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Abstract
Background: DosR is an important regulator of the response to stress such as limited oxygen availability in 
Mycobacterium tuberculosis. Time course gene expression data enable us to dissect this response on the gene 
regulatory level. The mRNA expression profile of a regulator, however, is not necessarily a direct reflection of its activity. 
Knowing the transcription factor activity (TFA) can be exploited to predict novel target genes regulated by the same 
transcription factor. Various approaches have been proposed to reconstruct TFAs from gene expression data. Most of 
them capture only a first-order approximation to the complex transcriptional processes by assuming linear gene 
responses and linear dynamics in TFA, or ignore the temporal information in data from such systems.

Results: In this paper, we approach the problem of inferring dynamic hidden TFAs using Gaussian processes (GP). We 
are able to model dynamic TFAs and to account for both linear and nonlinear gene responses. To test the validity of the 
proposed approach, we reconstruct the hidden TFA of p53, a tumour suppressor activated by DNA damage, using 
published time course gene expression data. Our reconstructed TFA is closer to the experimentally determined profile 
of p53 concentration than that from the original study. We then apply the model to time course gene expression data 
obtained from chemostat cultures of M. tuberculosis under reduced oxygen availability. After estimation of the TFA of 
DosR based on a number of known target genes using the GP model, we predict novel DosR-regulated genes: the 
parameters of the model are interpreted as relevance parameters indicating an existing functional relationship 
between TFA and gene expression. We further improve the prediction by integrating promoter sequence information 
in a logistic regression model. Apart from the documented DosR-regulated genes, our prediction yields ten novel 
genes under direct control of DosR.

Conclusions: Chemostat cultures are an ideal experimental system for controlling noise and variability when 
monitoring the response of bacterial organisms such as M. tuberculosis to finely controlled changes in culture 
conditions and available metabolites. Nonlinear hidden TFA dynamics of regulators can be reconstructed remarkably 
well with Gaussian processes from such data. Moreover, estimated parameters of the GP can be used to assess whether 
a gene is controlled by the reconstructed TFA or not. It is straightforward to combine these parameters with further 
information, such as the presence of binding motifs, to increase prediction accuracy.

Background
Although gene microarrays enable us to measure the
abundance of gene transcripts, they fail to capture any
changes in transcription factor activity (TFA) after tran-
scription, for example, during the translation process or
by the interaction of the transcription factor with other

proteins or cofactors. The discrepancy between the activ-
ity of a transcription factor (TF) and its expression profile
may be substantial.

Consequently, TFAs might need to be modelled as hid-
den variables as has been suggested in several publica-
tions [1-4].

Reconstruction of hidden transcription factor activity
Liao et al. (2003) [1] propose network component analy-
sis (NCA) which estimates hidden TFAs based on known
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connections between TFs and their target genes. Sabatti
and James (2006) [4] present a Bayesian latent component
algorithm for transcription regulatory networks based on
work by West (2003) [5]. In this Bayesian framework, pri-
ors incorporate biological knowledge of interactions
between TFs and target genes. An advantage of a Bayes-
ian approach is also the ability to identify unknown net-
work connections using priors that encourage sparsity of
the connections. Pournara and Wernisch (2007) [6] pro-
vide an overview and comparison of these and similar
approaches based on factor analysis. Such approaches
make no use of the order in time and the dynamics of the
data. A state space model with linear dynamics is sug-
gested in Sanguinetti et al. (2006) [7]. Pournara and Wer-
nisch (2008) [6] extend the Bayesian factor analysis
approach for reconstructing TFAs and connections by
integrating correlation between time points. Once a TFA
is reconstructed it can be further exploited to predict
unknown target genes. For example, Barenco et al. (2006)
[8] present a differential equation based model to esti-
mate the hidden TFA of p53 and then predict the target
genes of p53 using the hidden TFA derived from the
model. This method assumes a log-linear relationship
between a TF and its target genes.

