studying the case where oscilla-
tions arise via bifurcation through the delay parameter.
Verdugo and Rand show that this leads to biologically
realistic parameter values. We show here that inference
with real data further supports this viewpoint.

The setting for our work is the biologically important
instance where the expression of a gene is down regulated
by its protein product. This arises, for example, with the
p53 tumor suppressor protein whose intracellular activity
is regulated through a feedback loop involving its tran-
scriptional target [11]. We focus here on the case of the

delayed Hes1 feedback loop featuring hes1 mRNA and
Hes1 protein, where both mathematical models and
quantitative experimental data are available in [12] and
[13].

Biological Data
It has been observed that mRNAs for Notch signalling
molecules such as the bHLH factor Hes1 oscillate with 2-
hour cycles during somite segmentation, although the
molecular mechanism of such oscillations remains to be
fully determined. Hirata et al. [13] investigated the oscil-
lations of mRNAs for Notch signalling molecules by
examining the time course of hes1 mRNA and its Hes1
protein in detail. They observed that a single serum treat-
ment induced a 2-hour cycle oscillation of hes1 mRNA in
a variety of cultured cells and that Hes1 protein also oscil-
lated in a 2-hour cycle after the single serum treatment
with a delay of about 15 minutes relative to the hes1
mRNA oscillation. The half lives of hes1 mRNA and Hes1
protein were measured and the proteases for Hes1 protein
degradation were identified.

Hirata et al. confirmed experimentally that degradation of
Hes1 protein is required for hes1 mRNA increase and that
de novo production of the protein is required for reduction
of hes1 mRNA. These facts together support the theory
that Hes1 is an essential component of a two hour cycle
clock. They showed that the same mechanism applies to
hes1 mRNA oscillation in the presomitic mesoderm.

The Hirata data comprises scaled hes1 mRNA expression
levels every 30 minutes over a 12 hour period; see the dis-
crete points in Figure 1.

A system featuring negative feedback and described by
only two ODEs (one for each species, in this case hes1
mRNA and Hes1 protein), can be shown never to generate
sustained oscillations [14]. Hirata et al. proposed that the
observed oscillations could be modelled by introducing a
Hes1 interacting factor as a third molecular species, but
there is no experimental evidence for such an interacting
factor. Monk [12] showed that observed oscillatory
behaviour can be explained by incorporating a time delay.

Model for Hes1 Feedback Loop
Monk [12] suggests that the observed oscillations are due
to the non-instantaneous nature of transcriptional and
translational delays, and proposes a mathematical model
where a delay is introduced to account for this feature.
Monk's model was able to explain, via numerical simula-
tions, the oscillation of hes1 mRNA and Hes1 protein in
cultured cells observed by Hirata et al. Letting m (t) and p
(t) denote the concentration of hes1 mRNA and Hes1 pro-
tein at time t, respectively, the model proposed by Monk
for the Hes1 feedback loop takes the form
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where μm and μp are the rates of degradation of mRNA and
protein, respectively, p0 is the normalised repression
threshold, n is a hill coefficient and τ is a constant delay
caused by transcription and translation. In this system, the
Hes1 gene transcribes hes1 mRNA which passes from the
nucleus to the cytoplasm. There it is translated into Hes1
protein. An unusual feature is that the Hes1 protein binds
to the gene promoter and represses the transcription of
hes1 mRNA. Following Monk, the equations have been
rewritten so that the delay appears in the equation
describing the regulation of transcription and not in the
equation describing protein translation or synthesis.
Throughout the rest of this paper, we will refer to τ as a
transcriptional delay. The equations have also been res-
caled so that the dynamics of the model are determined by
five parameters. Using an ad hoc parameter fitting proce-
dure, Monk showed that this model reproduced the broad
features of the oscillation of hes1 mRNA and Hes1 protein
in cultured cells observed by Hirata et al. [13].

Thus Monk [12] argues that the observed oscillatory
behaviour is best accounted for by the introduction of a
delay parameter that acts as a proxy for the many sub-
processes that make up transcription and translation,
rather than by introducing an unknown third agent [13].

By performing mathematical analysis of the model (1)–
(2), we will show that the convincing but ad hoc parame-
ter fitting exercise in [12] can be extended to a fully Baye-
sian setting.

