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Diffusive coupling can discriminate between
similar reaction mechanisms in an allosteric
enzyme system
Ronny Straube1*, Ernesto M Nicola2

Abstract

Background: A central question for the understanding of biological reaction networks is how a particular dynamic
behavior, such as bistability or oscillations, is realized at the molecular level. So far this question has been mainly
addressed in well-mixed reaction systems which are conveniently described by ordinary differential equations.
However, much less is known about how molecular details of a reaction mechanism can affect the dynamics in
diffusively coupled systems because the resulting partial differential equations are much more difficult to analyze.

Results: Motivated by recent experiments we compare two closely related mechanisms for the product activation
of allosteric enzymes with respect to their ability to induce different types of reaction-diffusion waves and
stationary Turing patterns. The analysis is facilitated by mapping each model to an associated complex Ginzburg-
Landau equation. We show that a sequential activation mechanism, as implemented in the model of Monod,
Wyman and Changeux (MWC), can generate inward rotating spiral waves which were recently observed as
glycolytic activity waves in yeast extracts. In contrast, in the limiting case of a simple Hill activation, the formation
of inward propagating waves is suppressed by a Turing instability. The occurrence of this unusual wave dynamics
is not related to the magnitude of the enzyme cooperativity (as it is true for the occurrence of oscillations), but to
the sensitivity with respect to changes of the activator concentration. Also, the MWC mechanism generates wave
patterns that are more stable against long wave length perturbations.

Conclusions: This analysis demonstrates that amplitude equations, which describe the spatio-temporal dynamics
near an instability, represent a valuable tool to investigate the molecular effects of reaction mechanisms on pattern
formation in spatially extended systems. Using this approach we have shown that the occurrence of inward
rotating spiral waves in glycolysis can be explained in terms of an MWC, but not with a Hill mechanism for the
activation of the allosteric enzyme phosphofructokinase. Our results also highlight the importance of enzyme
oligomerization for a possible experimental generation of Turing patterns in biological systems.

Background
The modular structure of biochemical reaction networks
greatly facilitates the systematic investigation of their
design principles [1,2]. In this way it is often possible to
identify small functional units called network motifs [3]
which convey a particular functionality. A thorough
understanding of the relationship between network
design and functionality is not only important for a
smart modification and regulation of existing networks,

but it is also essential to design novel circuits with pre-
scribed functionality [4,5].
Regulatory properties of cellular networks arise from

an interplay between positive and/or negative feedback
reactions. These feedback reactions can be effective at
the transcriptional level, at the posttranslational level or
through allosteric interactions. For example, in tran-
scriptional networks feed forward loops can act as a low
pass filter [6] or as a fold-change detector [7] depending
on the sign of the genetic interactions. Signal transduc-
tion cascades often utilize post-translational modifica-
tions such as phosphorylation/dephosphorylation cycles
to generate ultrasensitivity [8] or bistability [9]. This
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behavior is advantageous for cell fate decisions where
irreversible switch-like transitions are required, e.g. dur-
ing maturation [10] or cell-cycle progression [11]. Meta-
bolic enzymes are often regulated through allosteric
interactions with positive and/or negative effector mole-
cules. A classical example is the allosteric product acti-
vation of the glycolytic enzyme phospho-fructokinase
(PFK) which may lead to an oscillatory behavior of the
glycolytic pathway [12,13].
So far, the relation between particular molecular reac-

tion mechanisms and the resulting macroscopes beha-
vior has been mainly investigated in well-mixed reaction
systems where the dynamics is conveniently described
by ordinary differential equations [14,15]. However, if
the enzymes in reversible modification cycles are located
in different cellular compartments diffusive coupling
between neighboring enzyme/substrate molecules may
generate steep gradients [16] resulting in front-like wave
propagation of phosphoproteins [17]. In that way spa-
tially distributed signaling pathways may create step-like
activation profiles that can affect the downstream
response of the system in a threshold based manner
[18]. Hence, spatial coupling can significantly alter the
macroscopic behavior of biochemical reaction systems
[19] and bring about new functionality to network
motifs [20,21].
In reaction-diffusion systems spiral shaped concentra-

tion waves and stationary Turing patterns are among
the most fascinating spatiotemporal structures. While
spiral waves can occur in systems with excitable and
oscillatory reaction dynamics [22,23] Turing patterns
typically emerge in activator-inhibitor systems with long
range inhibition [24,25]. Here, we investigate the effect
of different mechanisms of product activation on the
generation of such reaction-diffusion patterns in an
enzymatic reaction system centered around the PFK
which is a central part of the glycolytic pathway. Under
well-stirred conditions this system exhibits oscillatory
behavior in both cell free extracts [26,27] and in living
cells [28], and diffusive coupling was shown to generate
waves of glycolytic activity in yeast extracts [29-31].
Recently, we have observed a novel type of spiral wave
behavior in that system [32]. By increasing the overall
protein concentration of the extract a transition from
outward to inward rotating spiral waves (also known as
anti-spirals) was induced. While outward propagating
waves have been observed in several biological systems
[29,33,34] inward rotating spiral waves were, so far, only
observed in purely chemical systems [35,36].
Although we could reproduce the inward propagating

waves in numerical simulations with the Goldbeter
model [32] the underlying molecular mechanism for
their generation is still unclear. The simulations have
shown that the negative feedback on the PFK activity, as

