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Abstract

Background: Biological networks are highly dynamic in response to environmental and physiological cues. This
variability is in contrast to conventional analyses of biological networks, which have overwhelmingly employed
static graph models which stay constant over time to describe biological systems and their underlying molecular
interactions.

Methods: To overcome these limitations, we propose here a new statistical modelling framework, the ARTIVA
formalism (Auto Regressive TIme VArying models), and an associated inferential procedure that allows us to learn
temporally varying gene-regulation networks from biological time-course expression data. ARTIVA simultaneously
infers the topology of a regulatory network and how it changes over time. It allows us to recover the chronology
of regulatory associations for individual genes involved in a specific biological process (development, stress
response, etc.).

Results: We demonstrate that the ARTIVA approach generates detailed insights into the function and dynamics of
complex biological systems and exploits efficiently time-course data in systems biology. In particular, two biological
scenarios are analyzed: the developmental stages of Drosophila melanogaster and the response of Saccharomyces
cerevisiae to benomyl poisoning.

Conclusions: ARTIVA does recover essential temporal dependencies in biological systems from transcriptional data,
and provide a natural starting point to learn and investigate their dynamics in greater detail.

Background
Molecular interactions and regulatory networks underlie
the development and functioning of biological systems
[1-3]. These networks reliably and robustly coordinate
the molecular and biochemical processes inside a cell,
while remaining flexible in order to respond to physiolo-
gical and environmental changes. The changing nature
of regulatory and signalling interactions is beyond
doubt, and a dynamical point of view is already deeply
enshrined into cell and molecular biology. Illustrations
of such time-varying biological systems can be provided
for instance by the development of the fruitfly Droso-
phila melanogaster - which is segmented into different
life stages: embryogenesis, larva, pupa and adult, or the

adaptation of cellular organisms (the yeast Saccharo-
myces cerevisiae for instance) to growth defects and cel-
lular damages induced by environmental stresses.
Because they are extensively studied, considerable large-
scale functional screening data exist for these examples.
But while a growing number of studies report detailed
and time-resolved analyses of regulatory and signalling
processes [4,5], mapping these temporally changing net-
works systematically remains a major and increasingly
pressing challenge.
From available data, in-silico methods can generate

hypotheses about biochemical and molecular mechan-
isms [6,7] and guide further experimental and theoreti-
cal investigations into regulatory interactions underlying
biological systems. Biological networks are usually
described mathematically in a way where each gene is
represented by a node and the interactions (or regula-
tory associations) between genes as edges. A range of
approaches has been proposed, which learn or infer cor-
relative and causal relationships among the genes from
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high-throughput, in particular gene expression, data.
However most of these approaches assume that the
topology of the network, i.e. the sets of nodes and
edges, stays constant over time. Inferring the temporal
changes in biological networks is an important statistical
challenge [8], but it does open up new perspectives for
biological data analyses and will aid the generation of
hypotheses about the dynamics of biological systems.
Serious attempts to reconstruct dynamic networks

whose topology changes with time started in 2005 [9,10].
Yoshida et al. [9] employed a dynamic linear model with
Markov switching for estimating time-dependent gene
network structures from time-series gene expression
data. Although promising this approach assumes that
there is a fixed (user-specified) number of distinct net-
works or phases, and the switching between phases is
modelled via a stochastic transition matrix that requires
an estimation of many parameters. Talih and Hengarten
[10] developed a Markov Chain Monte Carlo (MCMC)
methodology to recover time-varying Gaussian graphical
models in a financial context. Again the total number of
distinct network topologies is assumed to be known
a priori and the network evolution is restricted to chan-
ging at most a single edge at a time. More recently
(2007-2008) methods in which the number of distinct
regulatory phases is determined a posteriori have been
proposed. Fujita et al. [11] developped a Dynamic Vector
Autoregressive model to estimate time-varying gene reg-
ulatory networks. Notably, only the values of the network
parameters change over time, meaning that the global
topology of the network remains constant. Xuan and
Murphy [12] introduced an iterative procedure based on
a similar modelling ansatz, which switches between a
convex optimization approach for determining a suitable
candidate graph structure and a dynamic programming
algorithm for calculating the segmentation of the time
into distinct phases, i.e. the sets of successive time-points
for which the graph structure remains unchanged. This
time, the number of phases is explicitly determined, but
it requires that the graph structure is decomposable.
Finally, Robinson and Hartemink [13] used a MCMC
sampler for the inference of non-stationary dynamical
Bayesian networks, with the attractive feature that the
network structure within a temporal phase depends on
the structure of the contiguous phases.
The approaches cited so far produce global network

topologies with global changes, meaning that all the
genes of the network change their regulatory inputs
simultaneously. In reality however, we would rather
expect that each gene (or at most a subset of genes) has
its own and characteristic regulatory pattern. To that
end, Rao et al. [14] developed a method called regime-
SSM, which is divided into two steps. The main idea is
to first cluster the genes that share the same temporal

phases before inferring, in a second step, the network
topology describing the regulatory associations between
genes within each cluster using an expectation-maximi-
zation (EM) algorithm. Ahmed and Xing [15] introduced
in 2009 a machine learning algorithm (called TESLA) to
infer time evolving networks (that are gene-specific), by
solving a set of temporally smoothed l1-regularized
logistic regression problems via convex optimization
techniques.
The challenge of inferring time-varying structures of

gene regulation networks is only starting to be adressed
and in this paper we present the ARTIVA algorithm
(Auto Regressive TIme VArying models) that is particu-
larly well-suited for addressing the issues raised above.
Starting from time-course gene expression data,
ARTIVA performs a gene-by-gene analysis and infers
simultaneously (i) the topology of the regulatory net-
work, and (ii) how it changes over time. In order to
strike a balance between model refinement and the
amount of information available to infer the model para-
meters, the ARTIVA model delimits temporal segments
for each gene where the influence factors and their
weights can be assumed homogeneous. For that we use
a combination of efficient and robust methods: dynami-
cal Bayesian networks (DBN) to model directed regula-
tory interactions between genes and Reversible Jump
MCMC for inferring simultaneously the times when the
network changes and the resulting network topologies.
We evaluate the performance of ARTIVA on simulated
data and illustrate our approach in the context of two
different biological systems. We start by analyzing a
commonly used dataset related to the developmental
stages of Drosophila melanogaster and demonstrate the
utility of our approach by a comparative analysis of the
ARTIVA results with the TESLA results [15]. Next, we
analyze the response of the yeast Saccharomyces cerevi-
siae to benomyl poisoning. This dataset represents an
important challenge for the inference of time-varying
networks since (i) the number of time-points is extre-
melly small (only 5 time points) and (ii) the expression
values combine measurements obtained in wild-type
and knock-out yeast strains. The biological relevance of
the results obtained with ARTIVA are finally assessed
using functional annotations and transcription factor
binding information.