Mathematical Analysis
Verdugo and Rand [10] gave some mathematical analysis
of Monk's model [12] for the Hes1 feedback loop. In par-
ticular, they derived closed form approximations for the
amplitude and frequency of oscillation, where oscillatory
behaviour is assumed to arise through Hopf bifurcation in
the delay parameter. The analysis in [10] applies to the
case where the decay rates of hes1 mRNA and Hes1 pro-
tein, key components of the feedback, are equal, that is,
μm = μp in (1)–(2). In this work, we study the more realistic
case where the decay rates are allowed to be different, also
focussing on oscillatory behaviour. By allowing these deg-
radation rates to differ, we expose some interesting fea-
tures of the nonlinear system under consideration;
namely that oscillations of this type only occur when the
difference between degradation rates is small. The novelty
of this work lies in using bifurcation tools to aid what
turns out to be a very difficult inference problem. Details
of the mathematical analysis can be found in the methods
section. Our results are of interest in their own right as a
means to understand how the system dynamics are driven
by the model parameters, but our main aim here is to
inform the corresponding Bayesian inference problem.

Experiments
In order to illustrate the use of mathematically informed
priors when inferring model parameters we conducted
two experiments. Experiment 1 uses synthetic data, com-
puter generated from the mathematical equations describ-
ing the Monk model with known parameters. Experiment
2 looks at the published data of Hirata et al. Data is noisy
and we have noted the error bars in the Hirata data when
making assumptions about this type of extrinsic noise.
Bayesian methods are very useful when dealing with this
type of experimental noise because we can include noise
as a hyper parameter, treat it as a nuisance parameter and
integrate it out. Intrinsic noise will also come into play at
the molecular level [15] and there is recent work on the
subject of inferring parameters in stochastic models [16].
However, we do not believe that there is enough data to
make it feasible to fit a stochastic model that would take
into account intrinsic noise. We therefore use the ODE-
based model in line with other authors [12] and [15].
Consequently, we are dealing with extrinsic and experi-
mental noise. To make the synthetic data in Experiment 1
more realistic, Gaussian noise is added, based on the
absolute size of the error bars of Hirata with a mean of
zero and a standard deviation of 0.2. In our example, we
have used larger initial conditions so the relative noise is
lower. However, investigations with a higher level of noise
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Experiment 2: Hirata data comprises 25 mRNA values taken every 30 minutes over a 12 hour periodFigure 1
Experiment 2: Hirata data comprises 25 mRNA val-
ues taken every 30 minutes over a 12 hour period. Ini-
tial conditions are assumed to hold for 0 <t <τ.
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to match the relative values from Hirata give broadly sim-
ilar conclusions. The justification for adding Gaussian
noise to make the data more realistic lies with the Central
Limit Theorem, which shows that under appropriate condi-
tions the overall effect of extrinsic noise sources will be
normal [4]. An advantage of using synthetic data is that
the parameters to be inferred are known and so the accu-
racy of the method to infer them can be evaluated. For
Experiment 2, two of the parameters values, μm and μp,
have been measured independently. So mathematically
informed priors are complemented with biological priors
where available.

In Experiment 2 (Hirata Data) there is data for both species
m and p and so in Experiment 1 (Synthetic Data) we generate
data for both species m and p as well. We will show that some
aspects of the data for p inform the mathematical analysis,
however the actual inference of parameters for both m and p
is based on the data for m only. This is because protein
expression levels are harder to measure accurately in practice
so it is useful to establish what can be inferred from the more
accurately measured species alone. With the Hirata data,
there is also the added complication that the protein levels
measured have been scaled in an undisclosed manner [15].

The location in time of the sampling points is clearly an
important issue. For species that oscillate, it may be diffi-
cult to know in advance which time points will provide
most information. In this work the real data is already
available and hence our initial test was chosen to match
those details. Generally, for oscillatory behaviour, we
would expect that the key constraint on the sample times
is that the sampling frequency should be sufficiently large.

Methodology
We have some data and a proposed model. We use a Baye-
sian framework to infer the parameters underlying the
model. In a Bayesian framework, the posterior pdfs are
given by the prior pdfs modified by the likelihood of the
data given those parameters. More precisely the posterior
pdfs are proportional to the product of the likelihood and
the priors. The posterior pdf for a particular parameter
depends on the values of all the other parameters and are
shown for individual parameters by integrating over the
other parameter values. Hence the posterior pdfs that we
show are marginal distributions for each parameter and
not distributions for fixed values of the remaining param-
eters. The resulting equations for the posterior pdfs are
intractable so we use MCMC methods to sample from the
posterior distributions. This section spells out further
details of this methodology which differs slightly for
Experiment 1 and Experiment 2.

Bayesian Inference
Bayesian methods have several advantages over other
approaches to parameter estimation [17]: use of back-

ground information, the ability to include uncertainity in
all parameter values and the ease of making inferences
about some parameters irrespective of the values of oth-
ers. The development of high-speed computing means
that the potential of Bayesian methods is being realised,
but there are still many computational difficulties. In this
section, we summarise the key features of Bayesian infer-
ence and highlight the technical decisions which have to
be made. For more information about Bayesian analysis
we refer readers to [6] and reviews such as [17].