provided by its substrate ATP, is not required to gener-
ate anti-waves. Therefore, we focus here on the allos-
teric activation of the PFK by its product ADP.
Specifically, we address the question whether the sym-
metry model of Monod, Wyman and Changeux (MWC)
[37], as employed in the Goldbeter model, is necessary
to generate inward propagating waves or whether a
more simple Hill kinetics, as it was used by Sel’kov [12]
to model the PFK activation, is suffcient. Since the regu-
latory properties of the PFK play a key role for the
emergence of oscillatory behavior in glycolysis [27,38],
in particular in yeast extracts [39], these simple models
have been remarkably successful in describing general
aspects of glycolytic oscillations [12,40].
The spatio-temporal dynamics of the two PFK effec-

tors ADP and ATP is described by a reaction-diffusion
system of the type

∂ = ∇ + ∈ ∈t x
ku D u f u p u p2 2( , ), , ,  (1)

where D is a (diagonal) diffusion matrix and p denotes
the kinetic parameters. The reaction mechanism is
encoded in the form of the function f(u, p). Due to the
diffusive coupling, the analysis of wave patterns in Eq. 1
is more complicated than the investigation of reaction
mechanisms under well-mixed conditions. However,
near an oscillatory instability due to a supercritical Hopf
bifurcation the spatiotemporal dynamics of Eq. 1 is well
described by the complex Ginzburg Landau equation
(CGLE) [41]

∂ = + ∇ + − +t A ic A A ic A A( ) ( ) | | ,1 11
2

3
2

x (2)

whose solution types are well known [42]. Here, the
complex amplitude A(x, t) describes slow spatio-tem-
poral modulations around the unstable steady state. At
the level of the CGLE the details of the molecular reac-
tion mechanism are encoded in the dependence of the
two real parameters c1 = c1(D, p) and c3 = c3(p) on the
original system parameters p and D in Eq. 1. To find
the mapping between the two sets of parameters is
tedious, but straight-forward [41] (see Methods). The
transition between inward and outward propagating
waves is marked by the curve c1 - c3 = 0 [43-45] where
the region c1 - c3 >0 corresponds to inward propagating
waves in Eq. 1.
By explicitly calculating the two CGLE coefficients c1

and c3 we show that inward propagating waves can arise
in the Goldbeter model due to the sequential binding of
product molecules to the allosteric enzyme as implied in
the MWC mechanism. In contrast, in the limit of an in
finitely large binding a finity, as implicitly assumed in
the Sel’kov model, the formation of inward propagating
waves is sup-pressed by a Turing instability. We also
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find a relation between enzyme cooperativity and the
occurrence of inward propagating waves. However, it is
not the absolute magnitude of the cooperativity which is
important here (as it is for the occurrence of oscillations
[40]), but the sensitivity of the co-operativity with
respect to changes in the activator concentration.
Finally, we observe that the sequential activation
mechanism has a stabilizing effect on the wave
dynamics. Together, this shows that in the presence of
diffusive coupling the particular choice of a molecular
mechanism can have a significant impact on the type
and the stability of spatio-temporal patterns even
though the dynamics under well-mixed conditions is
qualitatively the same.

Model Definitions
Sel’kov Model
In the Sel’kov model it is assumed that the PFK is an
oligomeric enzyme which has n independent binding
sites for the product ADP (activator), but only one bind-
ing site for the substrate ATP (inhibitor) [12]. Simulta-
neous binding of n product molecules activates the
enzyme which allows for subsequent substrate binding
and conversion into product with specific rate k. Hence,
the Sel’kov model distinguishes only three enzyme
states: an inactive state (T00) which has neither substrate
nor product molecules bound and two fully activated
states which can have either zero (R0n) or one (R1n) sub-
strate molecule bound (cf. Figure 1A). Substrate mole-
cules are sup-plied at rate νi and product molecules are
used by downstream reactions with specific rate kd. The
inhibition of the PFK by ATP at high ATP concentra-
tions is neglected in the Sel’kov model.
Under steady-state conditions for the enzyme binding

reactions the local dynamics of the PFK effectors ATP
and ADP is described by the (dimensionless) set of
equations [12]

d

dt
v

d

dt
qS S    = − = −,  (3)




 S

n

n=
+ +1 1( )

(4)

where jS denotes the fractional saturation. Substrate

(a = ATP/KM ) and product ( / ) = ADP K P
app concen-

trations are measured in terms of the Michaelis-Menten

constant K k k kM S S= + − +( ) / and the apparent dissocia-

tion constant for product binding K k kP
app

P P
n= − +( / ) /1 .

The other parameters are given by

  = =i M d M dK k ke K k/ , /0 and q K KM P
app= / .

Time is measured in units of 1/kd and e0 denotes the
total enzyme concentration.
MWC Model
Based on experimental evidence Goldbeter proposed an
alternative approach to describe the allosteric regulation
of the PFK [13] which utilizes the Monod-Wyman-
Changeux mechanism [37]. Here, the free form of the
oligomeric enzyme performs concerted transitions
between a catalytically active (R00) and a catalytically
inactive (T00) conformation where the allosteric constant
L = k+/k- defines the equilibrium between both confor-
mations in the absence of any ligands (Figure 1B). The
enzyme is activated by sequential binding of product

molecules with dissociation constant K k kP P P= − +( / ) for

each binding step. Hence, there are n + 1 active enzyme
forms R0m to which substrate molecules can bind to
form n + 1 enzyme-substrate complexes R1m. Each com-
plex can release product molecules at the specific rate k.
Similar as in the Sel’kov model substrate molecules

are supplied at rate νi and product molecules leave the
system with specific rate kd such that the local dynamics
of ATP and ADP is described by the same set of equa-
tions as in Eqs. 3 with jS (Eq. 4) being replaced by (see
Methods)


 

 M

n

nL
= +

+ + +
( )

( )( )
.

