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Abstract

Background: Successful drug development has been hampered by a limited understanding of how to translate
laboratory-based biological discoveries into safe and effective medicines. We have developed a generic method for
predicting the effects of drugs on biological processes. Information derived from the chemical structure and
experimental omics data from short-term efficacy studies are combined to predict the possible protein targets and
cellular pathways affected by drugs.

Results: Validation of the method with anti-atherosclerotic compounds (fenofibrate, rosuvastatin, LXR activator
T0901317) demonstrated a great conformity between the computationally predicted effects and the wet-lab
biochemical effects. Comparative genome-wide pathway mapping revealed that the biological drug effects were
realized largely via different pathways and mechanisms. In line with the predictions, the drugs showed differential
effects on inflammatory pathways (downstream of PDGF, VEGF, IFNg, TGFb, IL1b, TNFa, LPS), transcriptional
regulators (NF�B, C/EBP, STAT3, AP-1) and enzymes (PKCδ, AKT, PLA2), and they quenched different aspects of the
inflammatory signaling cascade. Fenofibrate, the compound predicted to be most efficacious in inhibiting early
processes of atherosclerosis, had the strongest effect on early lesion development.

Conclusion: Our approach provides mechanistic rationales for the differential and common effects of drugs and
may help to better understand the origins of drug actions and the design of combination therapies.

Background
In addition to their established pharmacological activ-
ities, many preclinical and commercial drugs exert
effects that are not predictable from their presumed
mode of action and primary target [1-3]. Unanticipated
effects represent both opportunities and challenges for
modern drug development and for health outcomes.
Off-target effects can lead to new therapeutic applica-
tions and repositioning of existing drugs [1]. However,
unexpected effects can also be responsible for adverse
drug events, low patient compliance and, in case of

severe side effects, withdrawal from clinical testing or
the market [4,5].
The molecular causes for the positive as well as nega-

tive off-target effects are largely unexplored. Obviously,
metabolic transformations of pharmaceuticals can pro-
foundly impact their bioavailability, efficacy and chronic
toxicity, and both the parent molecule and the products
of metabolic transformations can interfere with endo-
genous metabolism [6]. More recent protein-ligand
interaction studies provide another molecular rationale
for unanticipated drug effects showing that small mole-
cule drugs can bind protein targets which lack obvious
sequence or structural similarity and which are involved
in entirely different pharmacology [7]. Thus, drugs and
their metabolites can be active on multiple direct and
indirect targets involved in many dozens of pathways,
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which makes it crucial to be able to understand or pre-
dict the on- and off-target effects of a particular drug.
Here we present a systems biology-based strategy that

allows prediction of shared and differential effects of
drugs. The approach uses information derived from the
chemical structure of the drugs together with experi-
mental omics data from short-term intervention studies.
Because of the general relevance and global burden of
cardiovascular disease [8], the present study was per-
formed in a setting of experimental atherosclerosis using
an established disease model, ApoE3Leiden mice which
exhibit a unique human-like sensitivity to cardiovascular
drugs [9]. Three prototype cardiovascular drugs were
tested: a statin (rosuvastatin; RSV), a fibrate (fenofibrate;
FF) and a liver-X-receptor (LXR)-agonist (T0901317;N-
(2,2,2-Trifluoro-ethyl)-N-[4-(2,2,2-trifluoro-1-hydroxy-1-
trifluoromethyl-ethyl)-phenyl]-benzene-sulfonamide;
T09). The liver is the primary target organ for all three
drugs, but they differ in their mechanism of action, i.e.
how they alter hepatic lipid metabolism and how they
attenuate atherosclerosis [10-12]. At the doses
employed, the drugs can exert anti-inflammatory activ-
ities [13-15] that may contribute to their anti-athero-
sclerotic effect.
On-target and off-target effects of the three drugs

were predicted through the similarity of their chemical
structure (chemical similarity search of parent com-
pounds and their metabolites against a MetaDrug™
database[16]) and their induced hepatic transcriptome
profile. The predicted biological effects were then com-
pared with real experimental outcomes in ApoE3Leiden
mice, viz. plasma lipid levels, inflammation marker con-
centrations, transcription factor activities, and aortic
atherosclerotic lesions. With respect to delineating the
similarities and differences between the three drugs, par-
ticular emphasis was put on inflammatory aspects,
because their precise anti-inflammatory action is not
fully understood. For example, it was unclear whether
the three drugs impact on similar or complementary
inflammatory pathways.
This study provides evidence for a concordance of

predicted activities and experimental biochemical effects
thereby exemplifying the power of computational strate-
gies for efficacy prediction and the role that systems
biology may have in future drug discovery.