Our initial state of knowledge (or ignorance) about the
model parameters is encapsulated in the prior probability.
The priors are then modified by the experimental meas-
urements through the likelihood function to give us the pos-
terior probability, which represents our new state of
knowledge about the value of the parameters. A likeli-
hood function needs to be chosen and after using a nor-
mal distribution for Experiment 1, we chose to base the
likelihood function for Experiment 2 on the chi-squared
distribution. The chi-squared distribution, χ2, has longer
tails than the normal distribution and so encourages the
inclusion of outliers in the data, which is important for
the estimation of model parameters which influence in
particular the amplitude of the oscillations. This proved to
be an important consideration in Experiment 2, possibly
because of experimental noise levels.

For Experiment 1, we therefore suppose that the probabil-
ity of the kth datum having a value xk is given by N (fk, σ)
where fk = f(θ, tk) is the true value of the function of
parameters θ = {p0, n, μm, μp, τ} of interest, and the vari-
ance, σ, accounts for the error in its measurement. In our
case, fk is the mRNA level m (p0, n, μm, μp, τ) at time tk from
the delay differential equation model (1)–(2).

For Experiment 2, we suppose that the probability of the
kth datum having a value xk is given by χ2 (fk, v) where the
degree of freedom v, accounts for the error in its measure-
ment. Given that the Hirata data has been scaled, it will
also be necessary to infer an additional scaling parameter,
which we refer to as ks, so θ = {p0, n, μm, μp, τ, ks}.

For both experiments, we assume that the value of σ and
v is known. Our inference about the value of θ is
expressed, therefore, by the posterior pdf p (θ | {xk}, I)
where I denotes all other background information; to
help us calculate it, we use Bayes' Theorem [6]

p (θ | {xk}, v, I) ∝ p ({xk} | θ, v, I) × p (θ, v, I). (3)

The relation in (3) is expressed using proportionality,
because the term p (data|I) has been omitted from the
denominator in the right hand side. This is fine for data
analysis problems, such as this one, involving parameter
estimation, since the missing denominator is simply a nor-
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malisation constant not depending explicitly on the
parameters. However if we were to consider model selec-
tion, this term would play a crucial role, and is thus given
the special name of evidence.

As in [4], we assume that the data are independent, so that
the measurement of one datum does not influence what
we can infer about the outcome of another (when given
the values of θ). The likelihood function is then given by the
product of the probabilities of obtaining the N individual
data:

We assign a Gaussian pdf as prior for each parameter θj,
with mean μj and variance σj, where j = 1:5 in Experiment
1 and j = 1:6 in Experiment 2:

According to (3), if we multiply the prior stated in (5) by
the likelihood function (4), we obtain the posterior pdf.
Our approach here will be to deal with the posterior pdf
numerically, using MCMC.

MCMC Method

MCMC techniques are used to sample from distributions
and more generally to solve optimisation and integration
problems in large dimensional spaces (Andrieu et al. [8]).
Here, we use MCMC to sample from the posterior pdf
defined in (3). The approach is, essentially, to compute
candidate values for our unknown parameters by con-
structing a Markov chain with an appropriate invariant
measure. The candidate values are chosen randomly using
a proposal function and are either accepted or rejected

depending on an acceptance probability. The frequency at
which a particular parameter is successfully sampled is
indicative of its posterior probability. Once we have enough
samples from the solution space, they can be binned,
smoothed and normalised to indicate the relative poste-
rior likelihood of a given parameter. Sampling can start
from any particular parameter value. The proposal function
is chosen so that samples are drawn widely and perform-
ance can be monitored by the acceptance rate. With
Markov chains, after a burn in period, the memory of the
initial starting point is lost. At this point sampling will be
exclusively from the required distribution. We need to
establish at which point this has occurred. Gelman et al.
[18] propose setting off parallel sampling chains and

monitoring their convergence with a statistic . We have
followed this convention. More details can be found in
the Methods section and Tables 1 (Experiment 1) and 2
(Experiment 2).

Results and discussion
Mathematical Analysis
We summarise the main analytical results here. Further
details about the derivations of the formulae can be found
in the Methods section.

Following [10] we can derive an expression for the equi-
librium state of m and p (m* and p*, respectively, see
equations (21)–(20)) of model (1)–(2) and show that by
increasing the delay the system moves from a stable state
to an unstable state. At a critical value τcr of the time delay
a Hopf Bifurcation occurs. For values of delay τ close to τcr,
the nonlinear system is expected to exhibit a periodic
solution which can be expressed for both the mRNA and
protein in terms of their amplitudes, A and B, respectively,
their oscillatory frequency ω (at τcr) and their phase differ-
ence ϕ. Algebraic manipulation of these expressions
results in explicit formulae linking the model's biological
parameters which generalise those in [10]. Specifically, at
the Hopf bifurcation we have
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Table 1: Experiment 1 (Synthetic Data).