1

1 1
(5)

The parameters have the same meaning as in Eqs. 3 if

the apparent dissociation constant K P
app is replaced by

the true dissociation constant KP .
Compared with the original Goldbeter model we have

neglected the cooperativity with respect to substrate
binding and the inhibitory effect of ATP on the PFK
activity (as suggested by numerical simulations [32]).
With these simplifications we treat the Sel’kov and the

Figure 1 Reaction mechanisms describing the allosteric
activation of the phosphofructokinase by its product ADP. Hill-
like activation as in the Sel’kov model [12] (A) and sequential
activation as in the Monod-Wyman-Changeux mechanism [37] used
in the Goldbeter model [13] (B) - shown for two ADP-binding
subunits (n = 2).
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Goldbeter model on an equal footing which allows for a
direct comparison between their PFK activation
mechanisms. Since our model retains the MWC
mechanism for PFK activation as an essential part we
shall call it the MWC model. We also remark that the
PFK actually exhibits sigmoidal behavior with respect to
its second substrate fructose-6-phosphate while it does
not show any co-operativity with respect to ATP
[46,47]. Hence, the simplifying assumption of a hyper-
bolic dependence of the PFK activity on ATP as a sub-
strate seems to be reasonable.
Diffusion and Unified Description
The simplest way to incorporate diffusive coupling
between the PFK effectors ATP and ADP is to add ‘dif-
fusion terms’ in Eqs. 3 with constant (effective) diffusion
coefficients. Thereby, we neglect complications arising
from allosteric interactions between the PFK effectors
and the enzyme which may lead to cross-diffusion terms
(non-diagonal elements in the diffusion matrix D) and a
dependence of the effective diffusion coefficients on the
effector concentrations [48,49]. For a recent review of
the effects of cross-diffusion on pattern formation see
Ref. [50].
Due to the structural similarity between the two

expressions in Eqs. 4 and 5 it is convenient to rewrite
the effective PFK reaction rate in a unified form. The
resulting reaction-diffusion equations read

∂ = ∇ + −t i    x
2 (6)

∂ = ∇ + −

= +
+ + +

=
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(7)

where the parameter δ ≡ DATP/DADP denotes the ratio
between the effective diffusion coefficients of inhibitor
and activator. Length scales are measured in units of the
activator diffusion length given by (DADP/kd)

1/2 = (DATP/
δkd)

1/2.
Eqs. 6 and 7 will be analyzed near a supercritical Hopf

bifurcation where the dynamics is well de-scribed by the
CGLE in Eq. 2. We are particularly interested in the
type and the stability of the emerging patterns as we
change from a sequential activation mechanism (LM = L
>1, εM = 1) to a Hill-like activation mechanism (LS ≡ 1,
εS = 0). Note that the Hill mechanism leads to a factor
gn in Eq. 7 while the sequential mechanism produces a
factor (1 + g)n. The latter results from the (binomial)
summation over the intermediate enzyme states Rl0, ...,
Rln (l = 0, 1) (see Methods).

Transition from the MWC to the Sel’kov Model
Given the structural similarity between the Sel’kov and
the MWC model it will be beneficial to investigate the
relation between the two models in more detail. In par-
ticular, we expect that the MWC mechanism reduces to
that of the Sel’kov model as the affinity for subsequent
product binding steps increases (i.e. KP decreases) such
that the product activation becomes more and more
cooperative.
To show this explicitly we note that under the rescal-

ing KP ® εKP with 0 < ε <1 the normalized activator
concentration g = ADP/KP changes as g ®g/ε and jM

becomes jM (a,g/ε): = jε (a,g) with

  
  

    ( , )
( )

( )( )
.= +

+ + +

n

M
n nL 1

(8)

Hence, jε interpolates between jM and jS since j1 ≡

jM and as ε ® 0 (the binding a finity in-creases) jε

approaches jS provided that the product LM εn con-
verges to LS = 1. However, this means that in the MWC
model the enzyme cooperativity, as measured by the
allosteric constant LM , has to become increasingly large
which is in agreement with the idea that the product
activation becomes more cooperative as we change from
the MWC to the Sel’kov mechanism.
Formally, we can describe this transition by

lim lim .





  
→ →

= =
0 0

1S M
nLprovided that (9)

This relation between the MWC and the Sel’kov
model will be helpful when we analyze how the type
and the stability of the spatio-temporal patterns changes
as we change the PFK activation mechanism from the
MWC to the Hill type.