Methods
Graphical models
Bayesian Networks (BNs) have become a popular frame-
work for representing regulatory networks [6,16] as they
offer both a probabilistic interpretation of dependencies
among expression of genes and a graphical representa-
tion that is more readily accessible than mathematical
expressions (see Figure 1). For example if the expression
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Figure 1 Illustration of the time-varying DBN formalism. (A) Regulatory motif among three genes that we wish to model. Crucially,
regulatory interactions do not persist over the whole time course considered here, but are turned “on” and “off” at different times. The labels on
the edges indicate at what times an edge points to or influences the expression of the target gene.(B) Because Bayesian networks (BNs) are
constrained to have a directed acyclic graph (DAG) structure, they cannot contain loops or cycles. Therefore the motif in (A) can only be
imperfectly represented using a conventional BN formalism which does not take temporal ordering into account; if X3 is statistically independent
of X1 provided X2 is known, we can construct two alternative representations, P(X1, X2, X3) = P(X3|X2).P(X2|X1).P(X1) and P(X1, X2, X3) = P(X3|X2).P(X1|
X2).P(X2).(C) If time-course expression measurements are available we can unravel the feedback cycles and loops over time. Such dynamical
Bayesian networks (DBN) represent the interactions by assuming that at each given time, all the parental nodes come from the previous time
point. At the top of this panel we show the DBN constructed assuming a time-homogenous DBN; at the bottom of (C) we show the time-
varying DBN constructed by the new algorithm. (D) Changepoint vectors for each of the three genes obtained for the time-varying DBN
representation of the motif in (A). (E) The sets of regression models corresponding to the three nodes X1, X2 and X3 in the inferred phases.
Vertical dotted lines correspond to changepoints separating distinct phases for each node. Compulsory changepoints at the start and the end of
the process (i.e. at t = 2 and t = n + 1) are indicated by the black dotted lines; inferred changepoints for each gene are shown in blue, green
and red, corresponding to the colours of the genes (as used in parts (A), (B) and (C) of this figure).
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level of gene i, here denoted by Xi, determines the
expression level of genes j and k, a diagram such as

j i k← →

can be drawn and the joint distribution of gene
expression levels written,

P X X X P X X P X X P Xi j k k i j i i, , | | ,( ) = ( ) ( ) ( )
where P(a|b) denotes the probability of a conditional

on b. Because BNs aim to represent the joint probability
distribution (in our case for the expression levels of p
genes) the corresponding graphical representation is
limited to graphs which contain no cycles (Figure 1B).
This means that closed loops or complex feed-back
structures (as in Figure 1A) cannot faithfully be repre-
sented, whereas they are known to pervade regulatory
networks [17].
With time-course measurements, this limitation can

be overcome by employing a Dynamical Bayesian Net-
work (DBN) formalism [18], where the expression levels
of all the genes in a system are modelled as a generally
discrete-time stochastic process (Figure 1C). For p genes
and n measurements the expression levels are written as
Xi(t), with 1 ≤ i ≤ p and 1 ≤ t ≤ n. The joint probability
distribution over the expression levels of all genes and
at all times is then partitionned, P(X1(1), ..., Xp(1), ..., X1

(n), ..., Xp(n)), into a product of conditional probabilities
of the Markov form:

P X t X t X ti r s( ( ) | ( ), , ( ))− … −1 1 (1)

This means that the expression level of gene i at time t
depends on the expression levels of genes r, ..., s at time t
- 1. Genes r, ..., s are called the ‘parents’ of gene i and
denoted by Pai (reciprocally gene i is called the ‘target’
gene of genes r, ..., s). By making the time dependence of
expression levels explicit, loops and feedback interactions
can be represented simply by requiring only that the
expression of gene i at time t is independent of all other
genes at the same time t. In conventional DBN inference
approaches it is assumed that the conditional dependen-
cies in Eqn. (1), and hence the set Pai, are independent of
time t. Of course it is possible to allow Xi(t) to depend on
expression levels Xr(t - τ ) with τ >1, i.e. allow for higher
order dependencies. For computational reasons, however,
our analysis is restricted to first order Markov processes.

ARTIVA network model
Let p be the number of observed genes and n the num-
ber of time-points at which expression levels are mea-
sured for each gene. In this study, the discrete-time
stochastic process X = {Xi(t); 1 ≤ i ≤ p, 1 ≤ t ≤ n} is

considered, taking real values and describing the expres-
sion level of the p genes at n time-points. We start by
modelling the gene expression levels at time t probabil-
istically by a vector-autoregressive process:

∀ ≥ = − + +t t t t t t t t2 1 0, ( ) ( ) ( ) ( ) ( ) ( ) ~ ( , ( )),X A X B   with  (2)

where X(t) = (Xi(t))1≤i≤p and  (0, Σ (t)) is the multi-
variate normal distribution centered at 0 with diagonal
covariance matrix Σ(t). Note that diagonality of Σ
ensures that the process describing the temporal evolu-
tion of gene expression – here a first order autoregres-
sive process – can be represented by a Directed Acyclic
Graph (DAG) as in Figure 1C, i.e. no edges between
nodes at the same time, and where the edges from time
t - 1 to time t are defined by the set of non zero coeffi-
cients in matrix A(t) [19]. Furthermore the error in
expression measurements of gene i does not affect the
expression measurements of the other genes and off-
diagonal elements in Σ can be set to 0.
Crucially, the coefficient matrix A(t) = (aij(t))1≤i, j≤p –

which is the adjacency matrix of the gene regulatory
network [19,20] – and the column vector B(t) = (bi(t))

1≤i≤p – which is the baseline gene expression that does
not depend on the parent gene regulatory controls – are
allowed to vary explicitly with time. This could for
example reflect switching on or off of regulatory interac-
tions, e.g. in response to developmental, physiological or
environmental signals (Figures 1C, D and 1E).
For each gene, i, a set of time-points for which the

regulatory inputs of the gene change is determined.
These time-points are referred to as ‘changepoints’ and
delimit homogeneous phases, i.e. sets of time-points for
which the local network topology (edges between gene i
and its parents Pai ) remains unchanged. Assuming k
changepoints, the changepoints are denoted by

  i i
k
i= … +( , , )0 1 , where 0 2i = (for a 1st order Mar-

kov model) and  k
i n+ = +1 1 (to delimitate the bounds).

The distinct phases are labelled by the index of their
respective right changepoints. For all times t in the

phase h of gene i (i.e.  h
i

h
it− ≤ <1 ), the i-th row of

matrix A(t) and coefficient bi(t) are assumed constant:

∀ ≤ < = ∀ ≤ ≤ =− h
i

h
i i

h
i ij

h
ijt b t b j p a t a1 1,  ( ) , , ( ) (3)

For phase h of gene i, the parents Pa h
i of gene i

include every gene j such that the coefficient ah
ij differs

from 0: Pa h
i

h
ijj j p a= ∀ ≤ ≤ ≠{ ; , }1 0 . Hence for

 h
i

h
it− ≤ <1 the expression of gene i is modelled in a

regression framework as:
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X t a X t b e t e ti
h
ij j

h
i i

j

i
h
i

h
i

( ) ( ) ( ), ( ) ~ ( , ( ) ),= − + +
∈
∑ 1 0 2

Pa

 with   (4)

where Xj(t - 1) is the expression level of gene j at time t
- 1. This defines a multiple changepoint regulatory net-

work, with changepoint positions   = … + ≤ ≤( , , )0 1 1
i

k
i

i p ,

and the phase-specific regression model parameters,

{ , , }a bh
ij

h
i

h
i for all h, i, j. All non-zero coefficients, ah

ij ,

indicate relationships between expression levels of genes
i and j, and hence are good indicators of putative biologi-
cal interactions between those genes.