θ sp1 sp2 sp3 σ acc rate

P0 85 95 91 0.5 26 1.0009
n 4 5 5.3 0.7 34 1.0001
μm 0.024 0.028 0.022 0.1 43 1.0004
μp 0.036 0.034 0.033 0.1 33 1.0000
τ 19 19.2 18.7 0.01 20 1.0000

This table shows inputs and convergence information for 3 illustrative 
MCMC chains. For each parameter, θ we show the starting point (sp) 
of the Markov chains (columns 2–4), variance σ of the Gaussian 
proposal function (column 5), the acceptance rate (column 6) and 

statistic  (column 7).

R̂

R̂
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where

and

The result (7) characterises the ratio between mRNA and
protein amplitudes, but not their absolute values. To pro-
ceed we use Lindstedt's method which is a technique for
uniformly approximating periodic solutions to ODEs
when regular perturbation approaches fail. We regard the
frequency as unknown in advance and solve by demand-
ing that an appropriate series expansion contains no secu-
lar terms. The result is closed form approximate
expressions for the amplitude and frequency of oscillation
expressed in terms of the model parameters. For the deri-
vation of these formulae and more details, see the Meth-
ods section. In summary, our approximation to A2 and the
observed frequency – may be written in the form

A2 = fA (n, p0, μm, μp) Δ, (14)

Ω = ω - fΩ(n, p0, μm, μp) Δ, (15)

and substituting (14) into (7) gives an approximation for
B2

where fA and fΩ are positive functions defined in terms of

the model parameters and Δ = τ - τcr. As Δ increases we

would expect A and B to increase proportionally to 

and Ω to decrease.

The frequency of oscillation, ω, takes a maximum that can
be explicitly defined in terms of the model parameters. We

may show that for any μmμp = c, a unique maximum value

of ω occurs when μm = μp = . We may then find the

value of c and hence μm and μp for which the maximum of

ω occurs. We can use this information combined with

equation (15) to deduce that ω > Ω. This result allows us

to make an informed judgement about ω given Ω, which
can be used in the setting of priors.

Biology meaningful solutions must also have ω > 0 and τcr
> 0. Imposing these conditions in equation (9) gives

ω2 > μmμp, (17)

ωμm + ωμp <K, (18)

from which we deduce that

This is a key result because we have defined a computable,
finite region of the μm - μp plane in which oscillations can
occur and in which we can search for oscillatory solutions;
see Figure 2.

The data can tell us something about the parameters
directly. Given sufficient data points from complete peri-
odic cycles, the model parameter μp can be approximated
by the ratio of the average of m to the average of p. Further
details can be found in the Methods section; see equation
(70).

We now show how our results can be used to inform the
choice of priors in our two inference experiments.

t
w

wm wm

w m m
cr

p m

m p
=

+

−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1
2

arctan , (9)

sin ,wt
wm wm

cr
p m

K
=

+
(10)

cos ,wt
w m m

cr
m p

K
=

−2
(11)

K
n

p
= ∗ +

b

b( )
,

1 2 (12)

b =
∗⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

p
p

n

0
. (13)

B f n pp A m p
2 2 2

0= +( ) ( , , , ) ,w m m m Δ (16)

Δ

c

m mm p

p
n

n n
n

<

−
⎛
⎝⎜

⎞
⎠⎟ −

⎛
⎝⎜

⎞
⎠⎟

1

0
2

2

1

2

/
.

(19)

Table 2: Experiment 2 (Hirata Data).

θ sp1 sp2 sp3 σ acc rate

P0 99 103 103 0.55 29 1.0000
n 5 4.8 5.3 0.7 34 1.0003
μm 0.028 0.03 0.03 0.3 28 1.0001
μp 0.028 0.03 0.031 0.5 31 1.0002
τ 18 19 18.5 0.5 27 1.0001
ks 2.5 2.2 2 0.2 27 1.0000

This table shows inputs and convergence information for 3 illustrative 
MCMC chains. For each parameter, θ we show the starting point (sp) 
of the Markov chains (columns 2–4), variance σ of the Gaussian 
proposal function (column 5), the acceptance rate (column 6) and 

statistic  (column 7).

R̂

R̂
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Experiment 1 (synthetic data)
The synthetic data in Figure 3 comprises 49 mRNA values.
Details of the parameter values used with the Monk equa-
tions and the added noise can be found in the caption of
Figure 3. The corresponding 49 protein values were also
generated and feature in Figure 4 where they are consid-
ered for the μp prior. The protein values, as for Experiment
2, are not used in the inference problem. The following
section describes how the mathematical analysis is used to
find priors for the model parameters.

We can estimate μp as  from equation (70). In com-

puting mave and pave, care needs to be taken to discard the

transient data and to select data points from a complete
number of cycles. In our example, as the oscillatory period
appears to be about 2 hours, we take the last 20 data
points which form approximately 5 cycles, see Figure 4.