Results
The diffusive coupling of locally oscillatory reactions as in
Eqs. 6 and 7 can generate different types of reaction-diffu-
sion wave patterns which can be broadly classified into
outward and inward propagating waves [45]. Near a super-
critical Hopf bifurcation the transition between these wave
types occurs for c1 -c3 = 0 (Eq. 2). Depending on the initial
and/or boundary conditions these waves may appear in
the form of circular or spiral shaped waves.
More complex dynamic behavior can occur near a

Benjamin-Feir instability which is indicated by the con-
dition 1 + c1c3 <0 [42]. In this bifurcation plane wave
solutions become unstable against long wave length
perturbations which may result in the occurrence of
spatio-temporal chaos.
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Finally, when the spatial scale separation δ becomes suf-
ficiently large the oscillatory instability may be suppressed
and stationary Turing patterns can emerge. The transition
between wave dynamics and stationary patterns is indi-
cated by the codimension-two Turing-Hopf bifurcation.
To compare the spatio-temporal dynamics of the

Sel’kov and the MWC model we have calculated the
two CGLE coefficients (c1 and c3) and the Turing-Hopf
curve for Eqs. 6 and 7 as a function of the systems para-
meters Li, εi, ν, q, n and δ (see Methods). Note that s
has been eliminated by the requirement for the system
to be near the Hopf bifurcation.

Sequential vs. Hill-like Activation Mechanism
To decouple the two limiting prescriptions in Eq. 9 we
study Eqs. 6 and 7 first in the regime of low glycolytic
flux as it is typically observed during oscillatory behavior
[51]. This regime is characterized by the conditions as =

O(1) and  s
n  1 for the Sel’kov and (1 + gs)

n ≪ L for

the MWC model. Here, as and gs are the respective
inhibitor and activator concentrations of the (unstable)
steady state. In this approximation, the function ji in
Eq. 7 becomes [12]

  i
i

n

L
i i S M≈ ∈ + =1

   ( ) , , . (10)

The parameter Li can be absorbed into the definition

of the new parameter combination  = / Li in Eqs. 6

such that we can simply change from the MWC to the
Hill mechanism by decreasing ε from εM = 1 to εS = 0
(Figure 2).
As the affinity for the sequential binding of product

molecules increases (ε decreases) the stability region of
inward propagating waves (dark shaded area) decreases
(Figure 2A and 2B). At ε = 0.1 the transition curve
between outward and inward propagating waves (c1 - c3
= 0, dashed line) has crossed the Turing-Hopf bifurca-
tion line (Figure 2C). Thus, for ε ≤ 0.1 the transition to
inward propagating waves occurs in the non-oscillatory
regime where wave behavior (shaded area) is suppressed
in favor of stationary Turing patterns. This shows that
the inward propagating waves, as predicted by the
CGLE, are not necessarily observable at the level of the
original reaction-diffusion system (Eqs. 6 and 10). Since
the binding of subsequent product molecules becomes
more cooperative as ε ® 0 the occurrence of inward
propagating waves in the MWC model seems to be
related to the sequential activation of the PFK (Figure
1B) which exhibits less cooperativity because the binding
a finity (1/εKp) is finite for ε = 1.

Wave Stability and Numerical Simulations
For the MWC mechanism outward propagating waves
are stable even if the activator diffuses faster than the
inhibitor (δ <1). However, as ε decreases these waves
become unstable as indicated by the appearance of a
Benjamin-Feir (BF) instability (Figure 2B, 2C and 2D,
dash-dotted line). The BF in-stability (1 + c1c3 <0)
marks the region in parameter space where plane waves
with a wave number k = 0 become unstable to long
wave length perturbations. Hence, in the region to the
left of the BF curve no stable wave patterns are observa-
ble. How-ever, since even for 1 + c1c3 >0 waves with a
finite wave number k ≠ 0 also can become unstable [41]
there is typically a whole region of unstable wave beha-
vior (extending to the right of the BF curve) where spa-
tio-temporal chaos emerges (Figure 3A). Thus,
increasing the cooperativity for the product activation
steps (ε ® 0) leads to a destabilization of the coherent
wave behavior for δ ≤ 1.
Away from the BF instability curve (δ >1) outward

propagating waves become stable even in the limit ε = 0
(Figure 3B). As δ increases further these waves turn into
stationary Turing patterns (Figure 3C). In contrast, for
the sequential product activation mechanism (ε = 1)
there is no Benjamin-Feir instability for typical numbers
of PFK subunits n ≤ 8 [52] and sufficiently low values of
the steady state activator concentration gs = νq (cf.
Figure 4E). Hence, there is no spatio-temporal chaos in

Figure 2 Transition from a sequential (εM = 1) to a Hill-like (εS
= 0) activation mechanism. The solid line (Turing-Hopf (TH)
bifurcation) separates wave patterns (grey shaded area) from
stationary Turing patterns (white area above the TH curve). The
dashed line (AS) indicates the transition from inward (dark grey) to
outward (light grey) propagating waves where c1 - c3 = 0. The
dash-dotted line marks the Benjamin-Feir (BF) instability and the
occurrence of spatio-temporal chaos nearby. Other parameters: ν =
0.5, q = 1.
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that regime. Instead, outward propagating waves are
stable at low values of δ (Figure 2A and Figure 3D). As
δ increases the direction of wave propagation changes
from outward to inward such that anti-spirals become
observable (Figure 3E). At sufficiently large values of δ
wave behavior is suppressed by a Turing instability
(Figure 3F) similar as for the Sel’kov model.

Inward Propagating Waves and Enzyme Cooperatively
The fact that the occurrence of inward propagating
waves depends on the binding a finity for sub-sequent
product activation steps suggests that the strength of
enzyme cooperativity might play a role in this respect.
The amount of cooperativity can be conveniently quan-
tified by an effective Hill coefficient which is defined
(with respect to the activator concentration) as [40] nH
= (g/M)(dM/dg ) where M ≡ j/(1 - j). For j = ji (Eq.
7) this quantity is explicitly given by

n
nL

L
i S MH

i

i

i i
n( )

( )
, , .


