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Minimally perturbing a gene regulatory network
to avoid a disease phenotype: the glioma
network as a test case
Guy Karlebach*, Ron Shamir

Abstract

Background: Mathematical modeling of biological networks is an essential part of Systems Biology. Developing
and using such models in order to understand gene regulatory networks is a major challenge.

Results: We present an algorithm that determines the smallest perturbations required for manipulating the
dynamics of a network formulated as a Petri net, in order to cause or avoid a specified phenotype. By modifying
McMillan’s unfolding algorithm, we handle partial knowledge and reduce computation cost. The methodology is
demonstrated on a glioma network. Out of the single gene perturbations, activation of glutathione S-transferase P
(GSTP1) gene was by far the most effective in blocking the cancer phenotype. Among pairs of perturbations, NFkB
and TGF-b had the largest joint effect, in accordance with their role in the EMT process.

Conclusion: Our method allows perturbation analysis of regulatory networks and can overcome incomplete
information. It can help in identifying drug targets and in prioritizing perturbation experiments.

Background
In contrast to the gene-centric approach, systems biol-
ogy [1] emphasizes the importance of the interactions
between different genes in determining the phenotype.
Instead of asking “what is the role of gene A”, the ques-
tion becomes “what is the role of gene A in system B”.
The activity (or inactivity) of a gene is therefore not
viewed as an isolated event, but assigned a meaning in
the context in which it is active. An analogy from the
sphere of computer science equates the genome to a
database, and the system’s dynamic behavior to the
execution of a computer program that uses the database
[2-4]. This paradigm shift has two major implications
for the biomedical community. First, it complicates
understanding cellular processes as each component
must be considered with respect to its environment.
Second, the fact that alternative phenotypes correspond
to alternative dynamic behaviors of the system offers
considerable advantages, because it is technically easier
to influence the dynamics of a cellular network than to
modify the information coded in the genome.

Combining computational tools, which can help over-
come the complexity of biological networks, with wet
lab testing can spearhead system-oriented research. In
this paper we present a method that was developed with
this principle in mind. Focusing on gene regulatory net-
works, we develop a method to find minimal perturba-
tions that change the network dynamics. By modifying
established network analysis algorithms from the field of
computer science, we are able to cope with some of the
difficulties commonly associated with this objective.
An important tool for network analysis that will be

used in this work is network perturbation. A common
procedure in model analysis, it refers to applying a mod-
ification of the network and observing its resulting
dynamic behavior. Knockout, knock-down or overex-
pression of a gene in the network are examples of possi-
ble perturbations. The exact type of perturbation varies
with the model and the goals of the modeler. In some
cases the motivation is to observe how single entities
respond [5,6], while in others it is to determine network
robustness [7] or change in the global state [8,9]. For
example, Sridhar et al. [10] find enzymes whose inacti-
vation eliminates compounds from a metabolic network.
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The implementation of a perturbation for our purposes
is described in the Methods section.
A related concept in theoretical computer science is

Minimal Cut Sets [11]. In reliability theory, network ele-
ments (e.g. edges) have a failure probability (e.g. an elec-
tronic component that has a chance for malfunction). A
network is called reliable if a set of paths within it con-
nect a given subset of vertices, and the joint probability
of the paths is above a given threshold. A minimal cut
set is the smallest set of elements whose removal from
the network makes the network unreliable. Network
reliability shares some important similarities with the
concepts proposed in this work, as we also associate the
existence of non-existence of network elements with
probabilities. A main difference between the two
approaches is that identification of minimal cuts sets is
a method for analyzing a network via its structural
properties. In contrast, our analysis will address the net-
work dynamics and hence will be based on the concept
of trajectories, as explained below.
Our first modeling choice will be to model the net-

work’s regulators as discrete entities, an approach that
proved effective in previous genetic regulatory network
(GRN) analyses [7,12-16]. This level of abstraction
reduces the need of the modeler to provide fine details
[17], while being detailed enough to capture the main
features of the GRN dynamics and render them easier
to analyze. In addition, the abstraction lends itself to the
development of effective methods for incorporating
uncertainty in the regulatory functions [18-22]. The glo-
bal state of a network is defined as a vector whose
entries are the local states of all the network’s compo-
nents. The network traverses from a certain global state
to another in discrete time steps as a result of the activ-
ity of regulation functions. We assume that regulation
functions act in an asynchronous manner: that is, that
at each time step any regulation function can occur,
provided its output changes the global state. A trajectory
is a sequence of global states that the network can tra-
verse in sequence.
Given a set of trajectories T and a set of global states