In general we expect a target gene to respond to its reg-
ulator in a nonlinear fashion due to saturation and
threshold effects (Nachman et al. (2004) [9]). So it is more
realistic to assume both linear and nonlinear interactions
between a TF and its target genes. Furthermore, despite
using time course gene expression data, the above meth-
ods either fail to account for time continuity of a TFA or
assume linear dynamics on the TFAs.

State space model with Gaussian processes
In this study, we propose a novel strategy to estimate the
hidden TFA of a regulator and to predict its target genes.
This approach makes use of Gaussian processes (GP) to
account for possibly nonlinear dynamics of the hidden
TFA, and to model nonlinear target gene responses of
regulated genes.

To reconstruct hidden TFAs from the microarray data,
we applied and extended the Gaussian Process dynamic
model (GPDM), which was previously used for tracking
human motions [10]. In the GPDM, nonlinear state maps
are used to model the dynamics of hidden TFAs and out-
put maps reflect nonlinear regulation of the target genes.
Both the state and output maps are defined by Gaussian
processes. We use a modified implementation of the
GPLVM MATLAB code provided by Lawrence (2005)
[11]. The details of the model implementation and exten-
sions are described in the methods section.

Intuitively, given a training set of F-dimensional input
data points with known output values, a Gaussian process
fits a smooth nonlinear interpolation surface represent-

ing this output relation as a function (strictly speaking as
a family of functions weighted by a probability distribu-
tion, see the methods section). In this work, motivated by
our interest the DosR regulator, we only use one input
dimension, F = 1, but the approach can be easily genera-
lised to more than one regulator and higher F. The
smoothness of the interpolation, which is estimated in a
training phase, is mostly guided by the "roughness" of the
input data and the choice of smoothness priors.

Each of the d input dimensions is linked to a relevance
parameter. If this parameter is small, the interpolated
function is flat in this dimension and this particular
dimension cannot exert much influence on the output.
Thus relevance parameters provide a principled way to
decide which genes might be under the influence of a reg-
ulator: if the relevance parameter is small the gene
response is unlikely to depend on the TFA of this regula-
tor.

We use two types of GPs in our approach: one for the
dynamics and another for the output. The dynamics is
modelled by a GP mapping the value of the regulator at a
time point to its value at the next time point. The output
GPs (one for each gene that might be controlled by the
regulator) map the regulator value at a time point to the
value of the gene at the same time point. If the relevance
parameter of one of these output GPs is low it means that
the gene is unlikely to be regulated by the regulator.

In the training phase, both the smoothness (relevance)
parameters as well as the hidden values of the regulator
need to be estimated. We achieve this by simple maxi-
mum a posteriori (MAP) estimation. For longer time
series or larger number of regulators, MAP estimation of
the hidden values might not work so well any more and
alternative methods, such as Markov Chain Monte Carlo
methods, need to be considered to sample from the hid-
den values (Neal (1998) [12]). For comparison we also
derive the hidden regulator profile using the NCA algo-
rithm (Liao et al., 2003).

The binding motif of DosR is known. The presence of
this motif in the upstream region of a gene is an addi-
tional indication that the gene might be regulated by
DosR. Consequently, we combine the relevance parame-
ters of a gene with a score for the presence of the DosR
binding motif in a logistic regression to improve on the
prediction whether a gene is regulated by DosR or not.
The results of applying the GP model to the p53 data
from the literature and to our gene expression data are
presented in the results section. More details about how
we used GPs and logistic regression can be found in the
methods section.

Gene expression studies of DosR regulon
Time course microarray data were obtained from M.
tuberculosis samples cultivated in a chemostat in order to
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estimate the TFA of the DosR regulator. As one of the
most extensively studied regulons in M. tuberculosis,
DosR plays a major role in mediating hypoxia response in
the organism [13-15]. Several studies attempt to identify
DosR-regulated genes through comparison of the
changes in the gene expression levels in wild type and
dosR mutant strains [14,15].