   

=
+ + +

= (11)

Positive (negative) cooperativity corresponds to values
nH >1 (nH <1) while nH = 1 indicates no cooperativity.
To perform the transition from the MWC to the Hill

mechanism when L is not necessarily large we introduce
in Eq. 8 an effective allosteric constant as Leff ≡ LM εn =
ε (L - 1) + 1. This definition ensures that Leff has the
correct limiting behavior as required by Eq. 9, i.e. Leff =
LM = L for ε = 1 and Leff ® LS = 1 as ε ® 0. Note that
the true allosteric constant LM increases as 1/εn when
ε ® 0.

Figure 3 Numerical simulations of Eqs. 6 and 7. Spatio-temporal
chaos (A), spiral waves (B and D), anti-spiral wave (E) and Turing
patterns (C and F) as indicated in the phase diagrams shown in
Figure 2A and 2D. Upper panels display snapshots of 2 d
simulations. Shown are normalized ATP concentrations (maximal
value = white). Lower panels display space-time plots along the
dashed line in the respective upper panel (Simulation time: 22 units
(A-C), 44 units (D-F)). Note the direction of wave propagation which
is outward (away from the spiral core) for B and D, and which is
inward in E. Simulations were done on a spatial grid (176 x 176)
with no-flux boundary conditions. Parameters: ν = 0.5, q = 1, n = 8
(A-F) and L = 103 (D-F). Parameter s was chosen near the Hopf
bifurcation: s = 1770 (A-C), s = 50 (D), = 60 (E and F). Further
details are given in Methods:Numerical Simulations and Table 1.

Figure 4 Transition from the MWC to the Sel’kov mechanism as described by Eq. 9. Upper panels show the Hill coefficient nH (Eq. 11) as a
function of the steady state activator concentration gs while the lower panels show the respective phase diagram. The solid line (TH) separates
wave patterns (grey shaded area) from stationary Turing patterns. The dashed line indicates the transition from inward (dark grey) to outward
(light grey) propagating waves while the dash-dotted line marks the Benjamin-Feir (BF) instability and the occurrence of spatio-temporal chaos.
The dotted line marks the location of the maximum of the Hill coefficient. Other parameter: L = 103, n = 8, q = 1.
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In Figure 4 we relate the occurrence of inward propa-
gating waves to the properties of the effective Hill coef-
ficient nH as described by Eq. 11. For the MWC model
nH exhibits a single maximum as a function of the
steady state activator concentration gs = νq (Figure 4A).
While oscillatory behavior (grey shaded area) is observed
on both sides of the maximum (dotted line) of the Hill
curve inward propagating waves only occur to the left of
it where dnH/dgs >0 (Figure 4E). This behavior is inde-
pendent of the particular choice of the other parameters
L and q (Figure 5). As ε decreases the cooperativity of
product activation increases as indicated by an in-crease
in the maximum of the Hill curve (Figure 4B and 4C).
Concomitantly, the stability region of anti-spiral waves
rapidly shrinks and subsequently shifts to small activator
concentrations where the steep-ness of the Hill curve is
sufficiently large (Figure 4F and 4G). This suggests that
it is not the strength of the cooperativity per se, but the
sensitivity of the Hill coefficient with respect to changes
in the activator concentration which determines whether
inward propagating waves can occur or not. This is in
agreement with the fact that for the Sel’kov model,

where n nH s
n= +/ ( )1  is a monotonically decreasing

function (dnH/dgs ≤ 0), the formation of inward propa-
gating waves is suppressed (Figure 4D and 4H).

Discussion
Beginning in the 1960s glycolytic oscillations have
become one of the best studied biochemical oscillators

both in cell-free extracts [26,38,53] and in living cells
[28,54]. Later it was found in studies with yeast cell
populations that glycolytic oscillations represent a col-
lective phenomenon. The oscillations in individual cells
are synchronized through the exchange of metabolic
intermediates such as acetaldehyde [55] or glucose [56].
At low cell densities the oscillations at the population
level disappear (synchronously in all cells) indicating a
quorum sensing mechanism [57]. Synchronized behavior
was also observed in cell-free extracts where diffusive
coupling of glycolytic enzymes can generate waves of
glycolytic activity [30,31]. However, clear experimental
evidence for metabolic waves in living cells remains
scarce [58] although mathematical modeling supports
the feasability of such waves [59].
Recently, a novel type of wave dynamics, called inward

rotating spiral waves, has been observed in cell-free
yeast extracts [32]. Such wave behavior has, so far, only
been observed in purely chemical systems [35,36]. Here,
we have investigated the molecular mechanism underly-
ing the generation of such anti-spiral waves in simple
glycolytic model systems which focus on the allosteric
activation of the glycolytic enzyme phosphofructokinase
(PFK). We have shown that in the Goldbeter model
inward rotating spiral waves can arise due to the
sequential activation of the PFK implied in the Monod-
Wyman-Changeux mechanism [13,37]. In the limit of an
in finitely large binding a finity where the PFK activation
is described by a Hill function, as in Sel’kov model [12],
the capability to generate inward propagating waves is
lost. This suggests that the MWC mechanism, as in Fig-
ure 1B, can not be further implied. On the other hand,
as we have shown earlier [32] the capability to generate
anti-waves is retained by the Goldbeter model where the
cooperativity with respect to substrate binding and the
allosteric inhibition by ATP are additionally taken into
account. Hence, the MWC model can be regarded as a
‘core’ mechanism for the generation of inward propagat-
ing waves for allosteric enzyme systems with product
activation.
For well-mixed reaction systems a simple Hill function

is often employed to model cooperative behavior in a
‘generic’ way. Near the onset of oscillations choosing a
Hill kinetics instead of a more complex activating func-
tion, as in the MWC model, does not lead to a qualita-
tive change in the dynamics under well-stirred
conditions. However, as we have shown, the choice of
the activating function can significantly change the type
and the stability of dynamic patterns in the presence of
diffusive coupling. For example, the appearance of a
Benjamin-Feir instability in the Sel’kov model indicates
the occurrence of spatio-temporal chaos which is mostly
absent in the MWC model (Figure 2, 3 and 4). This sug-
gests that the intermediate enzyme forms in the MWC

