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Abstract

Background: A gene network’s capacity to process information, so as to bind past events to future actions,
depends on its structure and logic. From previous and new microarray measurements in Saccharomyces cerevisiae
following gene deletions and overexpressions, we identify a core gene regulatory network (GRN) of functional
interactions between 328 genes and the transfer functions of each gene. Inferred connections are verified by gene
enrichment.

Results: We find that this core network has a generalized clustering coefficient that is much higher than chance.
The inferred Boolean transfer functions have a mean p-bias of 0.41, and thus similar amounts of activation and
repression interactions. However, the distribution of p-biases differs significantly from what is expected by chance
that, along with the high mean connectivity, is found to cause the core GRN of S. cerevisiae’s to have an overall
sensitivity similar to critical Boolean networks. In agreement, we find that the amount of information propagated
between nodes in finite time series is much higher in the inferred core GRN of S. cerevisiae than what is expected
by chance.

Conclusions: We suggest that S. cerevisiae is likely to have evolved a core GRN with enhanced information
propagation among its genes.

Background
No general laws have yet been established for how nat-
ural selection shapes the large scale topology and logic
of gene regulatory networks (GRN). One possible princi-
ple shaping the topology of GRNs is that the execution
of several internal cellular processes, as well as the
proper response to certain external signals, requires spe-
cific temporal patterns of expression of multiple genes.
To robustly orchestrate a wide spectrum of such com-
plex temporal expression patterns, genes need to con-
stantly exchange information between them.
Within a cell, there are several mechanisms through

which genes exchange information. Some are direct,
such as interactions via transcription factors (TF), while
others are more indirect such as protein-protein interac-
tions [1-3]. Dynamically, GRNs are stochastic [4].

Whether a fluctuation of a protein’s level is purely noise
or contains information is likely to be context depen-
dent. Most studies assume the dichotomy where a
gene’s expression level is either “high” or “low”. In this
view, GRNs are assumed to be binary information pro-
cessing systems and can be, to some extent, modeled by
Boolean networks [5]. Such models aim to capture, at
least partially, the information exchange between genes.
In Random Boolean Network (RBN) models of GRNs,

nodes represent genes and can have two states: ‘1’ if
expressing and ‘0’ otherwise. Nodes update their state
synchronously according to Boolean functions of the
states of the input nodes. Information propagation in
RBNs depends on the network’s dynamical regime [6],
which can be ordered or chaotic, separated by a phase
transition, dubbed “critical” [5].
The dynamical regime of RBN is determined, in gen-

eral, by its sensitivity, which in turn is determined by its
mean connectivity (mean number of connections per
node) and mean p-bias (defined as the probability that
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the output of the Boolean transfer function is ‘1’ for any
set of input states) [7].
Relevantly, chaotic RBNs tend to respond widely dif-

ferently to very similar inputs [8]. In a biological setting,
it would not be advantageous for an organism to have a
chaotic GRN, given that in common environmental set-
tings, similar inputs require similar responses. On the
other hand, ordered networks respond identically to
very distinct input signals [8], which in most situations
would be disadvantageous.
For that reason, near-critical gene networks are likely

to be naturally favored. If so, this imposes constraints in
the topology and logic of evolved gene networks, namely
on its sensitivity.
Several studies have evaluated information propaga-

tion in RBNs. One measure that has been used is the
basin entropy, which characterizes the number and size
of the basins of attraction and hence the ability to
respond differently to different inputs [9]. Another such
measure is the mutual information between subsequent
states of single nodes [10]. Both quantities were found
to be maximum in critical RBNs [9,10]. A study of
information propagation in Boolean networks where all
nodes are driven by a common input signal found that
critical RBNs best distinguished differences between
inputs states and were able to perform the most com-
plex computations on time series [11]. In [12], it was
observed that ensembles of critical RBNs have broader
distributions of dynamical behaviors.
The amount of mutual information contained in the

time series of two elements gives a measure of how well
their activities are coordinated (in the sense that, given
the state of one element, one can, to some extent, pre-
dict the other’s state). In RBNs, coordination between
nodes’ states arises from the fact that the future state of
a node is determined by the present state of its input
nodes. Mean temporal pairwise mutual information (I)
has therefore been used as an estimate of the quantity
of information propagated between nodes within a RBN
[6]. For infinite size networks, critical RBNs maximize I,
while the maximization occurs slightly in the chaotic
regime for finite size networks [6].
The ability of critical RBNs to better distinguish differ-