Model inference via reversible jump MCMC sampling
General principle
We want to infer the autoregressive time-varying net-
work model, which belongs to the overall parameter
space that is the union of the parameter spaces of all

phases delimited by k changepoints (k = {0, ..., k }).

Furthermore, for each phase the number of incoming
edges on each node (or the network topology) is
unknown. Adding or removing a changepoint results in
a change in the dimension of the system’s state-space:
for each additional changepoint a new network topology

has to be estimated, and for each deleted changepoint
the results previously obtained for the two distinct
phases have to be reconciled. Thus, the dimension of
the model is unknown and can vary substantially. In
order to infer the posterior distribution Pr(k, ξ, s, Pa, θ,
s|x) given the observed data x over all of the system’s
parameters, we used a Reversible Jump Markov Chain
Monte Carlo (RJ-MCMC) procedure. The principle of
RJ-MCMC lies in constructing a reversible Markov
chain sampler that can jump between parameter sub-
spaces of different dimensions; thus allowing the genera-
tion of an ergodic Markov chain whose equilibrium
distribution is the desired posterior distribution [21,22].
Presented in Figure 2, our inference procedure allows

us to simultaneously consider all possible combinations
of changepoints and network topologies within the dif-
ferent phases. In the RJ-MCMC procedure, the likeli-
hood of the expression measurements x(1) observed at
time-point t = 1 is denoted by Pr(x(1)). From the hier-
archical structure of the overall parameter space, the
joint probability distribution over all parameters can
thus be written as the product:

Pr         Pr Pr Pa( , , , , , , ) ( ( )) { ( , , , ,k s x x k s
i

p
i i i i   Pa =

=
∏1

1

 i i ix, , )}. (5)

Figure 2 Illustration of the ARTIVA procedure. (A) Schematic illustration of the two-step RJ-MCMC scheme used for determining the
stationary distribution of time varying dynamic Bayesian networks. With probabilities b, d and v, we propose the birth, death or shift of a
changepoint (CP) respectively; with probability w we propose an update of the regression model describing regulatory interactions for a gene
within a temporal phase. Varying the number of CPs or the number of edges (network topology) corresponds to a change in the dimension of
the state-space and is dealt with by using Green’s RJ-MCMC formalism [21]. Proposed shifts in changepoint positions are accepted according to
a standard Metropolis-Hastings step. Because of conservation of probability we necessarily have b + d + v + w = 1 and c + ζ + r = 1. (B)
Outline of the ARTIVA inference procedure.
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Posterior distribution
For each gene, i, we construct a RJ-MCMC sampler that
directly samples from the joint distribution:

Pr Pa Pr Pr

Pr P

( , , , , , , ) ( ) ( | )

( ,

k s x k k

s

i i i i i i i
k

i i i

h

k

h
i

i

   =

=

+

∏
1

1

aa  Pr Pah
i

h
i

h
i

h
i

h
i

h
i

h
i

h
i

h
i

h
ix s, , ) ( | , , , , , ),     −1

(6)

Where Prk
ik( ) Pr(ξi|ki) and are respectively the prior

probabilities of the number of changepoints ki and of
the changepoint position vector ξi for gene i, and where

Pr Pa( , , , )sh
i

h
i

h
i

h
i  is the prior probability of the para-

meters defining the regression model of the phase h of
gene i. Finally:

Pr Pa

Pr

( | , , , , , )

( ( ) | , , ,

x s

x t s

h
i

h
i

h
i

h
i

h
i

h
i

h
i

i
h
i

h
i

h
i

   

 

−

−=
1

1 PPa h
i

h
i

h
i

th h
i i

, , ) 
 ≤ < +

∏
1

(7)

is the likelihood of the expression levels

x x th
i i

th h
i i= ≤ < +

( ( ))  1
of gene i observed during phase h,

and is a realization of the Gaussian distribution defined
in Equation(4).
Priors
In order to reinforce sparsity of the network and follow-
ing multiple changepoint approaches involving RJ-
MCMC [23,24], we assume the number of changepoints
ki to be distributed a priori as a truncated Poisson ran-

dom variable with mean l and maximum k ,

∀ ≤ ∝ −
≤k k k e

k
i

k
i

k

i k k

i

i, ( )
!

.
{ }

Pr   1 (8)

Similarly, the prior probability for the number of par-

ents is a truncated Poisson distribution Pr s h
is( ) with

mean Λ and maximum s . Here l and Λ can be inter-
preted as the expected number of changepoints and par-
ent variables, respectively. Following [25], l and Λ are
drawn according to a Gamma distribution:

  , ~ ( , )Λ a where the shape parameter a and the

scale parameter b are chosen so that the prior probabil-
ity decreases when the numbers of changepoints or par-
ents increase (we set a = 1, b = 0.5, see Additional file
1 for an illustration of the corresponding distribution).
Conditional on there being ki changepoints, we assume
that the changepoint positions vector ξi takes only non-
overlapping and uniformly distributed integer values.
The prior for the regression model parameters (si, Pai ,

θi, si) are chosen following Andrieu and Doucet’ RJ-
MCMC procedure for regression model selection [25],
based on a work proposed in [26]. The sets of parents
Pah(i) are assumed to be uniformly distributed condi-

tional on | ( ) |Pa h
h
ii s= . The variance,  h

i , is assumed

to be distributed according to a conjugate inverse-
Gamma prior distribution with shape parameter υ0/2

and scale parameter g0/2, ( ) ~ ( / , / ) h
i v2

0 02 2 . By

choosing υ0 = 1 and g0 = 0.1, we set up to Jeffrey’s

vague prior, Pr(( ) ) / ( ) h
i

h
i2 21∝ [25]. Finally, condi-

tional on  h
i , the prior distribution for the regression

model parameters can be written as,

Pr Pa Pr Pr Pa Pr Pa( , , | ) ( ) ( | ) ( | , ,s s s sh
i

h
i

h
i

h
i

s h
i

h
i

h
i

h
i

h
i

h
i   = hh

i ). (9)