Figure 5 Phase diagrams similar as in Figure 4E, but for
different values of L and q. The phase diagrams for the
occurrence of spiral waves (light grey), anti-spirals (dark grey) and
Turing patterns (white area above the TH curve) remain qualitatively
the same independent of the particular values of the parameters L
(A and B) and q (C and D). For comparison, see the case L = 103

and q = 1 shown in Figure 4E.
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model, which are only partially saturated with product
molecules, can stabilize the system dynamics against
long wave length perturbations.
Sel’kov and Goldbeter have shown that for the PFK

mediated reaction to become oscillatory a sufficiently
strong positive enzyme cooperativity is required [12,60].
However, as far as oscillations are concerned the
detailed shape of the Hill coefficient curve (Eq. 11) is
not important. Consequently, they occur on the ascend-
ing branch of the cooperativity curve (where dnH/dgs
>0) as well as on the descending branch (where dnH/dgs
<0) as long as nH >1 (Figure 4A, B, C and 4D). Interest-
ingly, the occurrence of inward propagating waves does
not seem to depend on the magnitude of the enzyme
cooperativity, but on its sensitivity with respect to
changes in the activator concentration. Our simulations
show that the formation of inward propagating waves
correlates with a positive sensitivity (dnH/dgs >0) which
indicates that for the pattern forming aspects of allos-
teric enzyme systems more subtle enzyme properties
play a role than they do for the occurrence of
oscillations.
Since the glycolytic model systems in Eqs. 6 and 7 are

of the substrate-depletion type [14] it is not surprising
that both models predict the occurrence of stationary
Turing patterns if the spatial scale separation between
inhibitor and activator dynamics becomes sufficiently
large [49]. What is surprising is the fact that this transi-
tion already occurs for comparably small values of δ =
2, ..., 4 if the number n of enzyme subunits is suffi-
ciently large (Figure 2A and 2D). This strong depen-
dence on the enzyme cooperativity has been largely
neglected in earlier work [61,62] which mostly focused
on the case n = 2 (corresponding to muscle PFK). How-
ever, in yeast the PFK is an octamer (n = 8) for which
Turing pat-terns are predicted to occur for δ >4 in the
MWC model and for δ >2 in the Sel’kov model. The
necessary spatial scale separation could be generated, for
example, through preferential allosteric interactions of
the PFK effectors with immobilized enzymes [32,63],
including the PFK itself. Although Turing patterns can
be systematically generated only in chemical systems yet
[25] our results suggest that high oligomeric enzyme
systems are promising candidates to generate such pat-
terns also in properly designed biochemical reaction-dif-
fusion systems.

Conclusions
In well-mixed reaction systems the systematic investiga-
tion of molecular reaction mechanisms has led to con-
siderable insights into the design principles for the
generation of a specific type of dynamic behavior such

as bistability or oscillations [14,15,64]. Here, we have
expanded this approach to the case of spatially extended
systems. Specifically, we have demonstrated that ampli-
tude equations are a valuable tool to investigate how the
occurrence of particular spatio-temporal patterns
depends on the details of the underlying molecular reac-
tion mechanism in the presence of diffusive coupling. In
that way we could provide a molecular explanation for
the occurrence of inward rotating spiral waves as they
were recently observed in glycolysis in cell-free yeast
extracts. Our results support the view that in yeast the
allosteric enzyme phosphofructokinase is activated by a
Monod-Wyman-Changeux and not by a Hill mechan-
ism. They also highlight the importance of the number
of enzyme subunits for a possible experimental genera-
tion of Turing patterns in biological systems.

Methods
Derivation of the rate law for the PFK in the MWC model
In general, if all enzyme binding reactions are in quasi-
steady state the effective reaction rate can be written as
[65]v= ke0j. Here k is the intrinsic substrate conversion
rate of a single enzyme subunit, e0 denotes the total
enzyme concentration and

 =
+ +

=

=

∑
∑

1
0

1

00
0

0 1

m

n

m

m

n

m m

R

T R R

·

( )
(12)

is the fractional saturation function which measures
the number of occupied substrate binding sites relative
to the total number of substrate binding sites. In quasi-
steady state the active enzyme states Rlm can expressed
in terms of binding constants and substrate/product
concentrations. For example, for the case n = 2 shown
in Figure 1B we have R01 = 2R00ADP/KS and R02 =
R01ADP/2KS = R00 (ADP/KS)

2. Hence, the summation
over the intermediate enzyme states in

R ADP K Rll S00

2 2
001=∑ = +( / ) produces a binomial

series. Similarly, we obtain

R ADP K R ATP Kll S M10

2 2
001=∑ = +( / ) ( / ) such that

j as defined in Eq. 12 reproduces Eq. 5 by taking into
account that L = T00/R00.