ent signals and respond similarly to similar signals is
expressed in I’s maximization [6]. Since the correct
execution of cellular functions depends on the GRN’s
information processing capacity, it is likely that this is
under selective pressure. It is therefore of interest to
study information propagation in models of GRNs [13].
Here we first infer, from microarray measurements, a

functional topology of the GRN of S. cerevisiae. Since
we focus on direct information propagation between
genes, we extract a “core network” of genes interacting
directly with one another, each having both inputs and

outputs. Gene enrichment methods are used to verify
whether the inferred interactions have some parallel to
known relationships between genes. Next, we infer the
Boolean transfer functions of each gene of this core net-
work. We test the inferred network for self-consistency
with the measurements. Finally, we address the follow-
ing question: Do the topology and logic, both globally
and locally, favor information propagation in the core
network? I.e., has this core network evolved towards
maximizing information propagation and what are its
limitations in this regard?

Methods
We model the GRNs (both the inferred core network as
well as the null model networks) using the Boolean net-
work modeling strategy [5], which was found to be able
to mimic, to some extent, results from deletion and over-
expression measurements in GRNs [14]. This is a very
simplistic modeling strategy of GRNs. The dynamics of
real GRNs are stochastic, the protein and RNA levels are
not binary quantities, and the genes in a real GRN do not
change their expression levels synchronously. Neverthe-
less, when compared with the stochastic modeling strat-
egy [4], generally considered the most accurate one, the
Boolean modeling strategy proved itself more realistic
regarding propagation of changes in expression levels
than common O.D.E. models, among others [15]. Unfor-
tunately, it is computationally unfeasible at the moment
to use the stochastic modeling strategy or the delayed
stochastic modeling strategy [16] for gene networks of
large size and complexity, thus, we opted for the Boolean
approach. Since there is little agreement on how to intro-
duce noise in the Boolean approach (such as using ran-
dom bit flips or asynchronous update schemes), we use
the synchronous, noiseless model.

Microarray Measurements
We infer the topology and logic of the network between
328 genes of S. cerevisiae from microarrays from 292
conditional essential mutants (data set 1, from [17]), 40
strains overexpressing a unique transcription factor gene
(data set 2, from [18]), and 84 new perturbation experi-
ments (data set 3). Data set 3 is provided in Additional
file 1. Microarray measurements were performed as
described in [18,19]. In all cases, the expression levels
are compared to wild type.

Inference of the topology of the core gene network of S.
cerevisiae
From the Yeastract http://www.yeastract.com list of bind-
ing interactions in the S. cerevisiae GRN, we estimate the
mean connectivity (K) among the 328 genes to be 5.6.
Note that these interactions are not all necessarily func-
tional. This mean K is only used to determine a
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reasonable threshold on the minimum effect a gene must
have on another gene’s expression level when it is deleted
or overexpressed. The threshold that best fits this
requirement is a 3.32-fold change in expression.
Next, we extract a subnetwork of the inferred network,

including only genes that can have both inputs and out-
puts, as only these can receive and propagate information
to and from other genes. From here onwards, we study
the structure and dynamics of this inferred “core net-
work” (input matrix in Additional file 2).

Inference of the Boolean Transfer Function of each gene
Since the measurements only provide information of the
output state for some of the possible inputs states, and
each gene usually has multiple inputs, we set up rules in
order to infer complete transfer functions to be able to
simulate the inferred network’s dynamics. These rules
are implemented in an algorithm that goes as follows:

1. Determine the degree of change in the expression
of a gene, given the deletion or overexpression of
another gene. If the degree of change is 3.32-fold
this gene is assumed to be a direct input of the
other gene (see previous section).
Let gene G have n input genes: i1, ..., in. Let the
expression level of gene G when when input ij is
overexpressed or deleted be denoted as E(G, j, x),
where x denotes overexpression or deletion, while its
wild type expression is denoted as EWT (G). We
define the “weight” of gene ij on gene G as:
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In this expression, sign is the sign function, and max
is the “max” function that returns the maximum
number of a list of values. When no data exists for a
particular j and x, W (G, j, x) is defined to be 0.
2. For a given state of the input genes x = x1, ..., xn,
we calculate the expected expression level of the
output gene by the sum of the weights from the
overexpression and deletion experiments corre-
sponding to the input states:

V G x W G j x j

j
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=

∑
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3. If V (G, x is positive, then the corresponding entry
in the truth table is set to 1, while if it is negative it

is set to 0. If the sum is 0, the corresponding entry
is randomly chosen.