This gives an estimate for μp of 0.0344. We estimate the

ratio of the amplitudes  using B ≈ mmax - mmin and A ≈

pmax - pmin, see Figure 4. Substituting μp ≈ 0.0344 and  ≈

0.0656 into (7) gives an estimate for ω of 0.0559. We now

use the fact that A, B and ω are functions of the unknowns

p0, n and μm in order to solve numerically (7), (8), (14)

mave
pave

B
A

B
A

Constrained region of the μm-μp plane where the inequality (19) predicts that oscillations may occur for arbitary τFigure 2
Constrained region of the μm-μp plane where the ine-
quality (19) predicts that oscillations may occur for 
arbitary τ. (In this picture n = 5 and p0 = 90).
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Experiment 1: Synthetic data for the inference experiment comprising 49 mRNA values and 49 protein values (not shown here as they are not used directly in the inference problem)Figure 3
Experiment 1: Synthetic data for the inference 
experiment comprising 49 mRNA values and 49 pro-
tein values (not shown here as they are not used 
directly in the inference problem). Data comes from the 
model with the following parameter values: p0 = 90, n = 5, μm 
= 0.025, μp = 0.035 and τ = 19.5. Initial conditions are 3 for 
the mRNA and 100 for the protein. Independent Gaussian 
noise (mean = 0 and standard deviation = 0.2) is then added 
to make the data more realistic.
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Experiment 1: We use the observed data to estimate 

. We use the data points rep-

resenting mmax = 7.136, mmin = 3.092, pmax = 171.9 and pmin = 

110.3 to calculate .
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Y = 171.1
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= = =4 9783
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. .

mp
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= = =4 9783
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and (15). This gives p0 ≈ 90, n ≈ 5 and μp ≈ 0.026. We also

require a prior for τ. Lindstedt's method tells us that the

closeness in value of τ and τcr depends on the difference

between ω and the observed frequency Ω. Our observed
period is about 2 hours giving an observed frequency of
0.052. Substituting our estimates into (9) and (15) we

obtain τcr ≈ 17.6567 and τ ≈ 19.9508. See Table 3 for a

summary of our priors for the synthetic experiment. The

variances for the priors are based, in the case of μm and μp,

on the decay rate measurements taken by Hirata et al., and
in the case of the other variables on biological assump-
tions combined with the mathematical analysis.

Results
Figure 5 shows the prior pdfs and the corresponding pos-
terior pdfs for each of the parameters inferred in Experi-
ment 1. The parameter values used in the model to
simulate the data are shown on each x-axis with a dot. The
peak of each curve indicates which parameter values are
most probable, and a sharper peak indicates more cer-
tainty. For all parameters in Experiment 1 the peak lies
over the input value to within visual accuracy. We are also
interested in the extent to which the posterior pdfs, which
express the probability of each parameter given the data,
modify our prior beliefs. Here we used Gaussian priors
with mean based on the point estimates outlined above
and small variance. The posterior pdfs for p0, n, μm and μp
provide only slight modifications of the prior pdfs sug-
gesting that the a priori mathematical analysis has allowed
us to select these priors very effectively. The fact that these
mathematically informed priors, which are based on
broad features of the data, are reasonably close to the pos-
terior pdfs suggests that the bifurcation analysis is relevant
and consistent with the data. The parameter τ shows the
most change from prior to posterior. We can show from
(16) that the amplitude of mRNA is sensitive to τ, and this
experiment (and Experiment 2 below) suggests that the
likelihood function is also strongly affected by τ. In Figure
6 we rerun the same experiment using uniform priors over
the point estimates. We see more modification of the pos-
terior pdfs, relative to the prior pdfs but, as shown by the

flatness of the pdf curves, there is increased uncertainity in
the prediction of parameter values. We ran several more
experiments with different priors (not shown here) and
conclude that when we apply more general priors we run
into trouble with this hard inference problem and get
stuck in suboptimal posteriors. This highlights the impor-
tance of exploiting whatever information can be gleamed
from the structure of the model.

MCMC provides samples and in order to recover the pos-
terior pdfs these samples are binned, smoothed and nor-

Table 3: Experiment 1 (Synthetic Data). 

θ mean std dev

P0 90 10
n 5 1
μm 0.025 0.001
μp 0.035 0.001
τ 18.5 1

This table details the Gaussian priors used for inferring from the 
synthetic data.