There is some discordance between these studies. One
has to consider though that the DosR regulon can be
stimulated by different environmental stimuli [15]. It is
likely that individual environmental perturbations may
affect different subsets of genes in the regulon. The batch
cultures used in the previous studies provided constantly
changing environmental conditions. Consequently, the
resulting bacterial population was physiologically hetero-
geneous with increased intrinsic biological noise in the
subsequent microarray analysis. Different normalisation
methods and statistical analyses used in the above studies
are also likely to contribute to the discrepancy in the
identification of DosR-regulated genes.

Chemostat cultures
In contrast, the use of chemostat cultures produces a well
defined and controlled environment for the bacteria.
Chemostat cultures are kept under completely controlled
conditions and have a constant inflow of defined nutri-
ents and an outflow of waste products that is monitored
until steady state is reached before further experiments
(here reduction of oxygen) are undertaken. Homogeneity
of the culture guarantees that all bacterial cells experi-
ence identical conditions that change in just a few defined
and controled aspects. The cause-and-effect relationship
between the changes of gene expression levels and envi-
ronmental stimuli can be effectively established [16]. The
time course data used in this study comprises nine time
points with steadily reduced oxygen supply (for more
details see Zhang et al. (2008) [17]). This allows us to
measure gene expression trajectories instead of the sim-
ple on-and-off signals from two-condition comparisons.
It is generally difficult to conduct this type of time course
experiments in batch cultures since there it is almost
impossible to avoid local fluctuations in environmental
conditions and the concentrations of metabolites.

Results and Discussion
Estimating the hidden transcription activity profile of p53
The GPDM model was evaluated on the time course
microarray data from Barenco et al. (2006) [8] recon-
structing the hidden TFA of p53. Barenco et al. (2006) use
a differential equation model for the hidden dynamics of
the profile of p53 activity which is estimated from the
expression profiles of five known p53 target genes. Pro-
files consist of seven time points with three replicates at
each time point.

We applied our GP based dynamic model to the same
data as obtained from ArrayExpress (European Bioinfor-
matics Institute). For comparison, the same five genes
were used in the GP model and the median of replicates
was taken for each gene and log2 transformed for further
analysis. Figure 1 displays the estimated TFA from the
differential equation model in Barenco et al. (2006) [8]. It
can be seen that the predicted p53 activity profile shows a
reasonable match to the one determined experimentally
by Western blot (figure 2) for the first three time points (4
h), the prediction is less convincing for the rest of the
time course (figure 1).

Figure 3 shows the reconstructed p53 activity derived
from the GP model as well as the profile reconstructed
according to the NCA algorithm. The GP profile is in bet-
ter accordance with the experimentally determined pro-
file (figure 2) than the others. Only the last time point (12
h) deviates from the experiment, when the reconstructed
TFA stays on the same level as the previous time point
(10 h), while the experimentally determined p53 concen-
tration drops off. However, close examination of figure 1
reveals that the band of structure protein actin used as
control at 12 h is weaker compared with those at the pre-
vious time points. It might be possible that the decline in
p53 protein concentration at 12 h (figure 2) is due to an
experimental artifact. In any case, table 1 shows the mean
of squared differences (SSE) and the correlations between
the experimentally determined p53 concentration and
the estimated p53 activity profiles from the GP model
(GP), the NCA model, and the model used by Barenco et
al. (2006). According to these measures the estimated p53
profile from our model is closer to the experimental one
than either the NCA or the profiles obtained by Barenco
et al.