The fraction of values in the truth tables that must be
set randomly is always at most 2-n per gene, where n is
number of inputs. For the experimental data used here
to infer the core network, for each gene, less than 2% of
its output states were set randomly, since there is always
at least one measurement of expressions levels after
deletion or overexpression for each input of each gene
in the core network (given its definition).

Connectivity, p-bias, clustering coefficient, path length,
sensitivity and mutual information
Having inferred the topology and transfer functions of
the core network of S. cerevisiae, we now compute sev-
eral topological features such as the mean p-bias,
defined as the mean over all nodes of the fraction of
inputs states which cause the output state in the next
time moment to be equal to 1. As we study the ability
of the GRN to propagate information, we also calculate
the mean directed path length L, the generalized cluster-
ing coefficient, Cp, and the mean sensitivity, S, as these
quantities (defined below) are known to affect informa-
tion propagation between the nodes in an RBN [6].
The mean directed path length, L, of an RBN is

obtained by computing the path length between each
pair of nodes with a direct path between them, and
averaging over the number of such pairs. Pairs of nodes
without a path between them do not contribute to the
mean L. The value of L can thus be somewhat decep-
tive, as one can have a network with disconnected clus-
ters with lower L than a network where all nodes
belong to the same cluster (a cluster being a set of
nodes such that there is an undirected path between all
pairs of nodes). For this reason, we also report the num-
ber of “disconnected clusters”.
The clustering coefficient C, as originally defined [20],

measures the fraction of effective connections between
the first nearest neighbors of a node in an undirected
graph, out of the total number of possible connections.
Let Ei be the number of connections between the ki
nodes connected to a node i, in a network with a total
of N nodes. The average C of the network is:
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Previous work has shown that the I of RBNs is highly
dependent on other local topological structures besides
triangles, such as squares, self-connections, etc [21]. For
this reason, the concept of clustering coefficient [20]
was extended to Cp, the generalized clustering
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coefficient, that accounts for any loops containing p

nodes [21]. Let i be the node index, and  r r
i
1 2,

be the

amount of connections between the nodes at path
length distance r1 and the nodes at distance r2 from i.

Let Tr r
i
1 2,

be the maximum possible number of such

connections. Cp, for p > 2, is given by [21]:
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This expression only applies when p is larger than 2.
It is further noted that distances between nodes are
always calculated so that they are always strictly positive
integers. Meanwhile, we define C1 as the fraction of
nodes with self inputs, and C2 as the mean fraction of
bidirectional connections per node. Therefore, if a node
has three connections and one is bidirectional, then its
contribution to C2 is 1/3. Note that the definition of C3

matches the definition of the original C proposed in
[20].
K, L and Cp characterize the topology of the network.

To characterize the transfer functions, we calculate their
sensitivity. The sensitivity sf of a Boolean function f,
measures how sensitive the output of the function is to
changes in the input states [7,22]. The mean sensitivity
over all transfer functions in a network (S) has been
used as an order parameter, that can be used to deter-
mine the dynamical regime of the network (order, criti-
cal or chaotic) [7], which affects the network’s ability to
propagate information [21]. The sensitivity sf (x) of f on
input vector x is defined as the number of Hamming
neighbors of x on which the function value is different
than on x (two vectors are Hamming neighbors if they
differ in only one component):
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where el is the unit vector with 1 in the lth position
and 0’s everywhere else, the ⊕ indicates Exclusive-OR
and c[A] is an indicator function that is equal to 1 if
and only if A is true. The average sensitivity sf is given
by the expectation of sf (x) with respect to the distribu-
tion of x [7]. Assuming that the output states of a func-
tion are randomly generated following some p-bias p
independently for each input state, then the average sen-
sitivity of the network can be estimated by: S = 2 ×K ×p
× (1 - p) [7].