Results
Chemical structure-based and transcriptome-based
prediction of genes affected by drugs
Figure 1 provides a conceptual overview of the in silico
analyses to predict drug effects based on their chemical
structure and it illustrates the subsequent biochemical
validation experiments on the level plasma markers,
liver proteins and cardiovascular endpoints.

To visualize the known molecular mechanisms of
action of RSV, FF and T09 we built a network summar-
izing their direct and remote targets as well as their
interactome neighborhood (Figure 2).
RSV is a structural inhibitor of 3-hydroxy-3-methyl-

glutaryl coenzyme A reductase (HMDH), the rate-limit-
ing enzyme for hepatic cholesterol biosynthesis.
Inhibition of this enzyme by RSV results in decreased
cholesterol biosynthesis and upregulation of the LDL
receptor, and consequently predicts a reduction of
plasma cholesterol. The indirect effects of RSV effects
are predicted or known to occur through Caspase 3,
Cathepsin B [17] and other proteins (not shown).
Fenofibrate (FF) is converted in liver into its active

metabolite, fenofibric acid. Fenofibric acid is a ligand
and an agonist of the lipid sensor receptor PPARa
which reduces the expression of apolipoprotein C-III
(APOC3). Fenofibric acid can also activate PPARb/δ and
PPARg but with lower affinity (>10-fold lower than for
PPARa). FF indirectly modulates the activity or expres-
sion level of several other genes, including 3-hydroxybu-
tyrate dehydrogenase[18], paraoxonase-1, a serum high-
density lipoprotein-associated phosphotriesterase[19], as
well as several cytokines and chemokines [20] (not
shown). FF increases the catabolism of triglycerides by
induction of lipoprotein lipase (LPL) and reduces the
production of triglyceride-rich lipoproteins (VLDL). The
predicted net effect of FF on circulating lipids is a speci-
fic reduction of plasma triglycerides and cholesterol.
T09 activates liver × receptor (LXR) alpha/beta

nuclear receptors, which are intracellular sterol sensors
that regulate expression of genes controlling cholesterol
and bile metabolism. T09 influences expression of a
number of organic transporters, including those
reported to participate in lipid transport (ABCG1 [21],
ABCG5, ABCG8 [22], ABCA1), enzymes involved in
lipid metabolism (ACOX-1, ECHP, ACAA1 [23]), and
inflammatory molecules (COX-2, MMP-9 [24]). T09
also antagonizes pregnane × receptor [25], an important
component of the adaptive defense mechanism against
toxic substances. Through co-ordination of the expres-
sion of target genes in multiple tissues (not shown), T09
is predicted to increase cholesterol efflux from the per-
ipheral organs into the circulation. Since the hepatic
clearance receptors for LDL-cholesterol are not affected
by T09, the predicted net effect is an elevation of plasma
cholesterol.
To validate the predicted effects, we analyzed plasma

lipids of ApoE3Leiden mice treated with an atherogenic
high cholesterol diet in the presence or absence of RSV,
FF and T09. Data of plasma cholesterol and plasma tri-
glycerides are provided in Additional file 1 (Table S1).
In accord with the prediction, RSV significantly reduced
plasma cholesterol levels. FF-treated E3L mice displayed
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  Predicted drug effects 
                                                               Validation studies           Method used 
 
                                                     Effect on plasma lipids           Clinical chemistry (cholesterol,
                                                                                                                  triglycerides) 
 
 
 
                                                     Effect on proteins                    Transcription factor activity      
                                                                                                Plasma inflammation makers 
 