Given the parent gene set Pa h
i of size sh

i , the sh
i + 1

regression coefficients, 
Pa Pah h

i ib ah
i

h
ij

j
= ∈( , ( ) ) , are

assumed to be drawn from zero-mean Gaussian distri-

butions with covariance ( ) h
i

h
i

2Σ
Pa ,

Pr Pa
Pa

Pa
Pa

Pa
( | , , ) | ( ) | exp/   

 

h
i

h
i

h
i

h
i

h
is h

h
h

i
i

h
i= −−2 2 1 2Σ

ii

h
i

−∑⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

2 2( )
,


(10)

where the symbol † denotes matrix transposition,

=∑ −
Pa Pa Pah h h

i i iD x D x 2 † ( ) ( ) and D x
h
iPa
( ) is a matrix of

size m si
h
i

h
i

h
i( ) ( ) − × +−1 1 , whose first column is a

vector of 1 when the regression model includes a con-
stant, and each j + 1th column contains the observed

(eventually repeated) value ( )
( ) ( );

xtl
j

t l mh h
i i − − ≤ < − ≤ ≤1 1 1 1 for

all parent gene j in Pa h
i . We did not use shrinkage

priors here because the truncated Poisson prior for the

number sh
i of parents already favours dimension reduc-

tion. The term δ2 represents the expected signal-to-
noise ratio and is sampled according to an Inverse

Gamma distribution    
2

2 2~ ( , ) with  2 2=

and  2 0 2= . .

A noticeable advantage of the model is that the mar-
ginalization over the regression parameters (θi , si ) in
the posterior distribution is analytically tractable,

Pr Pa Pr Pa( , , , , ) ( , , , , , | )k s x k s x d di i i i i i i i i i i i i i     =   (11)
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(see Additional file 1, Section 2 for more details).
Then the proposals are sampled from the analytical
expression of the network topology posterior distribu-
tion (11) – which is proportional to Pr(ki , ξi , si , Pai|x)
– and the acceptance probability depends on the net-
work topology (ξi , Pai) only.
Moves
In order to traverse the parameter space of unknown
dimension we propose here four different update moves
(see Figure 2 and Additional file 1): birth of a new chan-
gepoint (B); death (removal) of an existing changepoint
(D); shift of a changepoint to a different time-point (S);
and update of the regression model defining the net-
work topology within the phases (R). These moves
occur with probabilities bk for B, dk for D, vk for S and
wk for R, depending only on the current number of
changepoints ki and satisfying bk + dk + vk + wk = 1.
The changepoint birth and death moves represent
changes from, respectively, ki to ki + 1 phases and ki to

ki - 1 phases. We impose d0 = v0 = 0 and bk = 0 to

preserve the restriction on the number of changepoints.
Otherwise, these probabilities are chosen as follows:

b c k ki

k ki
d c k ki

k k= +⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=+min ,

( )

( )
, min ,

( )
1

1
11 

Pr

Pr
 

Pr

Prkk ki( )+

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪1
(12)

where Prk is the prior distribution for the number of

changepoints and the constant c is chosen to be smaller
than 14 so that the regression model updates and chan-
gepoint position shifts are proposed more frequently
than births and deaths of changepoints. This improves
our ability to infer changepoint positions and the net-
work structures (using the vector-autoregressive frame-
work) within the different phases. Proposed shifts in
changepoint positions are accepted using a standard
Metropolis-Hastings step, while regression model
updates within phases invoke a second RJ-MCMC cri-
terion, which was adapted from the model selection
approach of Andrieu and Doucet [25]. As proposals are
sampled from the analytical network topology posterior
distribution (11), the generation of the regression model

parameters ( , ) h
i

h
i is optional. Together the four

moves B, D, S and R allow the generation of samples
from probability distributions defined on unions of
spaces of different dimensions for both the number, ki,

of changepoints and the number sh
i of parents within

each phase for gene i.

Model selection
Given a priori probabilities, the ARTIVA algorithm pro-
duces posterior probability estimations over the algo-
rithm iterations for changepoint vectors and network

topologies. These posterior probabilities give a detailed
picture of all the results and allow in depth analyses of
the entire regulatory network architecture. In this study
we use in complement to posterior probabilities, the
Bayes factor, i.e. the ratio of the posterior odds of an
hypothesis over its prior odds [27]. The Bayes factor has
the advantage to consider the posterior distribution with
respect to the priors and to obtain quantitative measure-
ments of the statistical significance of the ARTIVA
results which are comparable between different datasets.
As an indication, according to Kass and Raftery [27], a
proposition is (i) not supported when it has a Bayes fac-
tor below 3, (ii) positively supported for a Bayes factor
between 3 and 20 and (iii) strongly supported for a
Bayes factor over 20. The performance of ARTIVA is
evaluated on synthetic and real data (see the following
section) by selecting the network structure according to
the following procedure. For each gene i we first choose
the number ki of changepoints having the greatest Bayes
factor. Then the ki changepoint positions having the
highest Bayes factors are selected, and for each resulting
phase we finally compute the Bayes factor for the possi-
ble parent genes and choose the ones with a Bayes fac-
tor greater than 3 (see Additional file 1 for a description
of the Bayes factor computation).

Simulation study
In order to evaluate the accuracy of the ARTIVA algo-
rithm to recover changepoints and network topologies
correctly, expression data for randomly defined dynamic
networks were generated. With respect to the experi-
mental datasets analyzed later (see the following sec-
tion), two types of expression data were produced. The
first type – referred to Wild-Type (WT) simulations –
match the ‘Drosophila life cycle’ data. This dataset con-
tains time-series expression data of several genes and
the algorithm must find the correlations between
unknown parent genes and each target gene. The sec-
ond type – referred to as Knock-Out (KO) simulations
– is equivalent to the ‘benomyl’ dataset. This dataset
only contains time-series expression data of target genes
in different genetic contexts: wild-type and knock-out
mutants for several transcription factors (TFs).
The simulation procedure for a given target gene, also

presented in detail in Additional file 2, involves three
main steps. First, the structure of the dynamic regula-
tory network is defined. This consists of randomly set-
ting the number and the localization of changepoints,
thereby defining regulatory phases. Then the parent
genes and the corresponding coefficients are chosen for
each phase. Once the regulatory network is defined,
expression data can be generated from this network
model. The expression values of the parent genes are
first generated randomly (uniformly drawn from [-2,
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-0.1] ⋃ [0.1, 2]) and subsequently used to calculate the
target gene expression according to the autoregressive
model presented in Eqn. (4). The whole procedure is
repeated (to represent experimental replicates) and
noise is added (to represent experimental variability).
Because the simulations use the ARTIVA hypothesis
concerning the expression associations between parent
and target gene expression profiles (autoregressive
model), we expect all the results to be correct under
ideal conditions (like absence of noise). Therefore, this
simulation protocol evaluates the ARTIVA performance
and studies the influence of the following parameters:

• the quantity of noise in the data. For all phases h
of gene i, the noise ei(t) is drawn from a Gaussian

distribution  ( , ( ) )0 2 h
i with standard deviation

 h
i

h
i( . , . , , . )= …0 2 0 4 1 8 ,

• the size of the temporal phases (phasesize = 1, 2,
..., 5, 12), and
• for WT simulations only, the number of potential
parent genes (Pa# = 5, 10, 20, 40). This is not neces-
sary for KO simulations because the potential parent
genes are obviously restricted to the transcription
factors for which KO data is being generated.
Regardless of the number of potential parent genes,
a maximum of 5 edges from parent genes to a target
gene is allowed.