While the sensitivity allows us to characterize the
dynamical regime of the network, it does not directly
inform on the information propagation capability of the
network. We use the average pairwise mutual informa-
tion as a measure of information propagation between
the nodes of a RBN. This quantity is defined as in [6].
Let sa be a process that generates a 0 with probability p0
and a 1 with probability p1. The entropy of sa is [6]:

H s p p p pa( ) ≡ − −0 0 log   log  2 1 2 1.

Likewise, for a process sab generating pairs xy with
probabilities pxy, where x, y Î {0, 1}, the joint entropy is

H s p p p p p p p pab( ) ≡ − − − −00 00 0 0 0 0 log   log   log   log  2 1 2 1 1 2 1 11 2 111.

For a given RBN, we assume infinitely long time series
and start from all possible initial states. The fraction of
steps for which the value of node i is x gives px for the
process si. The value of pxy for the process sij is given by
the fraction of time steps for which node i has the value
x and on the next time step node j has the value y. Tem-
poral pairwise mutual information between nodes i and
j is then defined as [6]:

I H s H s H sij i j ij= ( ) + ( ) − ( )
where H(si) is the information-entropy of the time ser-

ies of states of node i at time t, H(sj ) is the entropy of
the time series of states of node j at time t + 1, and H
(sij ) of the joint state of node i at t and node j at t + 1.
With this definition, Iij measures the extent to which
information about the state of node i at time t influ-
ences the state of node j one time step later. The propa-
gation may be indirect; a nonzero Iij may be the result
of, for example, the influence of a common ancestor
node of both i and j. Given the definition of Iij , we use
I, the mean Iij for all pairs of nodes, as a measure of
information propagation within the network.

Assessing information propagation and core behavior:
null models
To characterize the efficiency of the topology and trans-
fer functions of the inferred core network to propagate
information, one has to compare with a null model. We
focus on the role of the local structure (Cp) and of the
distribution of p-bias. We determine each feature’s rele-
vance by comparing with a null model. For that, random
networks are generated according to the constraints of
the null models and their ability to propagate informa-
tion is compared with that of the inferred core network
of S. cerevisiae by computing I from time series initia-
lized at a random state.
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One null model is used to assess the importance of the
degree of Cp of the core. To these null model networks,
we impose the same mean K as the inferred core network,
but connections are placed randomly (for each connection
placed, both input and output are randomly chosen from
all nodes). We impose a distribution of p-biases in this
null model that is identical to the one inferred for the core
so that this null model only differs in mean Cp (and thus
in the Input and Output distribution). The comparison
allows determining whether the observed Cp in the core is
likely to have been subject to selection, and if so, what
consequences such selection has had on mean I .
The other null model is used to assess the effects of

the p-bias distribution in the inferred core network of S.
cerevisiae, as it differs significantly from what is
expected by chance. In this null model, we impose the
same mean K, Cp and p-bias, but the distribution of p-
biases is not imposed (how the p-bias of each function
is set is described below for both null models).
The topologies of the null-model networks are gener-

ated according to the “Random 2” algorithm proposed
in [23]. Define n as the number of nodes in the graph,
and m as the number of edges. Given (k, m) do:

1. Order all node pairs (u, ν) Î [1, n]2 in a vector e.
2. Set uniformly at random, with probability n-2 and
without repetition, m components of e equal to 1.

3. Add an edge from u to ν if ( , )u v (e) = 1.

The imposition of the p-bias distribution in the first
null-model (here named “Rand-Beta”) was accomplished
as follows: for every transfer function, sample a p-bias
from the Beta distribution that best fits the inferred core
network p-bias distribution, and then generate outputs for
that function based on that bias. In the case where the p-
bias distribution is “not imposed” (second null model), the
p-bias of each function is always 0.41, in agreement with
the measured p-bias of the inferred core network (shown
in results section). In both cases, once the p-bias of each
function from the corresponding distribution, the output
for each input state is then randomly set, according to the
specific p-bias, independently of all other output states.
For simplicity, we opted to impose only random

input-output (I/O) distributions in the null models. A
more sophisticated approach that could be taken in the
future is to impose the inferred I/O distribution as well
(see e.g. [24,25]).

Results and Discussion
Topology and Transfer Functions of the inferred Core
Network
The inferred core network of S. cerevisiae is composed
of 328 genes and has a mean connectivity K of 5.6.