 
                                                     Effect on processes                Atherosclerosis in aorta 

Figure 1 Workflow for prediction of biological effects of drugs. A, The workflow prediction of biological effects based on an arbitrary
chemical structure. B, Molecular structures of rosuvastatin (RSV), fenofibrate (FF), LXR-activator T0901317 (T09). The structures were uploaded into
MetaDrug™ and a similarity search was performed based on the structures of the input compounds (with the Tanimoto coefficient, used to
calculate similarities and differences, set at 0.7). The direct and indirect targets provided were used for enrichment analysis. C, Overview of the
biochemical analyses that were performed to validate the predictions on different levels (plasma lipids, protein activity and expression, endpoint
disease).
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significantly lower triglyceride and cholesterol levels. By
contrast, T09 treatment increased plasma cholesterol
levels and also increased plasma triglycerides.

Prediction of compound similarities on the level of
biological processes and pathways
In order to predict the similarities and differences of
RSV, FF and T09 action, we applied ontology enrich-
ment analysis to two kinds of gene lists: (i) lists of puta-
tive targets predicted from the chemical structure and
(ii) lists of potential targets obtained from the hepatic
gene expression profile.
The chemical structure generated lists of putative tar-

gets for each drug (Additional file 2) were generated by
searching their chemical structures for similar com-
pounds with known targets in the MetaDrug database
(Figure 1; details in Methods).

The expression-generated lists represented differen-
tially expressed genes (DEGs) in mouse liver after 10
weeks of treatment with cardiovascular drug-containing
diet, measured by microarrays (Additional file 2). The
two lists were generated independently using different
techniques and data sources. Therefore, any concor-
dance in enrichment distributions on pathways, normal
and toxicity processes, or disease biomarker ontology (as
examples), is independent evidence for not only identify-
ing a specific ontological entity but also for explaining
both on-target and off-target effects.
Next, the lists of known targets for the three com-

pounds were computationally expanded to ‘possible tar-
gets’ defined as targets of compounds similar to RSV, FF
and T09. As most compounds similar to RSV belonged
to the class of statins and most compounds similar to
FF to the class of fibrates, this expansion allows

Figure 2 Main direct and indirect targets of the drugs. Network representing the main direct and indirect targets of rosuvastatin (RSV),
fenofibrate (FF) and T0901317 (T09) with overlaid high-cholesterol expression and metabolomic data from ArrayExpress database with accession
number: ETABM-253 [27]. Drugs and metabolites are depicted in purple (hexagonal symbols), factors with catalytic or enzymatic activity in
yellow, transporters in purple (cross symbols), transcription factors in red (flash star symbol), cytokines and lipoproteins in green, receptors and
adaptor proteins in blue. Red (blue) circles in the top-right corner of each icon indicate a positive (negative) effect of high-cholesterol on the
expression level. Green (red) lines indicate an activating (inhibiting) effect between interacting molecules. Bold yellow arrows specify the primary
drug targets (HMDH for RSV, PPAR-alpha for FF, LXR-alpha/LXR-beta for T0901317). Lipids and molecules involved in basic lipoprotein
metabolism are boxed in yellow. Grey boxes represent shared targets, i.e. factors that are affected by at least two of the drugs. Factors that are
regulated specifically by T0901317 are arranged vertically on the right (not boxed).
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generalization of the analysis and comparison of com-
pound classes (e.g. statins vs. fibrates). The largest num-
ber of possible direct and indirect targets was identified
for FF, including extracellular signal-regulated kinases 1
and 2, elastases and lipoprotein lipase (not shown). All
possible direct/indirect targets of the drugs (not shown)
were subjected to enrichment analysis and mapped to
biological processes for visualization (Figure 3A). The
length of the colored bars (orange - RSV, blue - FF, red
- T09) corresponds to the number of targets in a pro-
cess map. Importantly, only a few maps were common
to the three compounds and most pathways were
affected by one specific drug. This indicates that biologi-
cal effects are realized via different pathways and

mechanisms and also implies that putative and unex-
pected off-target effects of the three drugs are likely to
be different.
The few common maps included ‘Lipid metabolism’

and ‘Immune response’ which correlates well with the
reported pharmacological compound action and the
well-documented correlation between lipid metabolism
and inflammation [26,27]. Among the most significant
processes predicted to be affected by all three drugs are
interleukin-1 signaling, oncostatin M signaling, histamin
H1 receptor signaling and macrophage migration inhibi-
tory factor (MIF) signaling as well as transcriptional reg-
ulation through peroxisome proliferator-activated
receptors (PPARs) (Figure 3B).