S, S is called a phenotype of T if every trajectory in T
visits only states of S. Similarly, S is called a prohibited
phenotype of T if no trajectory in T reaches any state
in S. We say that a network N has a phenotype S
(avoids a phenotype S) with respect to a global state g
if the set S is a phenotype (prohibited phenotype) of the
group of trajectories that the network generates starting
from the initial state g. The following question can now
be formulated: “How can the network dynamics be
manipulated in order to generate or avoid a specific
phenotype?” Answering this question has important
practical implications, such as promoting the discovery
of novel drug targets [23-25] or the design of synthetic

biological systems [26,27]. Therefore, it is desirable to
have a systematic way to answer the question for differ-
ent networks under different conditions.
This is quite difficult, even under the simplified dis-

crete model of GRNs: first, model dynamics can be
highly complex, and second, experimental methods give
only indirect clues about the network design. The sec-
ond problem makes it difficult to construct models for
networks that have not been extensively studied, espe-
cially when the number of participating entities is large.
As for the complexity of network dynamics, consider
the simple example of a network of n genes where each
gene is regulated by some of the others. Assuming that
a gene can be in one of two states, ON or OFF, the net-
work can assume 2n different global states. For ten
genes, this results in over one thousand states. For
twenty genes, there will be over a million states. Hence,
it is possible that from some initial states the network
will traverse an exponential number of states. Even this
scenario is a simplification, because it assumes the net-
work is known with perfect accuracy, which is seldom
true. We will address these problems in the following
sections.
In this study, given some initial states of the system

and a desired phenotype, we will determine how a net-
work should be perturbed in order to generate that
phenotype, where a perturbation sets the level of one
or more entities and thus changes the network’s tra-
versals between global states. In order to apply our
algorithm efficiently to the Boolean model, we trans-
late the network into a Petri net [28], and utilize
McMillan’s unfolding algorithm [29] to search the
state space of a perturbed network. When the struc-
ture of the network is not fully known, we assign prob-
abilities to alternative structures, redefine a phenotype
probabilistically, and generalize our method to handle
this case. To the best of our knowledge, this is the first
method that integrates the trajectories of multiple
alternative network structures, an important objective
given the quality of current knowledge about biological
networks. We demonstrate this methodology on the
human glioma GRN.

Results
Algorithm
Our model represents each gene by a distinct entity
that can take one of two levels: level 1 means a gene is
expressed and level 0 means it is not. The levels of
genes are controlled by Boolean regulation functions,
which can have any of the other genes (and even the
gene itself) as inputs. The initial global state of the
model is a vector that assigns an initial level to each
gene. Starting from the initial state, the global state of
the network can change in discrete time steps, where
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one regulation function is activated at each step. In
other words, regulation functions can act in any order,
and not all at the same time. This means that there
can be more than one trajectory per initial global state.
Figure 1A illustrates the model with a simple GRN.
We first give a description of our algorithm, followed

by its implementation using Petri nets. The algorithm
takes as input a network model, the network’s state
graph, a set of initial states A, and a group of states B.
It outputs all the minimal perturbations that cause the
network to have phenotype B with respect to every state
in A.

Given a GRN N, its state graph is a directed graph G
(V,E) whose nodes are global states of N. In G there is
an edge (a ,b) if and only if there is a regulation func-
tion f that can act in state a and lead directly to state b.
The label of (a,b) is the function f. Note that several
labels are possible on the same edge if it is a self loop.
Figure 1 illustrates a simple GRN and its state graph.
We define two operations on a network: An activa-

tion of a gene causes the gene to stay fixed on level 1.
For example, if we activate gene B in Figure 1C, the net-
work dynamics will lead to the endpoint state 111. Simi-
larly, a repression of a gene causes the gene to stay