For each parameter value, 200 gene time-series of
length = 12 timepoints were randomly generated with 8
and 4 replicates for WT and KO data respectively. Note
that KO simulations present less replicates because each
replicate already comprises the measurements of the
gene expression levels for each knock-out mutant. All
other parameters were set to their default values and are

Table 1 Performance of ARTIVA on simulated data

WT simulations KO Simulations

Parameter Changepoint
sensitivity

Changepoint
PPV

Edges
sensitivity

Edges
PPV

Changepoint
sensitivity

Changepoint
PPV

Edges
sensitivity

Edges
PPV

0.2 94.2 95.1 73.9 99.2 100 100 100 98.5

0.4 90.8 94.1 79.3 97.9 100 99 100 98.2

0.6 87.8 92.5 73.9 96.9 96 97.1 99.2 95.4

0.8 75.4 96.3 78.8 96.4 81.4 97.8 97.6 91.4

Noise 1 80.5 96.6 74.7 97.5 69.1 95 95.1 88.8

1.2 71.7 96.2 78.4 97.6 28.1 82.4 97.2 87.6

1.4 58.7 94.6 79 95.9 23.6 89.7 92.7 87.5

1.6 52.9 91.8 74.4 97.2 10.8 75.9 79.1 86.8

1.8 60.8 94.5 76 95.6 4.8 81.8 76.8 85.6

1 78.5 97.5 1.3 100 79 98.8 18.1 82.4

2 92 92 24.7 98.5 97 96.5 98.7 92.5

Phase
size

3 90 94.2 50.8 98.6 99.5 99 100 93.6

4 94.5 94 74.5 98.6 99.5 99.5 100 96.4

5 96 99 76.9 96.8 99.5 97.5 100 94.7

12 100 99 92.6 98 99 97.1 100 97.8

5 93.7 95.5 82.4 99.1 _ _ _ _

# of
parent

10 81.1 88.3 69.7 96.4 _ _ _ _

genes 20 62.4 83.4 51.2 97.3 _ _ _ _

40 54 77.2 33.1 96.4 _ _ _ _

To evaluate ARTIVA performances, two types of data were used: WT simulations corresponding to time-series expression data with no knowledge of potential
transcription factors and KO simulations corresponding to several time-series expression data of a simulated wild-type strain and knock-out strains for each known
transcription factor (see Methods and Additional file 2 for more details). The default values of the parameters used for the simulation study are: # of timepoints n

= 12; # of changepoints k n~ ({ , .., / }) 1 4 ; maximal # of edges = 5; parent to target coefficient ~ ([ , . ] [ . , ]) − − ∪2 0 1 0 1 2 ; phase sizes

~ ({ , .., });# 3 n # of replicates r = 8 for WT simulations, r = 4 for KO simulations; noise standard deviation ~ ( , . ) 0 0 5 ; total # of simulations = 200

for each condition. In this table, the value of noise intensity, phase size and number of parent genes change according to the parameter under study (all other
parameters were set to default). In each condition, the ability of ARTIVA to detect all true phase changepoints and model edges (Sensitivity) and to detect only
true positives (Positive Predictive Value, PPV) was calculated. Overall, this simulation study allows us to gain confidence in ARTIVA results (≃ 80% of PPV and
sensitivity) for a given set of parameters (noise standard error is on the order of the mean value of the regression coefficients, number of measurements in a
regulatory phase > 8 and less than 20 parent genes).
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specified in Table 1. The ARTIVA algorithm was run on
each expression data set and we compared the
proposed network model (selected as described in
the previous subsection ‘Model selection’) with the origi-
nal one. The ability of the algorithm to recover change-
points was evaluated via the Positive Predictive Value
(PPV) and the Sensitivity,

PPV
TP

TP FP
Sensitivity

TP
TP FN

=
+

=
+( ) ( )

 (13)

with TP = True Positives, FP = False Positives and FN
= False Negatives. The edges PPV and Sensitivity was
computed for the phases whose changepoints were cor-
rectly inferred.

Microarray data
The first microarray dataset – referred to as ‘Drosophila
life cycle’ data – was produced by Arbeitman et al. [28].
It includes the mRNA expression levels of 4028 genes at
67 successive time-points spanning the four stages of the
D. melanogaster life cycle: the embryonic (31 time-
points), larval (10 time-points) and pupal stage (18 time-
points) and the first 30 days of adulthood (8 time-points).
Expression data were collected from the Gene Expression
Omnibus database: http://www.ncbi.nlm.nih.gov/geo/.
4005 genes with consistent annotation are used for the
analysis. Potential parent genes were restricted to genes
with known transcriptional activity based on Gene
Ontology information [29]. Hence, 136 genes were
selected as potential parents. They belong to one of the
four following Gene Ontology molecular functions:
‘Transcription activator activity’ (GO:0016563), ‘Tran-
scription repressor activity’ (GO:0016564), ‘Transcription
factor activity’ (GO:0003700) and ‘Transcription cofactor
activity’ (GO:0003712). For each target gene, we gave
priority to the 10 potential parent genes with the most
highly correlated gene expression profiles over any suc-
cessive 10 time-points.
The second microarray dataset – referred to as ‘beno-

myl’ data – was published by Lucau-Danila et al. [30].
In this study, the authors measured the changes in
mRNA concentrations for each gene at successive times
after addition of benomyl (an antimitotic drug) in the
growth media of Saccharomyces cerevisiae cells. Parallel
experiments were conducted in different genetic con-
texts: the wild type strain and knock-out (KO) strains in
which the genes coding for different transcription fac-
tors connected to drug response, YAP1, PDR1, PDR3,
and YRR1, were deleted. For each yeast strain, the mea-
sured expression values for 5 time-points (at 30 s, 2
min, 4 min, 10 min, 20 min) were obtained from the
website: http://www.biologie.ens.fr/lgmgml/publication/
benomyl. We only considered genes that (i) showed

significant changes in mRNA levels during the time-
course analysis in the WT strain (119 genes presented
by Lucau-Danila et al. [30]), and (ii) had less than 20%
of missing expression measurement data in the four KO
strains. The resulting expression table comprised data
for 78 genes (see Additional file 3 for complete list of
genes). Hierarchical clustering was performed applying
the ‘hclust’ function available in the R programming lan-
gage http://cran.r-project.org/, using Euclidean distance
between gene expression profiles and the ‘ward’ method
for gene agglomeration (see also Additional file 4).

Technical information
The ARTIVA algorithm is implemented in R program-
ming language. The source code is freely distributed to
academic users upon request to the authors. A 50,000
iterations procedure lasts around 5 min times the num-
ber of genes for the analysis of 100 time-course mea-
surements (for example 5 replicates over 20 time-points)
with a 2.66 GHz Intel(R) Xeon(R) CPU and 4 G RAM.