Calculation of the Hopf and the Turing Instability
We begin by rewriting Eqs. 6 and 7 in the form

∂ = ∇ +

∂ = ∇ +
t x

t x

f p

f p

    

   




  

  

2

2

( , ; )

( , ; )
(13)
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where the functions fa and fg are given by

f p

f p q
i

i





     
     
( , ; ) ( , )

( , ; ) ( , ) .

  

  

= −
= −

The function ji is defined as
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i S M( , )
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1
  

where the Sel’kov model is characterized by εS = 0 and
LS = 1 while the Monod-Wyman-Changeux model is
obtained for εM = 1 and LM = L >1. In Eqs. 13 the vec-
tor p = (ν, s , q, n, Li, εi) collectively denotes the kinetic
parameters appearing in the functions fa and fg.
Steady States
The unique (spatially homogeneous) steady state of Eqs.
13 is given by


 

s
i

i
n

v

v

L

vq
vq=

−
+

+( )
⎛

⎝
⎜
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⎞

⎠
⎟
⎟

=1 , . (14)

For as >0 to be positive we require that s > ν.
Turing and Hopf bifurcation thresholds
The stability of the fixed point (as, gs) against spatio-
temporal perturbations of the form δa (x, t) =a0 exp
(ikx + lt) and δg(x, t) = g0 exp (ikx + lt) is determined
by the characteristic polynomial

 2
1 0 0+ + =a k a k( ) ( ) (15)

where l(k) characterizes the temporal evolution of a
spatial growth mode with wave vector k. The co-efficient
functions a0 and a1 in Eq. 15 are given by

a k k qB A
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Instabilities occur if there exists a kc for which Re (l
(kc)) >0. The type of instability depends on whether this
occurs for kc = 0 (Hopf bifurcation) or for kc ≠ 0 (corre-
sponding to a Turing bifurcation if, in addition, Im (l
(kc)) = 0).
Turing bifurcation The critical wave number kc of the
most unstable mode in the Turing bifurcation is

determined by da0/dk = 0, and the corresponding para-
meter set is implicitly given by a0(kc) = 0.
Hence,

k qB Ac
2 1

2
1= − −


[ ( ) ]

and the parameter set for the Turing bifurcation is
described by

T p qB A A( , ) [ ( ) ] .  = − − − =1 4 02 (17)

Hopf bifurcation The Hopf bifurcation is determined
by a1(k = 0) = 0 or 1 + A - qB = 0 which is a quadratic
equation for s. The respective solution is given by

 H r r s= − −2 (18)
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Turing-Hopf codimension-2 bifurcation In general,
oscillations are observed for s ≤ sH if sH < sT while
Turing patterns emerge for s ≤ sT if sT < sH and sT is
the smallest (real) root of Eq. 17. However, if both of
these codimension-1 bifurcations occur simultaneously
(sH = sT ) a Turing-Hopf codimension two bifurcation
takes place. An implicit expression for this bifurcation
curve is obtained by using the explicit representation for
sH (Eq. 18) in the expression for T (δ, p) = 0 (Eq. 17).
Note that near the Turing-Hopf bifurcation curve it can
be difficult to predict whether wave or Turing patterns
are observed since both can be simultaneously stable.
Alternatively, mixed mode patterns can appear near a
Turing-Hopf bifurcation [66].

Calculation of the CGLE coefficients c1 and c3
Near the supercritical Hopf bifurcation the spatio-tem-
poral dynamics of the reaction-diffusion system in Eqs.
13 is well described by the complex Ginzburg Landau
equation (CGLE) [41]

∂ = + ∇ + − +t xA ic A A ic A A( ) ( ) | | .1 11
2

3
2

Here, A(x, t) is a complex amplitude describing slow
spatio-temporal modulations around the (spatially
homogeneous) unstable steady state of Eqs. 13 while c1
and c3 are real coefficients. In general, c3 = c3(p) only
depends on the reaction mechanism through the kinetic
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parameters while c1 = c1(p,δ ) additionally depends on
the ratio of the diffusion coefficients δ = Da/Dg.
To determine the borderline between inward and out-

ward propagating waves, given by c1 - c3 = 0, we will
calculate the two CGLE coefficients c1 and c3 as a func-
tion of the original system parameters following the
approach in Ref. [41].
Calculation of c1
The first CGLE coefficient c1 is given by c1 = d2/d1

where d d id u Du= + =1 2 0 0
* . Here, i is the imaginary

unit, D = diag(δ, 1) denotes the diagonal diffusion

matrix and u u0 0
*( ) are the left(right) eigenvectors of the

Jacobian matrix

L
f f

f f
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⎟⎟

   

   

, ,

, ,

where fa,a ≡ ∂fa/∂a, etc. denote the respective partial
derivate. Here and in the following all expressions have to
be evaluated at the Hopf bifurcation by eliminating from
the expression for A using Eqs. 16 and 18. The eigenvectors

u

u iq A i A

q
i
A

0

1

0

1

1

1
2

1

=
− +( )⎛

⎝

⎜
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⎞

⎠

⎟
⎟

= − −( )* ,

are normalized as u u0 0
* ⋅ =  1 and their respective

eigenvalues are given by 0 = i A and 0
* = −i A .