Figure 1 A simple GRN and its state graph. A: A simple GRN. The network contains three entities, A, B and C. Entities A and C regulate entity
B, B regulates C, and C regulates A. Each table shows the level of the regulated gene when its regulation function acts, depending on the
regulators’ levels. B: The state graph of the GRN. Nodes correspond to global states (with coordinates A, B, C from left to right), and edges to
transitions between these states. The labels on the edges show the regulation functions that cause this transition. C: The restricted state graph
starting from the initial state 000. Only states that are reachable by transitions from 000 are shown. For simplicity, self loops are not shown.
Sequences of state traversals that follow from the initial state can be cyclic (return to the same state) or can lead to the endpoint state 111.
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fixed on level 0. In Figure 1C, repressing gene A will
result in cyclic behavior that will lead back to the initial
state. Self loops in the state graph are meaningless
under these definitions, and therefore are omitted.
The biological means of activation and repression vary

depending on the mechanisms of regulation [30-32].
Common examples are knock-down, overexpression,
and addition of inhibitors and activators, but less stan-
dard examples can be thought of, such as insertion of
artificial entities [33] or de-novo network design [26].
A network perturbation is a set of operations (activa-

tions and/or repressions) on genes. The maximal
allowed size k of a perturbation P is assumed to be a
small constant. An edge in the state graph contradicts
perturbation P if it leads to a state in which an activated
gene is at level 0 or a repressed gene is at level 1.
Let A and B be two groups of states in the state graph

G, such that A ⊆ B. We want to find a minimal pertur-
bation such that the network has phenotype B with
respect to every state of A. Assuming that k is constant,
the following algorithm runs in time polynomial in the
size of G

1. For i = 0,...,k do
For every possible perturbation set P of size i, do

i. Modify the group A according to P; i.e. set
the level of activated genes to 1 and the level
of repressed genes to 0.
ii. Add a node s and connect it by outgoing
unlabeled edges to all the nodes of group A.
iii. Add a node t and connect each node of
group B to it using outgoing unlabeled
edges.
iv. Create a modified graph G’ from G by
removing all edges that contradict operations
in P.
v. If there is no path from s to t, output the
set P and stop.

2. If this step is reached, then there is no solution of
size ≤k.

If one is interested in all the minimum solutions, then
instead of halting after finding the first good perturba-
tion of size i, halt only after enumerating all perturba-
tions of size i. If B is a prohibited phenotype then step
1a(iii) should be changed: the node t should be con-
nected to B instead of B .
The running time on a state graph G = (V,E) is O(2k‧

nk‧(|V|+|E|)), where n is the number of entities in the
GRN: the creation of G’ and searching for paths in it
can be accomplished by a BFS, and the loop occurs O
(2knk) times. Hence this algorithm is practical if we
assume that G is not too large. However, since |V| = 2n,

only very modest sized GRNs can be directly solved this
way in practice.
To address this complexity problem, we will formulate

our problem using Petri nets and present a methodology
that copes better with the state explosion problem.
Petri nets are a modeling formalism that has been

used to model different types of biological networks
[34-40]. A Petri net is a bipartite graph composed of
two sets of nodes: places and transitions (see Figure 2A).
The transitions set contains nodes that represent dis-
crete events that can occur concurrently. The places set
represents network entities. Transitions and places are
connected by directed edges that represent interactions
between network entities. The places having an edge
into (from) a transition are called its preset (postset)
places. The global state of the network is given by a dis-
crete assignment of tokens to different places (the level
of each entity), and is referred to as marking. For exam-
ple, the network in Figure 2A has three places, and the
marking in I assigns one token to each of the place p1
and p2 and zero tokens to p3. Tokens can be consumed
and produced by transitions. The rule that determines
token consumption and production is called the firing
rule, and it allows a transition to fire (consume and pro-
duce tokens) if every one of its preset places contains a
specified amount of tokens. When fired, a transition
consumes these tokens and produces a set number of
tokens to every one of its postset places. See Figure 2A
for an example.
Reddy et al [41] introduced the use of Petri nets in the

context of systems biology. Later, Chaouiya et al. [42]
suggested a methodology for translating Boolean regula-
tory networks into Petri nets, which we adopt. Addi-
tional examples of modeling GRNs with Petri nets are
refs. [43-45]. Translating the network to this framework
has the advantage of a rich literature on techniques for
analyzing the dynamics of Petri nets. In addition, Petri
nets are suitable for describing other types of biological
networks, such as GRN models with additional meta-
bolic and signaling layers.
McMillan’s unfolding algorithm [46] is a method for