Estimating the hidden transcription activity profile of DosR
The TFA of DosR was estimated using 21 documented
DosR-regulated genes, which also contain the DosR bind-

Figure 1 Activity profile of p53 derived in Barenco et al. (2006) [8].
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ing motif (table 2) [14]. Figure 4 displays the predicted
TFA of DosR according to the GP model as well as the
NCA algorithm. The profiles are quite similar, but we will
see below that GP relevance scores are much better
suited to idenfify dosR dependent genes than the NCA
scores. The operon encoding DosR consists of three
genes: Rv3134c (dosT), Rv3133c (dosR), Rv3132c (dosS).
When compared with the gene profiles of DosR operon
(figure 5), it might be seen that the estimated TFA of
DosR is strikingly close to the mRNA profile of gene dosR
itself (Rv3133c) even though dosR was not included in the
training gene set for estimating its TFA. The close match
between the expression pattern of dosR and the TFA of
DosR can be expected, since the DosR operon has been
reported as an auto-regulated operon [18]. However,
dosR is part of an operon starting with gene Rv3134c,
which was used in the training set. Interestingly, there is a
noticable discrepancy between the profile of Rv3134c and
TFA of DosR (figure 5).

Genome-wide search of DosR-regulated genes
As outlined in the introduction and detailed in the meth-
ods section, estimated relevance parameters of the output
GP can be used to assess the strength of the influence of
the reconstructed TFA of DosR on genes. The profile can
also be used to estimate GP parameters for a new gene
not involved in the training phase. Two parameters are of

interest, one  representing the linear component of
the regression of the profile of gene g on the TFA, and one

 representing the nonlinear component. Essen-
tially, GP training tries to fit a linear regression if possible
and adds a nonlinear component only in case there is too
much variability unexplained by a linear relationship. We

also calculate a motif score  for the presence of the
DosR binding motif in the upstream region of gene g.

For each of the 2509 operons in the genome of M.
tuberculosis the first gene was selected to represent the
operon (in fact, many of the operons consist of a single
gene). Operon definitions were taken from the Biocyc
database [19]. Genes were removed from the time course

xlin
g

xnonlin
g

xmotif
g

Figure 2 Experimentally determined p53 activity profile mea-
sured by western blot (from Barenco et al. (2006) [8]).

Table 1: Comparison of the estimated p53 activity profile. 

GP NCA rep1 rep2 rep3

MSE 0.16 0.26 0.29 0.29 0.24

Corr 0.89 0.85 0.76 0.76 0.81

The table lists the means of squared differences (MSE) after standardization and the correlations between the experimentally determined p53 
concentration and the estimated p53 activity profiles from the GP model (GP), the NCA model (NCA) and the model used by Barenco et al 
(2006). rep1, rep2, and rep3 are the estimations using three replicates, respectively, from Barenco et al.

Figure 3 Activity profile of p53 as estimated by the GP model and 
the NCA algorithm.
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data if the expression level at the last time point (t9) was
lower than that at the first time point (t1), since we are
only interested in genes which are upregulated by DosR.

The relevance scores ,  and motif scores 
(see equation 4 in methods) were calculated for the
remaining 1008 genes.

The relevance and motif scores can be used separately
as a discriminator for ranking genes for regulation by
DosR. Figure 6 shows how many of the 21 documented
DosR-regulated genes used for training of the dynamic
model are among the highest scoring genes. The figure
also shows the disappointing performance of scores taken
from the NCA. Although the NCA profile is in good
agreement with the GP profile (figure 4), the weights link-
ing this profile to the genes are completely unsuitable for
discrimination between regulated and nonregulated
genes. Table 2 displays the ranks of DosR genes by
decreasing relevance and decreasing motif scores.

Despite having one of the highest motif scores, gene
Rv1738 has low ranks in terms of relevance scores, possi-
bly because Rv1738 exhibits a different expression pat-
tern (figure 7) from the rest of DosR-regulated genes in
the training set. It was up regulated from time point 2
instead of time point 6 as was the rest of DosR-regulated
genes. This is likely due to the high promoter affinity of
Rv1738, which may cause saturation of transcription
activity as early as at time point 2.