Hence, the oscillation frequency at the Hopf bifurcap-

tion is given by H A= . For c1 we find

c H1
1
1

= −
+





. (19)

Calculation of c3
The calculation of c3 is more tedious, but straight-for-
ward [41]. The expression for c3 is given by c3 = g2/g1
where

g ig u M u V u M u V

u N u u u

1 2 0 0 0 0 0 0 0

0 0 0 0 0

2 2

3

+ = − −

−
+

* *

* .
(20)

The ‘overbar’ in u0 denotes complex conjugation and

transposition such that u0 is a column vector. In Eq.

20 we have defined the tensor-valued vectors M0 = (M1,
M2) and N0 = (N1, N2). The components of M0 are
given by the second-rank tensor

M
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while each component of N0 is a third-rank tensor
given by
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Here we have set (a, g) ≡ (x1, x2) and i, j, k = 1, 2.
Hence, in component form Eq. 20 reads

g ig u M u V u M u V

u N u

l l ij i j l l ij i j

l l ijk

1 2 0 0 0 0 0 0 0

0 0 0

2 2

3

+ = − −

−

+
*

,
*

,

*
, ii j ku u0 0

where we have used the Einstein summation conven-
tion according to which over indices appearing twice in
a term has to be summed automatically - from 1 to 2 in
our case. The vectors V0 and V+ are given by

V L M u u0 0
1

0 0 02  = − −

V L Id M u u+ = − − −  ( )0 0
1

0 0 02

where Id ≡ diag(1, 1) denotes the 2 × 2 identity
matrix. The matrix L0 and the eigenvalue l0 have been
defined in Section.
Explicit expression for c1 and c3 in the limit of low
glycolytic flux The calculation of c3 has been automa-
tized using a computer algebra system which was also
used to plot the graphs in Figure 2 and 4. In contrast to
c1 (Eq. 19) the output for c3 is too clumsy to be dis-
played in a comprehensive manner. How-ever, in the
case of low glycolytic flux where Eqs. 13 can be approxi-
mated as (cf. Eq. 10)

∂ = ∇ + − + =

∂ = ∇ + + −
t i

n

t i
n

L

q

        

     
x

x

2

2
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Straube and Nicola BMC Systems Biology 2010, 4:165
http://www.biomedcentral.com/1752-0509/4/165

Page 10 of 13



the expression for c3 considerably simplifies to
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where the polynomial functions Pi are given by
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The expression for c1 is still given by Eq. 19 with the
Hopf frequency
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Note, that for the Sel’kov case, where εi ≡ εS = 0, the
coefficients c1 and c3 become independent of the para-
meter combination νq corresponding to the steady state
value of the activator concentration.

Numerical Simulations
The results of numerical simulations shown in Figure 3
were generated by discretizing Eqs. 6 and 7 in space and
time where the Laplacian was approximated by finite
differences (five-point-scheme). The resulting set of
ordinary differential equations was integrated using a
4th order Runge-Kutta scheme with no-flux boundary

conditions. The respective parameters are summarized
in Table 1. The Turing patterns in Figure 3C and 3F
were generated from random initial conditions chosen
as

 ( , , ) ( . ( )),t x y rs= = + −0 1 0 05 2 1  

where r is a random number equally distributed in the
interval [0,1] and x, y = 1, ...,N. A similar expression was
used for g.
To generate a (anti-)spiral wave as in Figure 3A, D

and 3E one has note that the spiral core corresponds to
a phase singularity [41]. If not created initially such a
phase defect will not develop spontaneously in a spa-
tially homogeneous medium. To simulate the spiral
waves we have, thus, created a phase defect by initially
imposing a spatial gradient of the inhibitor (a) along the
x-direction and a second spatial gradient of the activator
(g) along the y-direction as
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To generate Figure 3A and 3B we have chosen k = 1/
70 while Figure 3D and 3E were generated with k= 2/3.
We remark that the physical side length of the simula-

tion domain is given by lD · dx · N where


D

ADP

d

ATP

d

D

k

D

k
= =

⋅
(21)

denotes the diffusion length of the activator, dx is the
spatial step size of the discretization and N = 176 is the
number of grid points which we kept fixed for all simu-
lations. As a result, the physical dimensions of each
panel in Figure 3 are different since the simulations
were done for different values of the spatial scale separa-
tion δ = DATP/DADP and dx (cf. Table 1). Once specific
values for the ATP diffusion co-efficient DATP and the
product consumption rate kd are provided the physical
side length is determined by (DATP/kd)

1/2 ls where ls =
dx · N/δ1/2 denotes the dimensionless side length.
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Table 1 Parameters for the Numerical Simulations shown
in Figure 3.

model Sel’kov MWC

panel A B C D E F

system parameters

δ 1 1.5 3 1 3 5

s 1770 1770 1770 50 60 60

as (Eq. 14) 0.073 0.073 0.073 0.4 0.34 0.34

gs (Eq. 14) 0.5 0.5 0.5 0.5 0.5 0.5

integrator parameters

spatial step: dx = dy 3 3 0.3 3 10 0.3

time step: dt 0.05 0.05 3.10-3 0.05 0.1 3.10-3

side length ls 528 431 30.5 528 103 23.6

For the integration of Eqs. 6 and 7 we have fixed the following parameters ν =
0.5, q = 1, LS = 1, LM = 103, εS = 0, εM = 1 and n = 8 (number of PFK subunits).
Simulations were done on a square grid of dimension N × N with N = 176. The
dimensionless side length of the domain is given by ls = dx · N/δ1/2.
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