dealing with the state explosion problem for Petri nets.
A full description of the unfolding algorithm can be
found in ref. [47]. Briefly, given an initial state, McMil-
lan’s algorithm gradually and implicitly records the
states reachable from it by constructing a directed graph
called a branching process. A branching process graph
begins with places that correspond to the initial marking
of the Petri net, and transitions that are added to it can
consume from these places and produce new places,
thereby representing consumption and production of
tokens. A transition can consume only from places that
do not belong to conflicting firing sequences, i.e. firing
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sequences that cannot occur concurrently. Thus, addi-
tions of new transitions preserve the acyclic property of
the branching process graph, and ensure that it repre-
sents only feasible firing sequences (Figure 2B). Refs.
[46,47] provide excellent illustrations of the algorithm’s
capacity to reduce the search space on larger network
instances.
Every reachable marking has a subset of transitions in

the branching process graph that correspond to the fir-
ing sequence that generates it. These subsets are called
configurations. For a transition t, the set of transitions

from which there is a directed path to t is referred to as
t’s local configuration (denoted [t]), and is associated
with a marking. The marking of [t] is the marking
obtained by firing all the transitions that belong to [t].
In the GRN representation that we adopted, every

entity e corresponds to two places: one represents its
active level and the other represents its inactive level.
The firing rules are set so that exactly one of the places
is marked at any time, i.e. each pair is place invariant 37.
These places will be called the active and inactive places
of the entity e. Figure 3 illustrates this concept.

Figure 2 A Petri net and its unfolding. A: A Petri net and its unfolding. The net contains ‘places’ (light blue circles), the model’s entities, and
‘transitions’ (rectangles), which constitute the regulation functions and define the model’s dynamics. Arcs connect input places to transitions,
and transitions to their output places. Places that receive discrete values are called tokens (blue dots). A transition that is activated, or ‘fired’,
reduces the tokens in its input places and increases the number of tokens in each of its output places. At any time step, every transition that
has enough tokens in its input places may be fired. In the example, every transition consumes one token from every input place, and produces
one token at every output place. Labels next to thick arrows indicate which transition fired. Transitions t1 and t3 can be fired in alternation
indefinitely, whereas no other transition can be fired after t2 has fired. B: Unfolding of the Petri net. Transitions are represented by rectangles,
places by circles. The two places p1 and p2 that have tokens in the initial marking in state I are the input-less places of the unfolding. The local
configuration of t2 at layer 2 corresponds to the marking 010, i.e. the marking in which only p2 contains a token, corresponding to II in Figure
2A. The local configuration of t3 corresponds to the firing of t1 followed by t3, and to the marking 110, i.e. the initial marking. The instances of t1
and of t2 at layer 6 are cutoff points, since their local configurations’ markings are already represented by other local configurations. The graph
constitutes a branching process.
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The unfolding algorithm can produce a much smal-
ler graph than the complete state graph. The following
preprocessing to the algorithm spans all the states that
are reachable from a given initial state under a pertur-
bation P:

1. For every activated entity e in P, set a token in the
active place of e.
2. For every repressed entity e in P, set a token in
the inactive place of e.
3. Remove all transitions that have edges outgoing to
places contradicting P.

When there are several initial states, a branching pro-
cess graph is generated for each initial state.
The above algorithm requires full information about

the GRN model. Since this is usually not the case, we
now address the handling of ambiguities in the GRN
logic. Consider a network in which every gene can
have several alternative regulation functions, each

associated with a probability that it is the true regula-
tion. The events corresponding to the true regulations
of different genes are assumed to be independent.
Hence, the probability of a trajectory is the product of
the probabilities of the regulation functions involved in
it. Given a parameter a, 0 ≤ a ≤ 1, the definition of a
phenotype can now be extended as follows: A network
has a phenotype P with respect to a set of initial states
if every subset S of regulation functions that has prob-
ability ≥a generates only trajectories that remain in P.
Note that if the condition holds for S it will hold also
for every S’ ⊆ S, which can have higher probability.
This definition induces a distribution of all alternative
networks into layers. The top layer contains networks
with probability ≥a. Sets of networks with lower prob-
abilities belong to lower layers, each layer correspond-
ing to a different probability. The lowest layer has
probability aN, where N is the number of entities.
Higher layers have lower capacity because there can be
less networks with high probability than networks with