Figures 8 shows a comparison of the sum of relevance
scores derived from the GP model with the motif scores.
Figure 6 show that the relevance scores outperform motif
scores as a discriminator for ranking DosR-regulated.
However, neither is able to identify all the documented
DosR-regulated genes. Moreover, they seem to be com-
plementary as discriminators as seen by the clear separa-
tion in figure 8. We therefore use a logistic regression of
the binary outcome regulated/nonregulated on the rele-
vance score and the motif score (see equation 5 in the

xlin
g xnonlin

g xmotif
g

Table 2: Ranks of DosR training genes ranked by motif and relevance scores.

ORF xmotif xnonLin xlin

Rv0079 185 13 14 18 15

Rv0569 21 46 38 34 24

Rv0571c 22 12 20 5 7

Rv0574c 83 16 15 6 5

Rv1733c 6 14 1 18 1

Rv1737c 1 5 16 2 6

Rv1738 2 415 389 398 378

Rv1813c 37 7 10 29 4

Rv1997 9 59 82 76 63

Rv2005c 182 9 6 3 3

Rv2006 27 27 24 34 8

Rv2007c 41 6 11 3 3

Rv2031c 8 1 3 1 1

Rv2032 5 2 2 1 1

Rv2626c 10 3 4 1 2

Rv2627c 3 22 9 42 1

Rv2628 4 28 23 24 8

Rv3130c 73 11 7 3 3

Rv3131 49 29 18 20 6

Rv3134c 7 53 41 41 24

Rv3127 78 10 22 3 8

The table shows the rankings of the 21 training genes with respect to different scores: xmotif denotes motif scores, xnonLin stands for nonlinear 
scores and xlin linear scores in the equation (see equation 4).  and  are the nonlinear and linear relevance scores in the leave-
one-out cross validation tests which exclude the corresponding genes in the first column from estimating DosR TFA. Note that since each 
leave-one-out test produces its own ranking, rank numbers are not unique in the last two columns.

′xnonLin ′xLin

′xnonLin
′xLin
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methods section) to combine these scores for predicting
DosR-regulated genes.

The logistic regression results in a probability preg that a
gene is regulated by DosR given its scores. As can be seen
in figure 8 the separation between DosR regulated genes
and the rest is quite clear. This is of course due to the 21
genes being used as training genes in the logistic regres-
sion. In order to obtain further genes potentially regu-
lated by DosR looked at the top 34 genes in the ranking of
logistic scores. This includes ten novel genes, which we
plan to investigated for DosR regulation in future experi-
ments. Three more genes (Rv2623, Rv2625c, Rv2629) in
this list have DosR-binding motifs in their upstream

region These genes were previously reported as only indi-
rectly regulated by DosR [14].

One objection to the current analysis might be that the
21 DosR-regulated genes were used in training as well as
prediction. We therefore repeated the analysis calculating
scores for each of the 21 genes in turn using only the
remaining 20 genes for training. Figure 9 displays the esti-
mated TFA of DosR in this leave-one-out analyses. We
observed that the exclusion of any training DosR-regu-
lated gene had little impact on the estimated TFA. The
same was found for predicting novel target genes. In fact,
all the leave-one-out analyses resulted in exactly the same

Figure 4 Activity profile of DosR as estimated by the GP model 
and the NCA algorithm.
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Figure 5 Expression profiles of three genes in the dosR operon.
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rank order among the 21 training genes with respect to
the two relevance score and the same predicted DosR-
regulated genes as those from the analysis including all
the documented DosR-regulated genes in the training
data (for a comprehensive list of genes predicted to be
DosR regulated see table 3).

Conclusions
In this study, we proposed the use of Gaussian process
regression for reconstructing the hidden TFAs from time
course gene expression data. The proposed approach, in
contrast to previous methods for the same purpose,
allowed us to model complex dynamics in TFAs and non-
linear and linear interactions between TFs and target
genes. Through the application to two experimental data

sets we show that the GP model is able to reconstruct the
hidden TFAs from time course microarray data reliably.