Input and output (I/O) distributions of the inferred core
network are shown in Figure 1, which also shows the I/
O distributions of networks with the same mean K, but
random wiring (binomial I/O distributions), for
comparison.
Comparing the distributions in Figure 1, S. cerevisiae

core network exhibits a higher amount of high-degree
nodes. Particularly, 8% of the nodes have more than 15
inputs, while in the random networks, this percentage is
negligible. Since it is unlikely that heavily combinatorial
functions with many inputs can be realized by real genes,
it is of interest to analyze the transfer functions of those
genes with a high number of inputs. If real GRNs cannot
realize highly combinatorial transfer functions, then this
input/output distribution would likely force the p-bias
distribution to differ significantly from what would be
expected by chance. If the p-bias of the transfer functions
of individual genes is close to 0.5, they are likely to have
complex combinatorial functions. On the other hand, if
at the single gene level, the p-bias is biased towards 0 or
1, then highly biased functions are expected (most of
input states have the same output state).
The p-bias distribution of the transfer functions is shown

in Figure 2 for S. cerevisiae and for randomly generated
functions with the same mean p-bias and K, for compari-
son. The p-bias distribution of S. cerevisiae is strikingly dif-
ferent from the null model. While the null model has a
binomial distribution, S. cerevisiae’s is best fit by a Beta dis-
tribution with a probability density function Pf (x, a, b ) of
a = 0.3467 and b = 0.4350, which is given by:
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Figure 1 Input and Output distribution (I/O) of the inferred
core network and of the null models. Input and Output
distribution (I/O) of the inferred core network and the I/O
distributions of the null models (identical for both null models used
here). The null model and inferred core network have same mean K.
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where B(a, b) is the Beta function that normalizes the
total probability to one.
Contrary to what is expected by chance (assuming

that all transfer functions can be realized) the transfer
functions of the inferred core network of S. cerevisiae
appear to be highly biased (although unbiased overall).
This implies that for most genes with many inputs,
almost all their input TFs have similar effects in the
expression level (either almost all being repressors or
almost all being activators). Relevantly, several eukaryo-
tic genes appear to be predominantly held inactive by
chromatin structure [26] (e.g. nucleosomes) and most of
its TFs are activators.
Another explanation for the observed p-bias distribu-

tion, which does not exclude the first, is that in the
genes with multiple inputs, one or two TFs play a domi-
nant role, while the others only have effects in the
absence of the dominant ones. Such “dominant” TFs
would be expected to have a greater impact on an
organism’s functioning and cause more severe conse-
quences if their activity is perturbed. Our findings of
such TFs, and that they are a minority of all TFs ana-
lyzed, agrees with observations in S. cerevisiae, where
under optimal growth conditions, less that 5% of the TF
coding genes are essential (i.e. their deletion causes cell
death) [27]. That is, single deletions of most TF genes
result in viability under optimal growth conditions, indi-
cating that most TFs are possibly redundant with other
TFs. Another alternative, not excluding the first, is that
many TFs regulate nonessential processes (or are inac-
tive) under optimal growth conditions [27].
In any case, the shape of the p-bias distribution,

resembling a biased “beta-like” distribution with very
high variance (hence forth referred to as “beta-like”),

suggests that complex combinatorial functions are rare.
Relevantly, this is not due to the value of the mean p-
bias, as it is 0.41 and thus, not limiting significantly the
existence of complex combinatorial transfer functions.
It is interesting to speculate whether the p-bias distri-

bution of S. cerevisiae is a consequence of the high
mean K and the limitations in executing complex trans-
fer functions such as Exclusive-OR, or, if has evolved on
its own for a specific purpose (e.g., given K, perhaps to
cause the network to be near critical). We cannot
address this question here, but we can investigate how
this distribution affects the mean I of the core network.
This is done after verifying the degree of accuracy of the
inference procedure.