Figure 3 Petri net representation of a Boolean entity. In this example gene 2 inactivates gene 1. Each of them is represented by two places
in the Petri net. The upper (lower) part of the figure shows the Petri net before (after) the transition fires. When gene 2 is active, it inactivates
gene 1. Therefore, the transition consumes a token from the active place of gene 1, and produces a token to its inactive place. The transition
also consumes a token from the active place of gene 2, and produces a token to the same place. The latter consumption and production
express the fact that gene 2 needs to be active in order to inactivate gene 1, but the inactivation itself does not change the level of gene 2.
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low probability (as all probabilities must sum to 1). For
networks in the top layer we examine every possible
trajectory - this follows from the definition of probabil-
istic phenotype, since the full set of regulation func-
tions of these networks has probability ≥ a. As we
descend in the hierarchy, layers have greater capacities
and contain networks of lower probabilities. For every
such network we examine only trajectories that are
generated by strict subsets of their regulation func-
tions, because the full sets of regulation functions of
these networks have probability <a. In other words, in
lower layers we still follow the dynamics of every net-
work, but to a lesser extent than in higher layers, and
so each structure has an influence on the phenotype in
proportion to its probability.
Similarly, a network has a prohibited phenotype P

with respect to a set of initial states if every subset S of
regulation functions that has probability ≥a does not
generate any trajectory that leads to P.
A naïve way to test for a probabilistic phenotype

would be to repeat the non-probabilistic algorithm for
every set of regulation functions with probability >a.
However, the number of such sets grows exponentially
with the number of entities that have more than one
regulation function. More specifically, assume that there
are n genes and every gene has k alternative regulation
functions. For each gene, a set can specify one of the k
regulation functions or leave that gene unregulated,
i.e. not commit to a specific function. This gives rise to
(k+1)n alternative sets of regulation functions. If k is
constant, the expression is exponential in n. Next we
discuss how to modify the unfolding algorithm to test
for a probabilistic phenotype.
Since we translate a regulatory network into a Petri

net, every transition of a configuration C in the branch-
ing process graph corresponds to a regulation function
(recall that in the probabilistic setting, one gene may
have several regulation functions). Denote by �(C) the
set of regulation functions that are represented by the
transitions of C. Note that if C contains a single regula-
tion function for each entity, the size of �(C) is at most
the number of entities in the model. Denote by �’(C)
the subset of �(C) that contains only regulation func-
tions with probability <1.0. We say that �’(C) is unam-
biguous if it does not contain two regulation functions
that regulate the same entity.
A key concept in the original unfolding algorithm is a

cutoff point; it is a transition t whose local configuration
[t] is associated with a marking that is also associated
with some other local configuration [t’] that contains
fewer transitions. At cutoff points one can prune redun-
dant branches in the constructed branching process
graph. Given such a pair of transitions t and t’, we mod-
ify McMillan’s cutoff criterion to handle probabilities by

adding another condition that must hold for t to
become a cutoff point:

Cutoff criterion 1: �’([t’]) ⊆ �’([t])

In addition, we make sure that each local configura-
tion is unambiguous by keeping track of the functions
that have been utilized in it, and allowing a transition t
to fire from C only if �’(C ∪ {t}) is unambiguous.
Finally, in order to save time and space, we add

another cutoff criterion to the algorithm

Cutoff criterion 2:

A transition is a cutoff point if the product of the
probabilities of regulation functions that are used in its
local configuration is <a.
Note that since we tightened the cutoff criterion, the

size of the branching process graph can become larger
than in McMillan’s algorithm.
Theorem 1: The modified version of McMillan’s algo-

rithm maintains:

1. For a phenotype P: If there is a set of regulation
functions F with probability ≥a that generates a tra-
jectory that does not remain in P, then such a trajec-
tory will be represented by a configuration C in the
branching process graph and �’(C) ⊆ F.
2. For an avoided phenotype P: If there is a set of
regulation functions F with probability ≥a that gen-
erates a trajectory that leads to P, then such a trajec-
tory will be represented by a configuration C in the
branching process graph and �’(C) ⊆ F.

The proof is provided in the Appendix. Given that the
theorem holds, we simply need to construct the branch-
ing process graph and test for such a configuration C in
order to verify that a phenotype is maintained or
avoided.

A Test Case
Shmulevich et al [48] constructed a probabilistic model
of a small autonomous subnetwork of genes based on
human glioma gene expression data [49] obtained for
588 known genes, in tissue samples with differing levels
of glioma severity. The inferred network was used for a
Probabilistic Boolean Network (PBN) simulation [50] by
Akutsu et al. (The probability of a regulation function is
the sum of coefficients of determination (CODs)
between expression levels of each of its input genes and
the output gene divided by the sum of CODs of the
expression level of the output gene and all its potential
regulators [48].) In view of its intriguing dynamic beha-
vior and biomedical relevance, we used that network
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model to test our minimum perturbation set algorithm.
After removing a gene that had no regulators, 14 enti-
ties remained, each associated with 1-3 regulation func-
tions. When there is more than one function for an
entity, the functions are assigned probabilities that add
up to one. Six genes have a single regulation function,
seven genes have two alternative regulation functions,
and one gene has three possible regulation functions. A
description of the logic functions appears in ref. [50]
We transformed this network into a Petri net (Figure