The M. tuberculosis time course microarray data used
here have been generated from chemostat cultures,
where changes in gene expression levels can be contrib-
uted to a single environmental stimulus, in this case, a
rapid drop in oxygen tension. This is an advantage over
previous DosR regulon studies [13-15] using batch cul-
tures, where uncontrolled local heterogeneity in the con-
ditions of the cultures is a major problem. Using the
estimated TFA of DosR, we proceeded to detect DosR-
regulated genes in a low oxygen environment. By com-
bining the relevance parameters derived from a GP
model and sequence information, we confirmed all the
documented DosR regulated genes. By and large the
motif scores and relevance scores agree and are larger for
DosR-regulated genes. However, there is enough comple-
mentary information left in both so that a combination of
both scores by a logistic regression improves the classifi-
cation considerably. This gives confidence that further
target genes can be found by ranking genes according to
this score. We identified new putative target genes, which
will become the focus of our future research.

Methods
Time course experiments
M. tuberculosis H37Rv was grown in continuous culture
to steady state under aerobic conditions (10% DOT) at
pH 6.9 and 37*C, in a chemostat, which was controlled by
a Brighton Systems controller unit. Cells were grown
under carbon-limitation at a dilution rate of 0.03h-1 and
a mean generation time of 23 hr. The culture was
switched from continuous to batch growth just prior to
the start of the time course. The set point on the chemo-
stat controller was reduced from 10% DOT to 0.2% DOT
and the oxygen level dropped to the lower set point over
15 minutes. The approach of using continuous culture
was adopted in order to generate cells that were growing
with the same mean generation time under defined and
controlled conditions. The controlled chemostat system
was also advantageous as the oxygen level could be moni-
tored throughout the time course. The time point at
which each sample was taken was not dictated by the
time that had lapsed between each time point (although
this was also recorded), but the DOT in the culture (for
more details see Zhang et al. (2008) [17]).

Microarray RNA was extracted from cell samples (10
ml) taken at each time point according to the method
described previously [16]. Three separate labelling reac-
tions were carried out on each RNA sample, giving three
arrays for each time point using the microarray method
described previously [16]. In summary, each Cy5-labelled
cDNA generated from an RNA sample was co-hybridised

Figure 7 Log-transformed expression profile of Rv1738.
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Table 3: Top ranking potentially DosR-regulated genes. 

Rv acc. description gene name

Rv0079** hypothetical protein

Rv0311* possible remnant of A transposase

Rv0482* UDP-N-acetylenolpyruvoylglucosamine 
reductase

murB

Rv0569** hypothetical protein

Rv0571c** hypothetical protein

Rv0574c** poly-gamma-glutamate synthesis protein

Rv0654* putative dioxygenase

Rv0835* possible lipoprotein LpqQ ipqQ

Rv0946c* glucose-6-phosphate isomerase pgi

Rv1371* probable conserved membrane protein

Rv1733c** probable conserved transmembrane 
protein

Rv1737c** MFS transporter, NNP family, nitrate 
transporter

nark2

Rv1738** hypothetical protein

Rv1813c** hypothetical protein

Rv1954c* hypothetical protein

Rv1997** cation-transporting ATPase ctpF

Rv1998c* hypothetical protein

Rv2005c** hypothetical protein

Rv2006** putative trehalose/maltose hydrolase otsB1

Rv2007c** ferredoxin fdxA

Rv2031c** heat shock protein hspx hspX

Rv2032** Conserved hypothetical protein Acg acg

Rv2623 hypothetical protein TB31.7

Rv2625c probable conserved transmembrane 
alanine and leucine rich protein

Rv2626c** hypothetical protein

Rv2627c** hypothetical protein

Rv2628** hypothetical protein

Rv2629 hypothetical protein

Rv3044* putative iron (III) dicitrate transport system 
substrate-binding protein