 

A 

B 

Figure 3 Predicted biological target processes and pathways. Overview of the predicted biological target processes and pathways obtained
from enrichment analysis. Information derived from the chemical structure of the drugs was used to predict possible targets. These possible
targets were then used to predict target processes and pathways for rosuvastatin (RSV; orange), fenofibrate (FF; blue) and LXR activator T0901317
(T09; red). A: Target distribution overview demonstrating that each of the drugs has a characteristic target pattern with little overlap between
the drugs; B: Most significant common pathway maps for RSV, FF and T09.
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Prediction of drug-specific effects on the level of
biological processes and pathways
Prediction analysis showed that when compared with
RSV and T09, FF affected the most biological pathways
and processes (Figure 3A). To refine this prediction and
identify which pathways and processes are specifically
affected by FF and not by the other two drugs, the list
of FF-modulated targets was computationally expanded
by their first-step physical protein-protein interactions
with their network neighbors. Similar expansions were
performed for RSV and T09.
The expansions resulted in three types of possible tar-

gets: (i) shared by all three drugs; (ii) shared by two
drugs (i.e. by the pairs FF and T09; RSV and T09; FF
and RSV) and (iii) unique for a drug (Figure 4; indivi-
dual target lists not shown). Based on this prediction,
only 21 common targets were identified, among which
are PPARg, CCAAT-enhancer-binding proteins (C/EBP),
SMAD3, tumor suppressor p53, SP1, androgen receptor,
retinoblastoma protein, cyclooxygenase-2, ERK1/2 and
Jun N-terminal kinase.
To identify the pathways and processes predominantly

affected by FF, we performed enrichment analysis based
on the unique targets for FF (268 proteins; blue arrow
in Figure 4). The canonical pathway maps and the toxi-
city network ontologies indicated inflammation-related
processes (e.g., cell adhesion and IL-6 signaling) among
the most significant processes affected by FF, and not by
the other compounds (Table 1). Thus, based on this
prediction, one would expect that FF differs in its
impact on inflammation when compared to the other
two drugs.

Validation of the predicted similarities and differences of
drug effects
To validate the predictions made above, we plotted the
liver microarray data of the three drugs on key networks

and pathways identified previously [27], particularly
emphasizing commonalities and differences related to
inflammation. The gene expression analysis was paral-
leled by a comparison of biochemical parameters, i.e.
plasma inflammation markers (by ELISA) and transcrip-
tion factor activity in liver homogenates (by TransAM).
In line with the predicted similarities, all three drugs

affected inflammatory processes controlled by IL-1 and
MIF and mediated by C/EBP, SP1, ERK1/2 and JNK.
Also in agreement with predictions, each drug acted in
a selective fashion and quenched different regions of the
inflammatory network (blue boxes in Figures 5 and 6).
A more granular analysis focusing on single genes in
networks revealed that RSV and T09 also exhibited
similarities while FF frequently showed opposite effects.
For example, RSV and T09 enhanced gene expression of
the inflammatory transcription factors NF�B, c-Jun and
C/EBP while FF did not (Figures 5 and 6). FF also
quenched the STAT3 signaling pathway while that path-
way remained active for RSV and T09.
Biochemical quantification of transcription factor

activity in liver homogenates confirmed these findings:
RSV and T09-treated livers showed greater transcrip-
tional activity for p65-NF�B, C/EBPb and STAT3 than
FF (Figure 7A-C). Specifically for FF, the pathways lead-
ing to C/EBP and STAT3 and relevant for IL-6 signaling
were not activated and the inhibitor of nuclear factor
kappa B, I�Ba, was up-regulated at the level of mRNA
abundance (Figure 6A). Although STAT3 activity is pre-
dicted by the network to be quenched, the transcrip-
tional activity of STAT3 was not significantly reduced
compared to HC. Direct measures of active, phosphory-
lated I�Ba protein in liver homogenates of FF-treated
mice showed an increase (~20%), confirming changes in
gene expression (not shown).
The pathway maps and biochemical data both demon-