Verification of the accuracy of inference
The network was inferred based on functional correla-
tions. We therefore expect to find that closely related
genes in the inferred core network should have some
functional similarity between them, and to be involved in
similar biological processes. We test this hypothesis by
selecting the output genes of the inferred network with
the inputs with which the correlation values are stronger,
and then finding functional groups of genes that are
enriched in the list of inputs using FunSpec (http://fun-
spec.med.utoronto.ca, as of April 29, 2010). For example,
the Transcription Factor Activity and DNA binding gene
ontologies are highly enriched in the inferred inputs to
HAP4, a global regulator of respiratory gene expression
(p-values smaller than 10-6). A sample of 10 of the best
enrichment scores is shown in Table 1.
From Table 1, at least four of the ten enriched gene

sets closely correspond to the known functions of their
output genes (CDC19, UBC9, ORC6 and UTP23). How-
ever, the biological role of two output genes (YGR067C
and YLR278C) remains poorly characterized and there-
fore, the functional correspondence with the enriched
gene set could not be determined. The p-values are sig-
nificantly beyond what would be expected by chance,
indicating that the inferred network has substantial cor-
respondence to known functional connections between
genes. For each of the cases in the table, we computed
the Šidák correction [28] and in all cases the signifi-
cance level was beyond 10-4, conferring statistical signifi-
cance to the findings.
To further validate the inferred network, we tested

whether its dynamics matches the expression profiles
measured after the knockout and overexpression proce-
dures. Although the network was inferred from these
experiments, the inference procedure was applied to
each gene individually. Thus, it is not straightforward
that the resulting network, which combines all inferred
interactions, will be able to accurately mimic the expres-
sions profiles of all genes observed in the measurements.
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Figure 2 P-bias distribution of the nodes in the inferred core
network and for random p-bias distribution. P-bias distribution
of the nodes in the inferred core network. It looks like a Beta
distribution (it is well fitted by a Beta distribution biased to the left
with a = 0.3467 and b = 0.4350). Also shown is a random p-bias
distribution for the same mean K and p-bias (0.41).
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To test for self-consistency, we first simulated the
inferred networks 107 times, starting each time from a
random state. We then measured whether, given the
input states, the output states are in agreement with the
ones observed in the knockout and overexpression
experiments. We found that each predicted output of a
gene agreed with the experiments 87.4% of the time.
Next, we simulated the inferred networks 107 times,
starting each time from a random state and imposing
one of the deletions or overexpressions performed in
the measurements (randomly picked). We found that
each predicted output of a gene agreed with the experi-
ments 88.2% of the time. From the results of these tests,
we conclude that the inferred network is consistent with
the measurements from which it was inferred.

Dynamics of Core Network of S. cerevisiae
We simulate the dynamics of the inferred network of S.
cerevisiae, using the Boolean modeling strategy, and
compare with the two null models. The propagation of
information, quantified by I, was estimated as in [6],
with the only difference being that we do not measure I
from attractors, but rather from transients, since we are
interested in the information propagated in the network
due to perturbations and not in the long-term behaviors.
Mean transient I is measured as follows. We first gen-

erate 100 random initial states. For each random initial
state, we generate a ‘transient’ time series of length 10.
The probabilities used to calculate mutual information
are then calculated from all 900 state transitions for
each gene pair (and not by calculating the mean Iij from
each individual transient and averaging over all transi-
ents, which would be mostly spurious due to their short
length [6]).
It is noted that one way to assess the ability of the

inferred core network to propagate information would
be to start from states that the network is known to rea-
lize (such as states from the cell cycle). However, many

pathways in this core network are likely to only be acti-
vated in very specific conditions (many of these are cur-
rently unknown). Thus, in order to have a broader
assessment of its overall ability to propagate informa-
tion, we initialize this network in random states.
The results of these measurements in the S. cerevisiae

inferred core network as well as in the two null models
are shown in Table 2. S. cerevisiae core network has
higher mean transient I than both null models. We next
investigate what features in the topology and/or transfer
functions cause this. Table 2 also shows several struc-
tural features of these networks, namely the mean values
of K, p-bias, S, Cp, L, and the number of topologically
isolated clusters of genes.
From Table 2, we first note that S. cerevisiae core net-

work has a Cp that is much higher than the Rand-Beta
null model, where connections are randomly placed.
Previous studies shown that increasing Cp tends to
strongly enhance I [21], thus explaining why S. cerevisiae
core network exhibits much higher values of I than the
Rand-Beta model.
In this regard, it is noted that while the L of S. cerevi-

siae is not significantly higher than the L of the Rand-
Beta networks, the two networks are structurally very
different. S. cerevisiae has a topology with “small-world”
features [20] and several independent clusters (11) while
the Rand-Beta networks only have, on average, 1.5 inde-
pendent gene clusters.
Due to this striking difference, we tested whether the

measured value of mean I correlates with the number of
clusters. For that, we generated randomized networks
with the same number of topological clusters, same
mean K and same mean p - bias as the core network.
We found no measurable difference in the values of I
between networks with 1 to 12 clusters.
We now address the question regarding the p-bias dis-

tribution of the core network of S. cerevisiae, namely, its
effects on information propagation. We compare S.