fecB

Rv3081* hypothetical protein

Rv3127** hypothetical protein

Rv3130c** hypothetical protein

Rv3131** hypothetical protein

Rv3134c** hypothetical protein

The 34 top ranking genes according to the logistic score. Genes with one * are the novel DosR-regulated genes detected in this study, while 
those with two * are the documented DosR-regulated genes in the training data. Genes with no * were previously reported as indirectly 
regulated by DosR, but were found to contain DosR-binding-motifs in this study.
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with Cy3-labelled DNA generated from M. tuberculosis
H37Rv genomic DNA.

The resulting gene expression data used in this analysis
were log 2 transformed intensity ratios, defined as inten-
sity values of Cy5-labelled cDNA relative to Cy3-labelled
DNA. Prior to log 2 transformation, the arrays were pre-
processed by the software Bluefuse http://www.cam-
bridgebluegnome.com to estimate signals and subtract
background. Then the same normalisation procedure as
used in Bacon et al. (2007) [20] was applied to the
microarray data to reduce experimental noises.

Model specification
The model to reconstruct the hidden TFA was built on
the Gaussian Process dynamic model (GPDM) [10],
which was used to track human motions. The GPDM is
augmented with nonlinear latent dynamic variables and a
probabilistic mapping from the latent space to the obser-
vations. We extended the GPDM further by introducing
gene-specific Gaussian processes in the mapping func-
tion to model gene-specific regulatory controls. We

assume first that the hidden TFA  for TF i (i =
1, ..., F) across time points t is given. The activities of all

TFs at time point t are . The observed gene

expression levels for gene g are . A state-
space model is given by

where ?x, t and ?y, t are Gaussian noise terms. Θx and Θy, g
are the hyperparameters for the Gaussian processes
defining f and h. In our applications the number F of tran-

scription factors is one and xt is just a real value. In the

following,  are all the hidden and

 are all the observed data.
The marginal data likelihood is a multivariate Gaussian

density:

where Cg is a T × T covariance matrix. The entries Cg (t,
s) of Cg are parameterised by a gene specific parameter
vector βg as follows (for example, Williams et al. (1996)
[21])

where s and t are time points and δst = 1 if s = t and 0
otherwise. Here we deal with only one hidden regulator
(F = 1) for simplicity.

The parameters βg = {β1, g, β2, g, β3, g, β4, g, β5, g} in the
covariance function are estimated by maximising the
likelihood. The first part, β1, g, in equation 1 is the vari-
ance bias and accounts for a constant correlation that
exists between any two input points. The second term, β2,

g, models the linear interactions between the inputs. This
term also adds a nonstationary component to the pro-
cess. The exponential part reflects the nonlinear depen-
dencies on the inputs where the scale parameter β3, g is
the overall strength of nonlinear dependencies and β4, g is
the degree to which the input controls the values of out-
puts. β2, g and β4, g are referred to as relevance parameters
in this paper. The last term β5, g represents an additive
noise.

Similarily, the distribution of hidden TFA profile X is

where xout = (x2, ..., xT)', x1 is the TFA at time point 1
with the Gaussian prior distribution P (x1), and the (T - 1)
× (T - 1) covariance matrix K is constructed from xin = (x1,
..., xT-1)' similar to equation 1 but with the parameters α =
(α1, α2, α3, α4, α5):

x xi i
t

t
T= =( ) 1

x xt
i
t

i
F= =( ) 1

y yg g
t

t
T= =( ) 1

x f x i

y h x g G

t t
x x t

g
t t

y g y t

F= + =

= + =

−( , ) , ,

( , ) , , ,

,

, ,

,1 1

1

Θ

Θ

²

²

…

…

x x t t
T= =( ) 1

Y y g
t

g
G

t
T= = =( ) 1 1

P Y x P y X

T

C

G g g

g

G

g

G

g

( | , , , ) ( | , )