strated the same differential effect of RSV, FF and T09

Figure 4 Distribution and numbers of unique, similar and common targets. Target intersection results: common targets - striped bar,
similar targets - white bar, unique targets - rosuvastatin (RSV; orange), fenofibrate (FF; blue) and LXR activator T0901317 (T09; red). Blue arrow
shows that the 268 targets unique for FF were selected for a subsequent more detailed enrichment analysis focusing on pathways and toxicity.
Common - genes that are common between all three compounds. Similar - genes that are common between any of compound pairs.
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on inflammatory pathways: RSV and T09 mainly sup-
pressed acute inflammatory effects while FF suppressed
both acute and chronic inflammatory processes. Indeed,
the plasma levels of the chronic inflammation markers
SAA and fibrinogen, an IL-6-dependent acute phase
protein, were lower with FF (SAA; P<0.05 vs HC and
fibrinogen; P = 0.06 vs HC) but not with T09 (Figure
7D/E). RSV lowered SAA but also not fibrinogen.

FF exhibits reciprocal expression patterns in comparison
to RSV and T09
Analysis of all differentially expressed genes (DEGs)
from microarray analysis showed most similarities
between RSV and T09 (Figure 8A upregulated genes
and 8B downregulated genes). RSV and T09 change
expression of the same genes in the same direction with
327 commonly upregulated and 98 commonly downre-
gulated. The FF gene expression profile is entirely differ-
ent and FF suppressed many of the genes that are
activated by RSV and T09. This general finding is con-
sistent with the similarities between RSV and T09 on
certain inflammatory networks (Figure 5 and 6) and the
different effect of FF.
To identify the processes and pathways specifically

suppressed by FF during atherogenesis, we mapped the
unique DEGs (i.e. list of 148 genes for FF; Figure 8B;
blue arrow) on biological process maps using enrich-
ment analysis. Remarkably, FF but not RSV or T09
suppressed pathways and processes important for early
atherogenesis. For example, FF suppressed CDR4-
mediated cell adhesion, leukocyte chemotaxis and
migration, leukocyte/lymphocyte activation, and lym-
phocyte proliferation, which were among the highest
ranked processes (Table 2 and Additional file 3). Nota-
bly, early-stage disease processes (immune cell adhe-
sion and recruitment, leukocyte proliferation) were

identified independently by prediction analysis of pos-
sible targets and by analyses of experimental gene
expression profiles. Since the modeling and experimen-
tal data indicated that FF would be more anti-athero-
genic than RSV and T09 (due to its distinct quenching
effect on immune and inflammatory processes asso-
ciated with early atherosclerogensis), a greater impact
of FF versus RSV and T09 would be expected on
initiation of atherosclerotic lesions. Analysis of early
atherosclerosis in the aortic valve area indeed showed
that FF is a very potent quencher of lesion formation
(Figure 9).

Discussion
A systematic strategy that relies on both in silico mod-
eling and experimental data was developed to help pre-
dict the origins of drug actions. Our systems biology
strategy may also provide a rationale for explaining dif-
ferential and common effects of drugs and drug
classes. The prediction method uses information
derived from the chemical structure of the drugs com-
bined with experimental omics data obtained from
short-term efficacy studies. Overall, we demonstrated
notable consistencies between the computationally pre-
dicted effects and the wet-lab biochemical effects. The
results suggested that the systems biology-based
approach may facilitate identification of on-target and
off-targets effects of a new drug which can be deter-
mined in the early stages of the drug development
cycle. As importantly, the strategy may improve under-
standing of drug efficacies and aid in predicting safety
leading to reduced costs of drug development and
drug attrition rates. This approach may have important
applications and implications for preclinical research
and for development of novel therapeutic strategies
including drug combinations.

Table 1 Prediction of the most significant pathways and networks unique for fenofibrate.