Experiment 1: Prior pdfs, posterior pdfs and parameter value used in modelFigure 5
Experiment 1: Prior pdfs, posterior pdfs and parame-
ter value used in model.
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Experiment 1: Binned posterior samples compared to mean ie uniform priorFigure 6
Experiment 1: Binned posterior samples compared 
to mean ie uniform prior.
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malised. We can also simulate the dynamic activity
associated with each of these samples using the associated
parameter values. The variance of this dynamic activity at
each time point indicates the likely range of activity that
could have produced the data. The shaded area in Figure
3 shows this range (5–95 percentile) for Experiment 1.
The fit of this area in terms of position and width shows
how well we have recovered the model parameters from
the data.

Experiment 2 (biological data)

Hirata et al. measured the half lives of hes1 mRNA and
Hes1 protein and estimated that hes1 mRNA is degraded
with a half life of 24.1 ± 1.7 minutes and that Hes1 pro-
tein is degraded with a half life of 22.3 ± 3.1 minutes.
These half lifes are close but not identical. Expressed as
decay rates, the rate for hes1 mRNA is 0.0288 ± 0.002 and
the rate for Hes1 protein is 0.0311 ± 0.004. We used these
rates to give biologically informed priors for the parame-

ters μm and μp. Using Lindstedt's method we obtained an

expression for the observed oscillatory frequency Ω from

equation (15). As k2Δ < 0 we have ω > Ω. In other words,

we have a lower bound for ω. Hirata et al. observed an
oscillatory period of around 2 hours which corresponds to

an oscillatory frequency (in mins) of . Using this

observation, we can argue that ω > 0.0524. Substituting ω
= 0.0524, μm = 0.0288 and μp = 0.0311 into equation (8)

gives K > 0.036. The value of K in equation (12) can be
shown, via numerical computation, to be sensitive to the
value of n, whereas the values of m* and p* are more sen-

sitive to p0 than n. Given m* (or p* as m* = μpp* from

equation (21)) and the estimate for K, we can obtain

point estimates from equations (21) and (12) of n ≈ 5 and

p0 ≈ 100. We also require a prior for τ. Substituting our

estimates for ω, μm and μp into equation (9) gives τcr < 19.8

and we use this estimate of τcr, which is close to τ, for

choosing our prior for τ. We also need a scaling factor ks

because the data has been scaled by a undisclosed con-
stant, and this will also affect the initial condition. We set
ks between 2 and 3, the initial condition of p to be 100 and

m to be ks. See Table 4 for a summary of the priors.

Results
Figure 7 shows the prior pdfs and the corresponding pos-
terior pdfs for each of the parameters inferred in Experi-
ment 2. Once again, the customised priors are very close
to the final pdfs. In this experiment, we chose a χ2 distri-
bution rather than a normal distribution for the likeli-
hood, in order to encourage inclusion of any outlying
data points.

The shaded area in Figure 1 shows the fit of the parameter
estimates within the 5–95 percentile for Experiment 2.
The early data points are covered by the prediction. Com-
pared to Monk's results, there is broad agreement, how-
ever we predict a slightly longer delay (around 18.9
compared to Monk's 18.5) and slightly different values for
μm and μp (around 0.0285 and 0.0305, respectively com-
pared to Monk's 0.03 for both). We also inferred a differ-
ent scaling factor which contributed significantly to the
improved match to the Hirata et al. data that can be seen
in Figure 1.

Conclusion
We have shown that mathematical analysis can give
insights into the possible dynamical behaviour of gene
expression models. We derived a range of analytical
expressions and constraints that link the model parame-
ters to the observed dynamics of the system. The basis of
the analysis is the assumption that oscillatory behaviour
arises through Hopf bifurcation in the delay parameter. It

2
120
p

Table 4: Experiment 2 (Hirata Data). 

θ mean std dev

P0 100 10
n 5 1
μm 0.0288 0.002
μp 0.0311 0.004
τ 19 1
ks 2.2 0.1

This table details the Gaussian priors used for inferring the Hirata 
data. The priors for μm and μp are based on biological measurements.

Experiment 2: Prior and posterior pdfsFigure 7
Experiment 2: Prior and posterior pdfs.
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is then possible to say for which range of parameters and
to what extent this behaviour will occur. For the problem
of inferring parameter values from data, we can use this
analysis to inform the choice of priors. For these types of
problems, where different parameter values can result in
similar activity, identification of the parameters through
the data can be ambiguous. MCMC methods can go some
way towards resolving these difficulties but we showed
here that mathematically informed priors can add value
too. On the experimental data from Hirata et al., a full
Bayesian MCMC computation improved on the parame-
ter fit published by Monk, predicting non-equal values for
mRNA and protein decay rates and a longer time delay for
transcription.

Methods
We describe here in more detail the mathematical and
computational aspects of this work. We generalise the
approach of Verdugo and Rand to the more biologically
realistic case where the degradation rates of mRNA and
protein are not assumed to be equal. The analysis reveals
that we would expect to see oscillations when the differ-
ence between μm and μp is small which justifies, generally,
the assumption that the degradation rates are almost
equal.