Table 1 Enriched sets in the list of input genes

Output Gene Output Protein Function Enriched Set p-value

HAP4 Global regulator of respiratory gene expression Transcription factor activity 2.723 × 10-7

NRG1 Transcriptional repressor Ribosome biogenesis 1.230 × 10-6

CDC19 Pyruvate kinase Regulation of glycolysis 3.732 × 10-5

CDC6 ATP-binding protein required for DNA replication Ribonuclease MRP activity 6.232 × 10-5

UBC9 SUMO-conjugating enzyme Post-translational protein modification 1.005 × 10-4

ORC6 Subunit of the origin recognition complex DNA replication origin binding 3.362 × 10-4

UTP23 Involved in 40 S ribosomal subunit biogenesis rRNA processing 3.392 × 10-4

SEC61 Forms a channel for SRP-dependent protein transport to/from the ER Enzyme activator 4.117 × 10-4

YGR067C Unknown function ATPase activator activity 6.005 × 10-4

YLR278C Zinc-cluster protein Modification with fatty acids 8.531 × 10-4

Enriched sets in the list of input genes for selected output genes in the inferred network. Also listed is the cellular function of the protein encoded by the output
gene. P-values are calculated with the hypergeometric test. Enrichment was performed by FunSpec (http://funspec.med.utoronto.ca, as of April 29, 2010).
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cerevisiae core network with the Rand-p-bias model,
which has the same K and Cp as the S. cerevisiae core
network. From Table 2, S. cerevisiae core network has a
much higher I than the Rand-p-bias model networks.
This is explained as follows. While this beta-like p-

bias distribution causes many inputs to have minor roles
in determining the output state, it allows the S. cerevi-
siae inferred core network, which has a mean K of 5.6,
to have a mean sensitivity of only 0.85, which is surpris-
ingly close to 1, corresponding to networks that are
near critical. Critical RBNs are known to maximize I [6].
The null model Rand-p-bias on the other hand has S
equal to 2.71, which is deep within the chaotic regime,
and thus is expected to have low I [6], which it does. As
for the Rand-Beta model, while its S is also close to 1,
its low Cp does not allow it to have I as high as S.
cerevisiae.
In short, the S. cerevisiae core GRN has high Cp and a

“beta-like” p-bias distribution that allows its sensitivity
to be close to 1, despite the high connectivity. Both
these features enhance I [21].

Conclusions
Previous works [6,21] have hypothesized that GRNs
have evolved towards maximizing temporal pairwise
mutual information between the genes’ expression
levels, as a means to increase their degree of coordina-
tion by increasing the amount of information propaga-
tion between them. From global gene expression
measurements following gene deletion and overexpres-
sion, we inferred the topology and logic of a core gene
network of S. cerevisiae, and then simulated its
dynamics using the Boolean network modeling strategy.
The study of the input-output distribution showed that
more genes have a very high number of inputs than
expected by chance given the mean K, and that these
genes have transfer function with p-bias close to 1 or 0.
We hypothesize that these genes are preferentially regu-
lated by a few of its TFs (under rich medium condi-
tions), the others only being relevant in their absence or
in adverse conditions. This agrees with the fact that
only a small fraction of single TF deletion mutants in S.
cerevisiae are lethal [27].
Another possible, mutually compatible explanation is

that the “minor TFs” have overlapping functions.