GeneGO Pathway Maps pValue GeneGo Toxicity Networks pValue

Development: Growth hormone signaling via PI3K/AKT and
MAPK cascades

1.152e-10 Blood coagulation: Coagulation factors. Plasminogen
signaling

1.696e-08

Development: IGF-RI signaling 1.757e-08 Signal transduction: Janus kinase 2 (protein tyrosine
kinase)

6.223e-08

Cytokine production by Th17 cells in CF 2.043e-08 Proliferation: Lymphocyte proliferation_STATs 2.808e-07

Cell adhesion: ECM remodeling 2.142e-08 Inflammation: SOCS3 in JAK-STAT cascade 4.345e-07

Cell adhesion: Chemokines and adhesion 2.233e-08 Inflammation: Kallikreins signaling 4.432e-07

Immune response : IL-4 - antiapoptotic action 3.753e-08 Inflammation: SERPINA3 regulation 6.102e-07

Transcription: Androgen Receptor nuclear signaling 7.793e-08 Signal transduction: IL-6R signaling ; hemopexin 9.601e-07

Transcription: Receptor-mediated HIF regulation 3.440e-07 Signal transduction: IL-6R signaling; APCS 9.601e-07

Cell adhesion: PLAU signaling 3.440e-07 Signal transduction : IL-6R signaling ; haptoglobin 1.478e-06

Immune response: IL-6 signaling pathway 5.856e-07 Proliferation: Positive regulation, HGF, CRIPTO, CCL14,
IP10 signaling

2.302e-06

Unique fenofibrate targets (from prediction analysis) were employed to GeneGo Pathway Maps and GeneGo Toxicity Networks. The 10 most significant pathways
maps and toxicity networks are shown.
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Prototype cardiovascular drugs were used to evaluate
our strategy. Differential effects on lipid metabolism
and inflammation as obtained from in silico predic-
tions were experimentally confirmed. A key step of the
strategy is the use of computational predictions using
structural data of the parent compound, compounds in
the same chemical class, and their metabolites. The
power of this approach is that variation in the struc-
ture of compounds belonging to a specific class allows
a greater chance of finding other protein-protein inter-
actions that are relevant for understanding primary
and secondary effects of the drug. The MetaDrug

database is very large and contains over 700,000 che-
mical structures and approximately 500,000 protein-
compound interactions (covering about 4,500 protein
targets), increasing the number of chemically-similar
compounds and resulting in an increased power of the
analyses. An added strength of this study was the abil-
ity to computationally expand from primary targets to
their closest network interactions. Expanding the net-
work increased the number of pathways and genes that
could be compared thereby increasing the ability to
predict effects on biological processes involved in the
phenotype or disease process.

 

 

A 

B 

C 

Figure 5 Effect of rosuvastatin on inflammatory networks and pathways. Major hepatic inflammatory pathways activated by high
cholesterol (HC) feeding (identified in [27]) were plotted in one graph and the effects of cardiovascular drugs were analyzed. White arrows
indicate the pathways that were active in presence of a drug. Cytokines and chemokines are shown in green, transcription factors in red,
adaptor molecules in blue, factors with catalytic or enzymatic activity in yellow. Filled red circles (blue circles) indicate that expression of a factor
is upregulated (downregulated). Red (blue) boxes indicate upregulated (downregulated) gene clusters. A, Pathways and transcription factors
affected by rosuvastatin (RSV). B, Genes from the network regulated differentially by RSV, FF and T09 with thermometers 1,2 and 3 indicating
RSV, FF, T09, respectively. Red (blue) color of a thermometer indicates upregulation (downregulation). C, Genes upregulated only by RSV and T09.
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The hypotheses generated by these prediction tools
and database were experimentally validated by (i) in
vitro and in vivo techniques that quantified plasma
levels of lipids and inflammation markers, (ii) by

analyzing activity of key transcription factors in livers,
and (iii) analysis of atherosclerotic plaque size in the
aorta. It was predicted that the biological pathways
maps that RSV, T09 and FF would affect would hardly

 

 