4), and applied our algorithm to find minimum pertur-
bations from 1000 random initial states. The initial
states were tested in this way because the “biologically
correct” initial states cannot be derived from current
knowledge. Moreover, since the glioma network is mani-
fested in dividing cells that constantly redistribute their
molecular contents, it is not unrealistic to assume a
variety of initial states.
We defined the prohibited phenotype S of the network

as where as the set of global states in which the gene Tie-2
for the receptor Tie-2[51] and the gene GNB1 for the
human G-protein beta subunit [52] are both expressed
(see Figure 4). The set S was selected following reports
that vasculogenesis, an important phase in tumor progres-
sion, is initiated by a signal to the receptor Tie-2 that is
propagated through a G protein [53,54]. Since repression
of either Tie-2 or GNB1 is a trivial solution, these genes
were excluded from the perturbations tested. Similarly,
initial states in which both Tie-2 and GNB1 are active
were excluded from the set of possible initial states,
because there is trivially no solution from these states. The
parameter a, which determines the least probability of a
trajectory that will be explored - and hence the running
time of the algorithm, was set to 0.05.
Figure 5 shows the distribution of solution sizes

found. In about 0.5% of the initial states the phenotype
is avoided without any perturbation. Perturbations of
size 1 cause the network to avoid the phenotype in
about 65% of the initial states, and perturbations of size
2 and 3 are needed in the remaining cases.
Figure 6 shows the frequency of perturbations of differ-

ent sizes. It should be pointed out that when there are sev-
eral perturbations of the minimal size, all of them are
found. As can be seen in the figure, the number of pertur-
bations that provide minimal solutions is much smaller
than the total number of possible perturbations. The acti-
vation of the gene GSTP is by far the most abundant
operation in size 1 perturbations. The probability that all
the operations that appear at least once in size 1 perturba-
tions are equally likely is 0.0001 (Χ2 test, 14 degrees of
freedom). In addition, in contrast to other genes, GSTP is
only activated and never repressed. Reassuringly, these
facts are consistent with experimental observations [55]

• Mice deficient in GSTP are viable, fertile, with life
spans essentially similar to animals not deficient in
the gene. However, they show an enhanced suscept-
ibility to carcinogen-induced skin papillomas.
• The absence of GSTP increases the activity of
stress kinases, which results in changes in gene
expression that enhance cell proliferation pathways.
• Hypermethylation of the GSTP regulatory region is
a common somatic alteration identified in human
prostate cancer. This alteration results in the loss of
GSTP expression and is proposed to occur during
pathogenesis of the disease.
• In the latter case it was suggested that there could
be therapeutic value in restoring GSTP activity,
although it has not been tried.

Our results are consistent with these observations.
They single out the activation of GSTP as an operation
that blocks tumor progression.
In initial states where no size 1 perturbation suffices,

GSTP does not participate in a perturbation. This is
consistent with the observation that GSTP is often
highly expressed in cells that have already turned
malignant.
There are four common perturbations of size 2. All of

them include repression of natural killer enhancing fac-
tor B, accompanied by activation of one of BCL2A,
TGF-b, NF�B, or Beta-Actin. The first two operations
are associated with repression tumor cell death, while
the latter three are associated with constant induction of
cell migration.
The most common perturbations of size 3 are activa-

tion of both TGF-b and NF�B or repression of these
entities in addition to activation of the entity BCL2A1.
These results can be understood in the context of the

stages of glioma progression Zagzag et al. distinguish
three stages that precede the formation of new blood
vessels.