Results
Evaluation of the algorithm performances
To evaluate the performance of our ARTIVA
approach, simulations are run in order to assess the
impact of three major factors on the algorithm perfor-
mances: noise in the data, minimal length of phases,
and number of proposed parent genes (the latter for
WT simulations only, see Methods). Sensitivity and
Positive Predictive Value (PPV) calculated for the
detection of changepoints and of models, i.e. the topol-
ogy of the network within the phases, are presented in
Table 1. In WT simulations, the changepoint sensitiv-
ity is greater than 80% when the noise standard error
reaches si = 1. As noise increases further, the ability of
the algorithm to recover changepoints decreases in
terms of sensitivity, but still, the changepoint sensitiv-
ity remains greater than 70% when the noise standard
deviation reaches si = 1.2 (a value that is larger than
the mean value of the regression coefficients, uniformly
sampled from [-2; -0.1] ⋃ [0.1; 2]). The WT data was
generated with r = 8 repeated measurements for each
time point, whereas the KO data were simulated with
only 4 repeated measurements for each time point
(because each measurement includes data from differ-
ent genetic contexts, see Methods). That is the reason
why the changepoint sensitivity with KO simulations
starts to decrease with smaller noise standard deviation
compared to WT simulations. Nevertheless, the chan-
gepoint sensitivity is still greater than 80% even when
noise reaches si = 0.8. The number of measurements
for each phase also plays an important role for the
changepoint detection sensitivity. Indeed, during a
phase reduced to a single timepoint, there are only
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r repeated measurements to estimate the autoregres-
sive models. Interestingly, the ARTIVA algorithm here
succeeds in finding the correct dynamic networks with
a sensitivity value of 79% for a phase size of 1, in both
WT and KO simulations (default noise standard error
si = 0.5). With phases of size 2, the changepoint sensi-
tivity is greater than 90%. For all noise levels consid-
ered here the changepoint PPV is greater than 95%;
furthermore changepoint PPV appears to be stable and
not to be affected by the phase size either. Knock-out
data are usually collected for a restricted number of
knock-out genes and the number of possible parents is
limited. However, wild-type experiments give expres-
sion time series data for a large number of genes at
once. The number of proposed parents increases the
dimension of the model and the estimation procedure
accuracy is expected to be affected as the dimension
increases. Here, the changepoint sensitivity obtained
with ARTIVA is still 54% when the parent genes are
chosen from among a set of 40 proposed parents. The
changepoint sensitivity goes up to 81% when the num-
ber of potential parents is reduced to 10. The change-
point PPV is only slightly affected by the number of
proposed parents. The PPV is still greater than 75%
when the number of potential parents is 40.
The edge detection in Table 1 was evaluated when the

correct changepoint segmentation was recovered. Once
the correct changepoints are recovered, neither noise
nor short phases appear to strongly affect the detection
of edges. The edge sensitivity deteriorates for extreme
situations only. Indeed, the edge sensitivity is equal to
18% when phase size is 1 for KO simulations. For WT
simulations, the edge sensitivity is about 50% when
phase size is 3 or when the number of proposed parents
is 20. In all other cases, the edge sensitivity is greater
than 75% and the edge PPV is greater than 95%.
Simulation studies such as the one performed here

do, of course, only provide a partial insights into an
algorithms performance and robustness. They are
nevertheless essential to gain confidence in the perfor-
mance of novel algorithms and to develop understand-
ing of their likely limitations. Together these results
serve to illustrate of the robustness of the ARTIVA
algorithm. In particular, ARTIVA can deal with some
of generic problems encountered in real experimental
data. It still performs well when noise standard error
is on the order of the mean value of the regression
coefficients, when the number of measurement per
phase is reduced to 8 or when the number of possible
parents reaches 20. At some point, the ARTIVA algo-
rithm misses some changepoints, but the PPV is still
very large, meaning that we can have great confidence
in the changepoints having a high posterior
probability.

Temporal variation of the Drosophila development
transcriptional program
In light of the simulation analysis, we then apply our
method to the well-studied expression datasets pro-
duced by Arbeitman et al. [28]. In this study, the
authors report gene expression patterns for nearly one-
third of all D. melanogaster genes during a complete
time-course of development. The ARTIVA algorithm is
run for each gene for 50,000 iterations, looking for par-
ental relationships with the 10 transcription factors for
which gene expression profiles were most highly corre-
lated over any successive 10 time-points (see Methods).
Out of the 4005 analyzed genes, 1704 (42%) were found
to be involved in the time-varying networks spanning
the whole Drosophila life-cycle (134 were identified as
parent genes, 1623 as target genes and 53 were both
parent and target genes). Interestingly, 2583 change-
points were also identified. The distribution over the
time-points and with respect to the developmental
stages is shown Figure 3. We observe that time intervals
{18 to 19}, {31 to 33}, {41 to 43} and {59 to 61} contain
more than 40% of the changepoints. Notably the inter-
vals {31 to 33}, {41 to 43} and {59 to 61} include the
developmental stage transitions from embryo to larva,
from larva to pupa and from pupa to adult, respectively.
The high number of changepoints at mid-embryogenesis
(interval {18 to 19}) corresponds to a major morphologi-
cal change related to a modification of transcriptional
regulations, as described in [28].
To further evaluate ARTIVA, we compared our results

with those obtained using the TESLA algorithm [15].
TESLA has been recently published (2009) and to our
knowledge it is with ARTIVA, the only other procedure
which recovers time varying regulatory networks where
the changepoints are gene specific. As described in [15],
we first discretized the expression measurements into
two levels: 1 for up-regulation and 0 for down-regula-
tion. The TESLA procedure requires specification of
two parameters, l1, which is a sparsity coefficient, and
l2, which is a smoothness penalty coefficient. Several
combinations of (l1, l2) parameters were tested (data
not shown), and we finally retained the average values
presented by the authors in their simulation study [15],
i.e. l1 = 0.01, l2 = 1. The TESLA analysis was run using
the same subset of Drosophila genes used with ARTIVA,
and the 2583 most significant temporal changes identi-
fied with TESLA are compared to the 2583 ARTIVA
changepoints (Figure 3, dashed line). In agreement with
the ARTIVA results, an important number of regulatory
changes (28%) occurred during the developmental stage
transitions (mid-embryogenesis, embryo to larva, larva
to pupa and pupa to adult), but notably this number is
significantly lower than the one obtained with ARTIVA
(40%, see previous paragraph). This is especially
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remarkable considering the last phase transition from
pupa to adult. The observation of a significant number
of changepoints at developmental stage transitions lends
credibility and supports our ARTIVA results. Our
method appears powerful in inferring the timepoints at
which transcriptional control of individual genes
switches.