Stability of Equilibrium

Following the approach of Verdugo and Rand [10], equi-
librium points for the system (1) and (2) are found by set-

ting  = 0 and  = 0. After elimination and substitution,

we obtain two expressions for p* and m*:

To find out whether m* and p* are stable, we linearize
about these points and define ζ and η to be deviations
from the equilibrium: ζ (t) = m (t) - m*, η (t) = p (t) - p*,
and ηd = η (t - τ). This results in the linear system:

where K and β are given in (12) and (13). Equations (22)
and (23) can be written as the second order DDE:

We now look for a solution of the form η = eλt, which
leads to

λ2 + (μm + μp) λ + μmμp + Ke-λτ = 0. (25)

First, we focus on the non-delay case, τ = 0. Here we have

Examination of equation (26) reveals that since μm + μp >

0 and , the real part of λ

will always be negative, implying stability. For

4 (μmμp + K) > (μm + μp)2 (27)

λ has a non-zero imaginary part as well as a negative real
part and the equilibrium point (m*, p*) will be a stable
spiral. When μm = μp, the inequality (27) becomes K > 0
which always holds. However when μm ≠ μp this inequality
becomes 4K > (μm - μp)2. In other words, we only have a
stable spiral when |μm - μp| is sufficiently small. For larger
values of |μm - μp| we will have two negative real roots for
λ, resulting in a fixed stable point with no oscillations. We
conclude that, overall, the non-delay model always has a
linearly stable fixed point.

Following the approach in [10], we now assume, by con-
tinuity, that as τ increases the roots λ will cross the imagi-
nary axis (this will not be at the origin because μm > 0 and
μp > 0 and therefore the real and imaginary parts of λ can-
not both be zero) at some critical value τ = τcr, and for τ >
τcr the steady state (m*, p*) will lose stability giving rise to
a Hopf bifurcation. We thus assume that for τ = τcr the sys-
tem (22)–(23) will exhibit a pair of pure imaginary eigen-
values ± ω i corresponding to the solution

ζ(t) = B cos (ωt + ϕ), (28)

η(t) = A cos ωt, (29)

where A and B are the amplitudes of the η (t) and ζ (t)
oscillations, and where ϕ is a phase angle. More generally,
for values of delay τ close to τcr, the nonlinear system is
expected to relax to a periodic solution which can be writ-
ten in the approximate form of equations (28) and (29).

Substituting equations (28) and (29) into equations (22)
and (23) and matching time dependent terms results in
the explicit formulae (6)–(11), which generalise those in
[10].

m p

( ) ,p p p
pn

m p

n n∗ + ∗+ − =1
0

0 0
m m (20)

m pp
∗ ∗= m . (21)

z m z h= − −m dK , (22)

h z m h= − p , (23)

h m m h m m h h+ + + + =( ) .m p m p dK 0 (24)

l
m m m m m m

=
− + ± + − +( ) ( ) ( )

.
m p m p m p K2 4

2
(26)

( ) ( )m m m m m mm p m p K m p+ − + < +2 4
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Lindstedt's method
Changing the first order system (22)–(23) into a second
order DDE results in

where the coefficients K, H2 and H3 are obtained by Taylor
series expansion of the nonlinear term.

Assuming that the true solution is periodic, our goal is to
find an analytical approximation that is valid for all t. The
key idea is to regard the frequency ω as unknown in
advance, and to solve for it by demanding that η contains
no secular terms. We introduce a small parameter , and let
Δ =ε2δ  with

η =εu, (31)

τ = τcr + Δ = τcr +ε2δ. (32)

We then stretch time by replacing the independent varia-
ble t by σ, where

σ = Ωt. (33)

We then have

where ud = u (σ - Ωτ). Expanding Ω in a power series in ,
omitting the O () term for convenience, since it turns out
to be zero, we have

Ω = ω +ε2k2 + ... (35)

Next we expand the delay term ud

ud = u (σ - ωτcr) -ε2 (k2 τcr + ωδ) u' (σ - ωτcr) + O(ε3)
(36)

Finally we expand u (t) in a power series in  to obtain

u (σ) = u0 (σ) +εu1 (σ) + ε2u2 (σ) + ... (37)

Substituting and collecting terms we find

We take the solution of the u0 and u1 equations to have the
form

u1(σ) = m1 sin 2σ + m2 sin 2σ + m3, (42)

where A =  from (29) and (31). Next we substitute (41)
and (42) into (40) to give

Collecting sin 2σ terms gives

Collecting cos 2σ terms gives

Collecting other terms gives

Letting

α = -4ω2 + K cos2ωτcr + μmμp, (43)

β = -2ω(μm + μp) + K sin 2ωτcr, (44)
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we find that

Now we substitute (41) and (42) into (38) and equate to
zero the coefficients of the resonant terms sin σ and cos σ.
This gives

and

Let

c1 = -μm - μp + Kτcr cosωτcr, (51)

c2 = -2ω - Kτcr sin ωτcr, (52)

Then we have

Multiplying (56) by 2 and substituting back into (35) gives

Ω = ω + k2Δ, (57)

which has the form of equation (15) (noting that k2 is neg-
ative).