Possible approaches to investigate this include perform-
ing similar deletion experiments under conditions closer
to those found in the wild, or examining multiple dele-
tion mutants for lethal phenotypes, for genes whose sin-
gle delation is non-lethal.
Contrary to what would be expected if the network

was randomly wired, the inferred core network has a
very high generalized clustering coefficient. This is
known to enhance the ability of networks to propagate
information [21]. However, another interpretation is
possible for the high Cp. Namely, the GRN may have
evolved a high Cp because it needs many clusters of
small number of genes to perform specific functions
that require a high degree of coordination.
Finally, we found that although the average p-bias of

the transfer functions is almost unbiased, the p-bias dis-
tribution resembles a beta-like distribution with high
variance, far from what is expected by chance. Because
of this, although with a very high connectivity, the core
network is near critical, which is known to enhance
information propagation [6].
We do not know what is the cause for the high var-

iance of the p-bias distribution. It may be merely a con-
sequence of the inability of genes to realize complex
transfer functions. In that scenario, it would be more of
a hinderance in its capacity to transfer information,
rather than an advantage.
The high mean connectivity and near to 0.5 mean p-

bias would, however, cause the network to be “chaotic”
if the distribution of p-bias was not beta-like with high
variance, allowing the sensitivity to be approximately 1.
Because of this, we hypothesize that the shape of p-bias
distribution may have evolved to allow the core GRN of
S. cerevisiae to be near the critical regime, consistent
with the hypothesis that critical GRNs are naturally
favored. The critical regime is the dynamical regime for
which I is maximized [6].
Relevantly, in [29], it was found that critical RBNs, in

comparison with ordered and chaotic ones, are those
that best predict the measured distribution of genes
whose activities are altered in several hundred knockout
mutants of S. cerevisiae, supporting our finding that the
core network appears to be near critical. Studies on
other GRNs using different methods to assess criticality
[8,30,31] have found them to be near critical as well.

Table 2 Features of the topology of S. cerevisiae and the null models

Network 〈K〉 〈p bias〉 S Cp 〈L〉 No. clusters I

S. cerevisiae 5.6 0.41 0.85 0.29 4.26 11 0.014 ± 0.0003

Rand-Beta 5.6 0.41 1.24 ± 0.06 0.12 ± 0.005 3.52 ± 0.02 1.5 0.006 ± 0.001

Rand-p-bias 5.6 0.41 2.71 ± 0.1 0.29 ± 0.005 3.54 ± 0.02 1.5 0.001 ± 0.00002

“Rand-Beta” networks have the same distribution of p-bias and mean K but differ in Cp from S. cerevisiae. “Rand-p-bias” networks have equal mean p-bias, K and
Cp as S. cerevisiae but random p-bias distribution. “No. clusters” is the number of topological clusters of nodes.
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We further found that the core network has a high Cp.
Since both features enhance information propagation
within the core GRN, it may be that the maximization of
propagation of information within GRNs is a general
principle by which natural selection shapes the large
scale topology and logic of GRNs. It is of relevance to
state that while we compared the dynamics of the
inferred core network with null-model networks with a
random topology, we do not imply that the GRN of
ancestors of S. cerevisiae had a more “random topology”
than the present GRN of S. cerevisiae. From our results
we can only conclude that the present core GRN of S.
cerevisiae is able to propagate information throughout its
nodes far more efficiently than standard random topolo-
gies, due to its “far from random” values of Cp, K, and p-
bias. We hypothesize that these features have been sub-
ject to selection and that, as a consequence, the present
core GRN of S. cerevisiae is likely to be more efficient in
propagating information throughout its nodes than its
ancestors. Nevertheless, we cannot rule out the possibi-
lity that the present values of these “global topological”
parameters result from a variety of different and indepen-
dent evolutionary steps, acting at a small topological
scale, which indirectly, also lead to an overall more effi-
cient information propagation throughout the GRN.
Finally, we note that our findings are likely to rely, to

some extent, on the choice of modeling strategy of GRN
used (the “Boolean” approach). It will be of great inter-
est to investigate the findings here reported using more
realistic modeling strategies such as the delayed stochas-
tic modeling strategy [4,32], shown to match measure-
ments of gene expression at the single RNA and protein
level [33]. For this to be possible, methods for quantifi-
cation of information, noise, and sensitivity from sto-
chastic temporal expression levels of RNA and protein,
as well as the state of promoter (free for transcribing,
bound by TFs, etc) need further development.

Additional material

Additional file 1: Yeast perturbation experiments. Each column of
this tab-separated table contains the expression levels of all probe sets
for one knockout experiment. The column title WT/{gene name} gives
the name of the gene that was knocked out. Expression levels are given
as the log base 10 of the ratio between the probe set’s expression in the
knockout and the wild type expression.

Additional file 2: Input matrix of the inferred core network. This file
contains the topology of the inferred core network. Each line contains
the name of the output gene followed by a tab-separated list of input
genes.
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