A 

B 

Figure 6 Effect of fenofibrate and LXR agonist T0901317 on inflammatory networks and pathways. Pathways and transcription factors
modulated by A, fenofibrate (FF) and B, LXR agonist T0901317 (T09) under HC conditions essentially as described in Figure 5.
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overlap and that similarities between these drugs could
mainly be expected within the maps of lipid metabo-
lism and inflammation. Among the processes predicted
to be affected by all three drugs were IL-1 signaling
and MIF signaling and among the 21 common targets
predicted were PPARg, C/EBP, SMAD3, p53, SP1, Rb
protein, COX-2, ERK1/2 and JNK. In silico network
analyses also predicted that FF would affect the most
network processes and that FF would differ in its
impact on inflammation (with RSV and T09 being
more similar). The experimental validation using the
ApoE*3Leiden mice treated with the drugs specifically
focused on inflammatory networks. The data con-
firmed the predictions: all three drugs affected inflam-
matory processes controlled by IL-1 and MIF and
mediated by C/EBP, SP1, ERK1/2 and JNK. Also, the
drugs showed a specific pattern of anti-inflammatory
action with RSV and T09 sharing more similarities (for
instance activation of central transcription factors C/
EBPb and p65-NF�B). In accordance with the model
prediction, FF differed markedly from RSV and T09 in

its overall effects on inflammation. While RSV and
T09 mainly affected acute inflammatory response pro-
cesses, FF was more effective in controlling chronic
inflammation processes. A notable prediction was that
FF would quench IL-6 signaling and related down-
stream effects relative to RSV and T09, which was
confirmed at the protein level by transcription factor
activity analysis (reduced STAT3 activity) and by the
observed FF-specific reduction of circulating fibrino-
gen, an IL-6-inducible acute phase protein and chronic
inflammation marker. Collectively, comparative
genome-wide pathway mapping showed that the biolo-
gical effects of the drugs were realized largely via dif-
ferent pathways and mechanisms suggesting
complementarities.
Transcriptome data was used to predict physiological

effects relevant for the vasculature and, to a lesser
extent, for the liver itself. For example, FF (but not RSV
or T09) was predicted to have an effect on processes
important for leukocyte activation, migration and
recruitment, all of which are crucial processes in early

A B C 

D E 

Figure 7 Biochemical validation of differential effects of RSV, FF and T09 on inflammation. Quantification of transcription factor activity in
liver homogenates and analysis of liver-derived inflammation markers in plasma. ApoE3Leiden mice treated with chow control diet T (for
baseline levels) or an atherogenic high cholesterol diet (HC) in the presence or absence of rosuvastatin (RSV); fenofibrate (FF) and LXR agonist
T0901317 (T09). A, p65-NF�B; B, C/EBPb; C, p-STAT3 and circulating markers D, SAA; E, fibrinogen.
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atherogenesis. Indeed, FF had the strongest effect on
early atherosclerotic lesion development under the
applied experimental conditions. Thus, while all three
drugs were expected to be anti-atherosclerotic, FF is
predicted to quench immune and inflammatory pro-
cesses which play an important role in early lesion

formation. This effect distinguishes FF from RSV and
T09 and suggested that FF would be more potent than
the other two drugs. Indeed, FF had the strongest redu-
cing effect on early atherosclerosis. Extending the obser-
vations for processes and drug effects to other tissues
will require additional confirmatory experiments.

A 

B 

Figure 8 Validation of differentially expressed genes. Analyses of genes differentially expressed (up- or down-regulated) with a threshold of
2.1-fold (1.1 Log2ratio). Target intersection results: common targets - striped bar, unique targets - rosuvastatin (RSV, orange), fenofibrate (FF,
blue), LXR agonist T0901317 (T09, red); A: up-regulated genes; B: down-regulated genes. Common - genes that are common between all three
compounds. Similar - genes that are common between any of compound pairs.

Table 2 Biochemical validation of the most significant pathways and biological processes unique for fenofibrate.

GeneGo Pathway Maps pValue GO Processes pValue

Oxidative phosphorylation 7.737e-07 lymphocyte proliferation 2.476e-15

Chemotaxis: CCR4-induced leukocyte adhesion 3.564e-05 mononuclear cell proliferation 5.757e-15

Protein folding: Membrane trafficking and signal transduction of G-alpha (i)
heterotrimeric G-protein

2.201e-04 leukocyte adhesion 2.324e-13

Neurophysiological process: Dopamine D2 receptor transactivation of PDGFR in
CNS

5.723e-04 cell proliferation 3.118e-13

Immune response: Antigen presentation by MHC class I 6.410e-04 leukocyte migration during
inflammatory response