a. In the first stage tumor cells migrate and adhere
to existing blood vessels. Huber et al. concluded that
NF�B, at least in part, substitutes for TGF-b in the
process of EMT, which is essential for tumor
migration.
b. In the second stage of tumor progression, blood
vessel cells undergo apoptosis, and the nearby tumor
cells undergo necrosis. Breaking cell-to-cell adhesion
is thought to be a trigger for the apoptotic process.
Disrupting cell migration or preventing apoptosis
may halt the regulatory program at the second stage.
c. In the final stage, new blood vessels are formed.
The initial states that correspond to this stage are
included in the prohibited phenotype.
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Figure 4 The glioma network. Genes (ovals) and their alternative regulation functions (rectangles) are bordered by frames of the same color.
Ovals contain the name of the relevant human gene, following the nomenclature in [48]. Rectangles contain the name of the regulation
function [49]. Regulation functions are connected by directed edges to the gene they regulate. Regulators are connected by directed edges to
the regulation functions in which they are involved. The figure was generated using Cytoscape [59]. The bold arrows indicate the two entities
that constitute the prohibited phenotype (see text).
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Thus, the combination of anti-apoptotic signals in
addition to setting of cell migration signals in size 2
and size 3 perturbations may correspond to blocking
of apoptosis and disrupting the formation of blood ves-
sels, and halting the regulatory program at the second
stage. The most common size 1 perturbation may cor-
respond to prevention of the first stage of tumor
progression.
We interpret our findings in light of existing experi-

mental data as follows: GSTP can prevent the initiation
of the vasculogenesis program. In later stages it is no
longer effective, but other genes can be disrupted in
order to halt this program, depending on the stage of
vasculogenesis - the later the stage the larger the pertur-
bation that is needed.
All executions were performed on x86 64 bits

machines with Pentium IV or Zeon processor and at
most 2 GB RAM. Jobs were run in a time-sharing envir-
onment and therefore the running times are only an
upper bound. The program code was written in C. After
12 hours, 70% of the jobs finished. Since the rest of the
jobs required more than 24 hours, we used only those
70% that concluded early in our analysis.

Discussion
System-level analysis presents researchers with new
challenges and at the same time offers new opportu-
nities for better understanding of the biology. The com-
plexity of reconstructing biological networks and
analyzing their dynamics makes computational tools
essential for system-level approaches [56,57]
We have described a computational method that

determines the minimum size perturbations required for
obtaining (or avoiding) a specific phenotype. Because
the function of genes depends on the global context in
which they are active - the state of the system - the

phenotype cannot be represented by the activity or inac-
tivity of a single gene, but rather by the global state of
the network. We therefore defined a phenotype based
on network dynamics as a set of global states that must
be preserved (or avoided), and designed an algorithm
that follows this definition. The method was implemen-
ted for a probabilistic Boolean model, and was demon-
strated on a glioma network.
We showed that two major problems in network ana-

lysis, namely state explosion and partial knowledge, can
be alleviated by translation to Petri nets and extensions
of the unfolding technique. Our method demonstrates
the power of computational analysis of the network’s
dynamics. On the glioma network it singled out one
perturbation of size 1 whose effect on the phenotype
was strongest. That perturbation has strong support in
the literature. In addition, the most prominent perturba-
tions of sizes 2 and 3 can be explained in the context of
glioma progression. We expect this method can be used
to derive such insights for other networks, because it
does not require perfect knowledge and uses the broadly
applicable Petri net semantics.
Though the paper focuses on GRNs, the suggested

computational method can be applied to signaling or
metabolic networks and to networks that integrate sev-
eral layers, e.g. metabolic and regulatory. Petri nets have
been used for modeling all these network types.
Our method has several limitations: Some instances of

the problem still require exponential running time, mak-
ing our method impractical for finding a minimal per-
turbation for large models. Our method is sensitive to
modeling accuracy and depends on the correctness of
prior knowledge, albeit in a probabilistic setting. In addi-
tion, we assume that the network is asynchronous, while
in some cases the order of occurrence of regulation
functions may be determined by large rate differences
among them.
Improving the algorithm’s performance is one of our

future goals. The minimal perturbation algorithm can be
used in practice only when the size of a perturbation is
small; allowing larger perturbations requires new algo-
rithmic ideas. However, to date it is impractical to per-
turb more than a few entities in the cell, making speed-
ups useful primarily for analyzing larger networks. The
case where some of the entities are synchronized and
some are not can also be considered (Ref. [37] shows
how synchronized networks can be modeled with Petri
nets). Finally, the unfolding algorithm may be improved
by modifying the cutoff criterion.
Other model checking techniques for Petri nets are

described in ref. [58]. Though not directly related to
unfolding, they provide alternative attempts to battle the
state explosion problem when using the Petri net
semantic.