Time-varying regulatory network involved in the
response of Saccharomyces cerevisiae to benomyl
poisoning
In our second example, we apply ARTIVA to a selected
set of 78 gene expression profiles from Saccharomyces
cerevisiae cells grown under benomyl-induced stress
conditions [30] (see Methods). A hierarchical cluster
analysis identifies 18 clusters of genes with concordant
transcription profiles (see Additional file 5). For each
cluster, time varying networks are inferred using the
included gene expressions measured in the wild type
and four deletion strains (Yap1, Pdr1, Pdr3 and Yrr1),
running the RJ-MCMC scheme for 50,000 iterations.
Regulatory associations between parent and target genes
are proposed if the deletion of a parent gene signifi-
cantly alters the expression measurements of its target
genes (compared to the WT situation) (see Methods).
The results are presented in Figure 4 and Dataset S1. As
an illustration, the cluster #1 comprises 10 genes (Figure
4A) for which two changepoints are detected at the 4
and 10 minute time-points (Figure 4B), when these

genes fall under the regulatory control of Yap1 (Figure
4C). Even if Yap1 is the only transcription factor identi-
fied here, its regulatory interactions with the target
genes in the third phase are highly significant (Bayes
factor = 9.103) compared to those in the second phase
(Bayes factor = 14.22). This explains the detection of
two changepoints. The results obtained for all other
clusters are combined to obtain a global view of the
time-varying regulatory network involved in benomyl
stress response (Figure 4D). In agreement with the pio-
neering study of Lucau-Danila et al. [30], the transcrip-
tion factor Yap1 appears to have the predominant role
in the benomyl stress response as ARTIVA identified
edges with 79% of the analyzed genes (62 associations
with clusters # {1, 2, 5, 6, 7, 8, 9, 13, 18, 17}). Also
PDR1, being the parent gene of 24% of the genes, exerts
significant control (19 associations with clusters # {5,
6}). Pdr3 and Yrr1 present only a small number of target
genes (10 associations with cluster #6 and 2 associations
with cluster #13, respectively).
Furthermore, our ARTIVA model provides a dynamic
classification of the benomyl responsive-genes, based on
their time of induction. Such a dynamical point of view
can elucidate the chronology of events, especially
regarding the Yap1 activity. ARTIVA identified three
classes of Yap1 targets, depending on their time of
induction: 4 minutes (clusters # {1, 7, 18}, orange arrows
Figure 4D); 10 minutes (clusters # {2, 8, 9, 13, 17}, yel-
low arrows Figure 4D); and 20 minutes (cluster # {5, 6},

Figure 3 Changepoints of gene regulation networks across the Drosophila melanogaster development. Microarray results for the time
courses of Drosophila life cycle [28] were analysed using ARTIVA. The number of identified changepoints using ARTIVA are shown in blue for
each of the 67 time-points. They are compared with the most significant changes identified with the TESLA algorithm [15], shown in black
dashed line. Time-intervals for each developmental stage are represented with the following color-code: pink = Embryo (31 time-points), red =
Larva (10 time-points), orange = Pupa (17 time-points), yellow = Adult (8 time-points).
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Figure 4 Time-dependent regulatory network involved in yeast chemical stress response. Microarray results for the kinetics of benomyl
action [30] were analyzed using ARTIVA. A hierarchical clustering analysis was carried out for the time-course responses of the wild-type strain
and deletion strains for four transcription factors (TFs): Yap1, Pdr1, Pdr3 and Yrr1. The resulting 18 clusters have low intra-cluster variability and
comprise genes whose expression is identically modified in TFs deletion strains compared to the wild-type strain (see Methods). Results for
cluster #1 are presented here. (A) Gene expression measurements represented using the common color code (black for expression values around
0 and red for positive values). Bayes factors for changepoint (CP) and edge detection are respectively shown in (B) and (C). Two CP were
identified at the 4 min and 10 min time-points, and regulatory associations with the TF Yap1 were identified in the second temporal phase
(from 4 min to 20 min). (D) All the identified regulatory associations are shown here, after analyzing the 18 clusters of co-expressed genes
independently. They are all positive, meaning that each transcription factor activates the expression of their respectives target genes. Regulatory
interactions are color-coded according to their starting time-point: orange = 4 minutes, yellow = 10 minutes and green = 20 minutes. We found
62 regulatory interactions for Yap1; 19 for Pdr1; 10 for Pdr3; and 2 for Yrr1. Pink and white segments on the surrounding circle indicate genes
belonging to the same gene expression cluster, the clusters are ordered as follows (starting at 4 min): 1, 18, 7, 9, 13, 8, 17, 2, 5, 6, 3, 11, 4, 10, 12,
14, 15, 16.
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green arrows Figure 4D). Almost all the genes included
in the earliest group are known to be transcriptionally
controlled by Yap1 (95% based on YEASTRACT infor-
mation [31]). They encode proteins involved in redox
control (GPX2, TRR1, GSH1, GTT2) or vacuolar trans-
porters (YCF1). The middle group contains also an
important rate of Yap1 targets (87%), which act at the
level of the plasma membrane (FLR1 and FRM2) or
encode proteins involved in response to toxins (for
instance AAD6, AAD16, ECM4). Yap1 activity in the last
group is partially overlapping with the actions of Pdr1
and Pdr3. Most of the genes in this group have
unknown functions, but some of them are still labelled
in the YEASTRACT database as being targets for Yap1
(74%), Pdr1 (32%) and Pdr3 (20%). Finally, YRR1
deserves a special mention. Unlike the genes that
encode the transcription factors Yap1, Pdr1 and Pdr3,
the YRR1 gene is transcriptionnally activated during the
benomyl response. As a consequence, ARTIVA identi-
fied YRR1 (i) as a Yap1 target whose expression was
induced 4 minutes after benomyl addition in the cell
growth culture (see *** Figure 4A); and (ii) as a parent
for genes SNG1 and YLL056C at 10 minutes. Interest-
ingly these observations highlight a sequential activity of
Yap1 and Yrr1 transcription factors together with an
overlap of their targets (Figure 4E). This regulatory
model, in which Yrr1 seconds Yap1, is fully supported
by recent experimental data [32].

Discussion
ARTIVA: a new statistical modelling framework to learn
temporally varying gene-regulation networks
The ARTIVA approach allows us to reverse engineer
the temporally varying structure of transcriptional net-
works by inferring simultaneously the times at which
regulatory inputs of genes change and the nature of
these incoming inputs. Our approach is computationally
efficient and can exploit powerful search heuristics to
scan the space of potential incoming edges. Compared
to others methodologies recently proposed in the litera-
ture, ARTIVA has the major advantage of combining
efficient and well-tried techniques (Bayesian networks
and RJ-MCMC sampler) in order to solve several related
problems. First, with ARTIVA there is no need for prior
information regarding either the number of regulatory
phases or the number of regulatory interactions between
parent and target genes. Starting from uninformative
priors (such as truncated Poisson or uniform distribu-
tions, see Methods), the posterior distribution for the
number of changepoints, their positions and the regula-
tory models within each recovered phase is directly
obtained from the ARTIVA runs. Also, ARTIVA allows
the detection of regulatory phases for individual genes.
Finally, whereas many approaches – like Bayesian

Dirichlet Equivalent (BDE) score in a dynamic context
[13] or the TESLA framework [15]– require the expres-
sion measurements to be discretized, the ARTIVA pro-
cedure has the advantage to work directly with
continuous datasets. Thus there is no need to set arbi-
trary thresholds to define up- and down-regulated
groups of genes.
We demonstrate the performance of the ARTIVA

algorithm by (i) applying it to simulated data (Table 1)
and (ii) performing a comparative analysis of the
ARTIVA and TESLA [15] results (Figure 3). Because the
simulations were such that they mirror the biological
data analyzed afterwards as much as possible, we gain
considerable confidence in the output of the ARTIVA
approach when used on the two datasets considered
here. Overall, the algorithm shows very good perfor-
mance in retrieving the simulated dynamic networks,
except in extremely unfavourable conditions, such as
too much noise in the data or time series that are not
sufficiently long and dense. These exploratory studies
allow us to interpret the ARTIVA outputs more reliably.