Maximum ω

We have seen that K takes the same value for any μmμp = c

where c is a constant. We are interested in investigating ω
along μmμp = c. We will show that ω has a unique maxi-

mum along this line and the maximum value of ω occurs

when μm = μp = . Rearranging equation (8) gives

Substituting μmμp = c and K = cK into the above equation
gives:

Differentiating w.r.t. μp gives:

So  = 0 when

giving

ˆ ˆ sin ,H H A cr1 2
21

2
2= wt (45)

ˆ ˆ cos ,H H A cr2 2
21

2
2= wt (46)

ˆ ˆ ,H H A3 2
21

2
= (47)

m
H H

1
1 2
2 2

= −

+

a b

a b

ˆ ˆ
, (48)

m
H H

2
1 2
2 2

= +

−

a b

a b

ˆ ˆ
, (49)

m
H

K m p
3

3=
+

ˆ
.

m m
(50)

k K

K H A

H A m

m p cr cr

cr cr

2

3
2

2
2 2

1

3
4

( cos )

cos sin

(

− − +
+ = +

m m t wt
wd wt wt

ccos sin sin )wt wt wtcr cr crm m+ +2 32

k K

K H A

H A m

cr cr

cr cr

2

3
2

2
2 2

1

2
3
4

( sin )

sin cos

( si

− −
− = +

−

w t wt
wd wt wt

nn cos cos ).wt wt wtcr cr crm m+ +2 32

d H H m m mcr cr cr cr1 3 2
2

1 2 3
3
4

2= + + +sin ( cos sin sin ),wt wt wt wt

(53)

d H H m m mcr cr cr cr2 3 2
2

1 2 3
3
4

2= + − + +cos ( sin cos cos ).wt wt wt wt

(54)

A
c cr c cr

d c c d
K2 2 1

1 2 1 2
= +

−
( cos sin )

,
wt wt wΔ (55)

k
d cr d cr

c d c d
K2

2 1
1 2 2 1

= − +
−

cos sin
,

wt wt wd (56)

c

w m m w m m4 2 2 2 2 2 2 0+ + + − =( ) .m p m p K (58)

w w
m

m w4 2 2 2 2 2

2
0+ +

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

+ − =c

p
c cp K . (59)

4 2
2

2
2 2

3
23 2 2w w

m
w w

m m
m w

m
md

d p

d
d p

c

p

c

p
p p+ +

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

+ − +
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟⎟

= 0,

(60)

d
d p
w
m

w
m

m

m
m

2 2 2

3
2 0

2 2

3
2 0

− +
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

=

− + =

c

p

c

p

p

p

(61)

m = c . (62)
Page 12 of 14
(page number not for citation purposes)



BMC Systems Biology 2009, 3:12 http://www.biomedcentral.com/1752-0509/3/12
As μmμp = c, we have μm = μp = . The maximum value of

ω therefore occurs when μm = μp and has the form

Writing K - μ2 in terms of β gives

Differentiating with respect to β gives

Setting this expression to zero and dividing by β1/n (1 + β)/
p0 gives

which simplifies to

(n2 - 1) β2 - (n2 + 2) β - 1 = 0. (67)

Can the data tell us anything about the parameters 
directly?
Integrating equation (2) gives

From the Fundamental Theorem of Calculus, it follows
that

If p is periodic and T is a multiple of the period then the
left-hand side of this equation vanishes and the right-
hand side may be written mave - μppave. This gives us the
result

This allows us, from appropriate data sets, to infer the
parameter μp by averaging data from m and p. This, of
course, presupposes that the period T can be estimated
accurately and that there is enough data to form good
approximations to the averages.

We remark that μm cannot be approximated this way
because of the nonlinearity in (1).

MCMC (Metropolis Hastings) Method

Our approach was to choose candidate values for our

unknown parameters, , (j = 1 ... 5 in Experiment 1 and

j = 1 ... 6 in Experiment 2) in logspace, based on the cur-

rent value of , using a Gaussian proposal distribution,

 given by

σj values for the proposal rates are chosen in order that the
acceptance rates are between 20% and 35%.

The candidate values are accepted or rejected with an

acceptance probability, (θ(i), θ *), given by

where

and

A pseudo-code outline for the MCMC Metropolis Hast-
ings algorithm is as follows:

step 1 Initialise 

step 2 For i = 0 to N:

Sample r ~ (0, 1)
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