Figure 5 Frequency of perturbation size needed. The histogram
plots the fraction of solutions of each size. “Size 0” indicates states
from which the avoided phenotype is not reachable.
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Figure 6 Frequency of minimal perturbations of sizes 1, 2 and 3. Each bar shows the proportion of the occurrences of a different
perturbation. Act: activation; rep: repression
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Conclusion
The ability to effectively manipulate a given network’s
dynamics in order to produce a desired behavior
depends both on advances in experimental techniques
and on the ability to computationally analyze the net-
work. We presented a computational methodology for
determining a minimum size perturbation yielding a
desired phenotype that copes with some of the urgent
difficulties in modeling. Application of this methodology
to ongoing experimental projects and extension of its
theoretical foundations are among our future goals.

Appendix
Theorem
Let P be a phenotype (respectively, a prohibited pheno-
type). If there is a set of regulation functions F with
probability ≥a that generates a trajectory that does not
remain in P (respectively, that leads to P), such a trajec-
tory will be represented by a configuration C in the
branching process graph and �’(C) ⊆ F.

Proof of the theorem
We prove the theorem for a phenotype. The proof for a
prohibited phenotype is symmetric.
Let S be a state that does not belong to the pheno-

type, and let F be a set of regulation functions with
probability ≥a such that F generates some trajectory
that reaches S.
The proof is by induction on the number of state tra-

versals (edges) in the state graph that are needed for
reaching the state S. For purposes of the proof, we will
use the term “infinite branching process graph” for a
branching process graph in which cutoff points are not
applied, and the term “finite branching process graph”
for the branching process graph that is created by the
algorithm.

Base
Zero state traversals, i.e. the initial state. The initial state
is reachable by every set of regulation functions. In the
branching process graph it is represented by the initial
marking. The set � of the initial marking is the empty
set, and therefore the theorem holds for the base case.

Assumption
Every state that is reachable by a set of regulation func-
tions with probability ≥a and N-1 edge traversals is
represented in the branching process graph.

Step
Let π be the path in the state graph that leads to S, and
let N be the length (number of state traversals) in π.
We want to show that some trajectory leading to S that

is generated by a set of regulation functions with prob-
ability ≥a is represented in the branching process graph.
Let e be the last edge (state traversal) in π. The result-

ing path π’ = π/{e} ends at some state S’ and is of length
N-1. Since there is a path of length N-1 to S’ whose
functions belong to the set F, by the inductive hypoth-
esis S’ is represented by some configuration C’ in the
branching process graph and �’(C’) ⊆ F.
Let t’ be the transition that represents the edge e. We

want to show that t’ can be added to the branching pro-
cess graph to yield a configuration C that represents π.
First, all of the input places that t’ requires are output

places of C’, and therefore are not in conflict. Add t’ to
the branching process graph such that it consumes from
these places. Since �’(C’) ∪ {t’ }⊆ F, t’ will not be set as
a cutoff point according to cutoff criterion 2. If t’ is not
set as a cutoff point due to cutoff criterion 1 either,
then we are finished, because we obtained a configura-
tion C that represents S. Therefore assume that t’ is set
as a cutoff point according to cutoff criterion 1.
In the latter case, [t’] is already represented by some

local configuration C’’. According to cutoff criterion 1,
�’(C”) ⊆ �’([t’]) ⊆ F. if �(C’’) ⊄ F, i.e. there are some reg-
ulation functions with probability 1.0 that are used in C’’
and not in [t’], then we will build the configuration C
for a set F’ that has the same probability as F, i.e. prob-
ability ≥a. Otherwise, we will build C for the set F. In
any case we will have �’(C’) ⊆ F.
Now, note that if [t’] was not set as a cutoff point,

then the set of transitions C/[t’] could have been added
to [t’] in the branching process graph to yield the con-
figuration C. Intuitively, imagine that the branching pro-
cess graph is infinite, i.e. cutoff points are not used at
all. Since C’’ corresponds to the same marking as [t’],
transitions that correspond to the transitions of C/[t’] in
the original Petri net can be added to C’’ in an infinite
branching process graph to produce a new configuration
C’’’ that is smaller than C and �’(C’’’) ⊆ F. If the new
configuration is not represented in the finite branching
process graph, then it must also contain a cutoff point
t’’. We can repeat the same process with the cutoff
point t’’, until we get a configuration that has the same
marking as C, uses only functions of F (or of a set with
equal probability), and is represented in the finite
branching process graph. We will surely obtain such a
configuration because each time that we repeat this pro-
cess the local configuration that corresponds to the cut-
off point becomes smaller, and the minimal size of a
configuration is 0.
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