( ) | | exp

bb bb bb1

0

1

2 2
1
2 1

2

… =

= − ′

=

−

=

−

∏

∏ p y gg g gC −⎛
⎝⎜

⎞
⎠

1y

C t s x x x xg g g
t s

g g
t s

ts g( , ) exp( ( ) ), , , , ,= + + − +b b b b d b1 2 3 4
2

5

P x
P x

T K
x K xout out( | )

( )

( ) | |
exp ( )aa =

−
− ′⎛

⎝⎜
⎞
⎠⎟

−
1

2 1
1
2

1

p

Figure 9 Estimated TFA of DosR from leave-one-out analyses.
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Model Learning
The hidden TFA and parameters in the covariance func-
tions were estimated by maximising the likelihood

for some α, β, and x. The parameters were optimised in
log space with priors of a Normal distribution on their log
values:

The hyperparameters {μβ, τβ} are set to encourage spar-
sity, which is useful for predicting unknown target genes
using the relevance parameters β2, g and β4, g given the
estimated TFA. The sparse priors amount to an auto-
matic relevance determination (ARD) mechanism
embedded in the GP model in that the estimated rele-
vance parameters for genes not under DosR control are
encouraged to be close to zero [22]. In this study, we set
μβ = μα = -10 and τβ = τα = 100. However, in practice we
found that the model is robust to different priors used.

Summarising, we look for α, β, and x that optimise the
function

Having obtained the hidden TFA of DosR, the derived
TFA can be used to identify unknown target genes regu-
lated by DosR. In this case, we only need to estimate the
relevance parameters βg for gene g in question, that is, we
only use the parts of the above equation involving βg

NCA analysis
A suitable version of the NCA algorithm by Liao et al.

(2003) [1] can be implemented as follows. If Y = ( ) is
the matrix of gene expression levels, then we look for a
profile vector p and a weight vector a of gene associations

such that the outer product matrix apT is close to Y as
measured by the sum of squared elements of the differ-
ence matrix Y -apT. A simple scheme of alternatively
regressing the columns of Y on a and then the rows of Y
on p stabilises on the solution. Using an algorithm such as
FastNCA (Chang et al., 2008 [23]) yields the same result.

Binding motif analysis
Park et al. (2003) [14] discovered the DosR-binding motif,
a 20 bp palindromic consensus sequence, by analysing
shared sequence motifs upstream of DosR-regulated
genes with the motif discovery program YMF. They also
provided a scoring matrix Sij with entries that are the log-
likelihood ratios of each base at each position [14]. The
scoring matrix Sij is used to calculate the log-likelihood of
a putative DosR-binding motif to improve the accuracy of
the prediction of novel target genes in addition to gene
expression data.

Sequences (300 bp) upstream of the translation start
site of the first gene in each operon were extracted to
search against the DosR-binding motif. Then for each
gene the final motif score xmotif is the sum of all the posi-
tive motif scores from the corresponding upstream
sequences:

where J is the length of the motif and K is the number of

motifs with positive scores, i.e.,  obtained

from the upstream sequence of a gene. No overlapping
motifs are allowed.

The logistic regression model provided a weighted
combination of the motif scores and the relevance scores
derived from the GP model. There are 21 genes docu-
mented to be directly regulated genes by DosR [14].
These genes and an equal number of randomly selected
genes without any reported dosR association were used
for the training of the logistic regression model as posi-
tive and negative training datasets respectively:

where preg(g) denotes the probability that a gene g is

regulated by DosR. The relevance score  denotes the

linear relevance parameter for gene g, i.e., β2, g, 
stands for the nonlinear relevance parameter β4, g (for β2, g
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and β4, g see equation (1)) and  is the DosR-binding
motif score as described above.

The estimated weights w1 and w2 were then used to
compute the probability of any gene g being regulated by
DosR:
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