New biological insights into the Drosophila development
and the yeast stress response
The two biological networks presented in this study
(Figures 3 and 4) are very different, both from a biologi-
cal and a technical point of view. Their respective ana-
lyses represent different challenges for the application of
the ARTIVA algorithm. The ‘Drosophila life cycle’ data
is representative of data used for classical regulatory
network inference; successive gene expression measure-
ments spanning a given biological process - here the
Drosophila development - in order to detect potential
regulatory interactions from gene expression profiles.
This data is particularly suited for the inference of a
temporally varying regulation network, since (i) the
number of time-points is large (more than 80% of all
published time series expression datasets are short with
8 time-points or fewer [33]) and (ii) the transitions
between the distinct stages of Drosophila development
{Embryo (E), Larva (L), Pupa (P), Adult (A)} are well-
described in the literature [28]. We can thus reasonably
expect to identify changepoints precisely at transitions
between life stages (Figure 3). On the other hand, discri-
mination between parent and target genes represents an
important additional step towards a complete descrip-
tion of the genetic networks that control development.
These inferred temporal changes can form hypotheses
as to how we can interfere rationally with developmental
processes; e.g. arresting development in a given state by
selectively knocking down transcription factors or tar-
gets at a given developmental stage.
The ‘benomyl’ dataset represents a particular challenge

for ARTIVA to retrieve a dynamic regulatory network
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for two reasons. First, the number of time-points is
extremely small (only 5 time-points), and no replicate
data points are available. To manage the lack of data,
we cluster genes with concordant transcription profiles
and analyze them jointly with ARTIVA. This cluster
analysis was possible because the maximal intracluster
variability did not exceed 0.2 (see Additional file 4), a
value that ARTIVA is able to manage based on our
simulation results (Table 1). Second, in this S. cerevisiae
dataset, it is known that the genes coding for key regu-
lators of the stress response system, i.e. transcription
factors Yap1, Pdr1 and Pdr3, exhibit flat expression pat-
terns during stress condition (Additional file 4); this pre-
vents the use of correlation measures with their
expression profiles to identify causal relationships with
their potential target genes. In this context, we needed
to adapt the ARTIVA inference procedure in order to
integrate gene expression profiles measured in the wild
type and KO strains. Regulatory associations between
parent and target genes are thus proposed if the deletion
of a parent gene significantly alters the expression mea-
surements of its target genes (compared to the WT
situation). Compared to the previous study of Lucau-
Danila et al. [30], the main benefit of ARTIVA analyses
is that it provides a dynamic classification of the beno-
myl response genes (Figure 4). It also points out contri-
butions of the Yrr1 and Pdr3 transcription factors,
which were ignored in previous analyses. Interestingly,
the versatile and non exclusive joint action of Pdr1 and
Pdr3 in chemical stress response, together with the
overlap with Yap1 activity, is supported by recent
experimental data available on these two factors
[32,34,35].

Conclusions
The comprehensive analysis suggests that the ARTIVA
approach allows us to describe and reverse-engineer the
dynamic aspects of molecular networks. Such time-vary-
ing networks provide a middle ground between net-
works homogeneous in time and explicit dynamical
models. The latter require substantial further informa-
tion in order to model the dynamics of biological sys-
tems [36]. Inferring such systems is a considerable
statistical challenge and it has recently been shown that
some parameters cannot be inferred with any degree of
certainty from time-course data. This so-called sloppy
behaviour [37,38] has been identified even in very sim-
ple dynamical systems. In contrast to classical network
reverse engineering approaches such as dynamic Baye-
sian networks [18] and graphical Gaussian models [39],
ARTIVA also allows us to construct more complex
hypotheses where interactions may depend on time.
As no particular constraint is imposed to the change-

point positions or to the succession in network

topologies within phases, the ARTIVA model appears
to be highly flexible. The results are not a priori direc-
ted toward any particular regulatory associations
between genes. This flexibility can be extremely valu-
able, especially when no information regarding the stu-
died biological process is available. But the rapid
accumulation of data obtained with different experi-
mental approaches gives the opportunity to acquire a
more comprehensive picture of all the interactions
between cellular components. To understand the biol-
ogy of the studied systems better, the trend is clearly
towards the aggregation of multiple sources of infor-
mation. A natural future direction in the development
of ARTIVA will be to incorporate data originating
from different sources in the model. In particular, pro-
tein/DNA interaction data (ChIP-chip or ChIP-seq
experiments) could be effective by replacing the uni-
form prior for the edges with a prior favouring edges
that correspond to the experimentally identified inter-
actions (see [40,41] for an illustration). Also, ARTIVA
assumes independent network topologies within suc-
cessive phases and can identify very different regula-
tory associations between two phases, even if the time
delay between the phases is very short. This assump-
tion was appropriate in case of biological models like
the Drosophila development and the yeast stress
response, mainly because those are processes in which
transcriptional regulations are highly dynamic. How-
ever, when considering systems that evolve more
smoothly or in case of datasets with a small number of
time points, it would be interesting to incorporate a
regularization scheme into ARTIVA in order to favour
slight changes from one phase to the next one. Such
an approach has already been initiated in [13] for dis-
cretized data and in [42] where the regularization
scheme is based on a common network structure.
There are still huge gaps in our knowledge of biologi-
cal networks and of the dynamics they mediate. What
triggers whether or not an interaction is present
depends subtly on the cellular context, the comple-
ment of molecules inside a cell (if we focus attention
of intra-cellular processes and networks) and their
respective molecular interactions. Understanding all of
these factors and their interplay will ultimately be cru-
cial in order to design biological interventions ration-
ally. But statistically inferring them poses a set of
formidable challenges. The use of relatively simple
mathematical models (such as vector-autoregressive
processes) allows us to distil the essential dynamics of
complex temporal processes in biological systems.
Thus ARTIVA provides a platform for the analysis of
transcriptomic data, which could be straightforwardly
expanded to include other data, e.g. transcription factor
activities or other proteomic measurements.
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