6.116e-12

Transcription: Ligand-Dependent Transcription of Retinoid-Target genes 1.164e-03 endothelial cell migration 1.127e-10

Cell adhesion: Alpha-4 integrins in cell migration and adhesion 1.271e-03 lymphocyte activation 1.994e-10

Chemotaxis: Leukocyte chemotaxis 1.343e-03 leukocyte activation 3.843e-10

Immune response: Role of integrins in NK cells cytotoxicity 1.759e-03 activated T cell proliferation 6.308e-10

Signal transduction: cAMP signaling 1.759e-03 T cell proliferation 9.645e-10

Differentially expressed genes unique for fenofibrate (obtained from the microarray gene expression) were employed to GeneGo Pathway Maps and Gene
Ontology (GO) Processes analysis. The 10 most significant pathways maps and biological processes are shown.
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Although an increasing number of published studies use
transcriptomic data from circulating cells to extrapolate
to biological effects in other tissues and the effects of
drugs [28], insufficient data exists to estimate the value
and limitations of these strategies.
An increasing number of studies have shown that sev-

eral cardiovascular drugs originally designed to lower
plasma lipid levels also have beneficial anti-inflammatory
effects, specifically the down-regulation of major inflam-
matory markers (TNFa, interleukin-1b, fibrinogen, SAA
and CRP) and several key inflammatory transcriptional
regulators (NF-�B). These effects were described by us
and others for hypolipidemic drugs of different classes:
statins, fibrates and LXR agonists [15,29-33]. However,
the pathways and mechanisms that explain these anti-
inflammatory effects remained largely unknown includ-
ing whether these drugs act on the same or different
pathways. Our data showed differential activities on
inflammatory processes with signaling pathways and
specifically via the key regulators including interferon-
gamma, TGFb, IL-1, TNFa, MIF and IL-6. These
experimental data indicated that the profound inflam-
mation quenching effect of FF may be through its effect
on IL-6 signaling, a result consistent with the global
suppression of IL-6-regulated genes by FF [34] and its
negative (PPAR-alpha-dependent) effect on the IL-6 tar-
get gene fibrinogen [35]. However, the targets of FF and
T09 are nuclear hormone receptors which are expressed
in a cell- and tissue-specific manner and our observa-
tions are based on analyses of liver after chronic expo-
sure to these drugs. Whether similar effects apply to
other tissues and whether these affects also persist
under conditions of chronic drug exposure remains to
be experimentally tested. Many current systems biology-
based strategies rely upon data from one organ that is

composed of multiple types of cells, a distinct limitation
of existing tissue isolation and analyses technologies.
Functional systems and pathway analyses methods

capable of analyzing complex, multi-gene biological phe-
notypes are rapidly developing and are likely to help in
understanding the mechanisms of drug effects. A struc-
tured “knowledge base” consisting of protein-protein
interactions, pathways and processes assembled in ontol-
ogies [16] is required for such analyses. The data used
to generate the lists of molecules (genes, proteins, meta-
bolites) for prediction and pathway analysis may, how-
ever, be derived from experiments in different species,
methods, and strategies. As shown here, the ability to
correctly predict experimental results indicated the uti-
lity and potency of systems biology strategies in general
and for translating results from laboratory animals mod-
els to the human. Nevertheless, these strategies are cur-
rently a method for hypothesis generation and the
results, however promising, have to be considered “pre-
dictions.” The three compounds analyzed are well
known drugs which have a lot of associated publications
in the literature and consequently in the MetaDrug
database. The predictions made herein are, however,
only partially based upon existing literature connections.
On basis of the chemical structure of the compounds,
our method also extrapolates to possible metabolites
(formed after liver passage) and their respective targets -
this portion of the prediction process is solely based on
the chemical structure of the drugs and can be viewed
as true predictions.
Developing new drugs is a tedious and expensive

undertaking. Despite improvements in rational drug
design and high throughput screening methods, the
number of novel, single-target drugs fell greatly behind
expectations during the past decade. In addition, the
treatment of complex diseases involving multiple genes
and risk factors remains a pressing medical need. The
effects of drugs on known or unsuspected targets pre-
sent both opportunities and challenges for modern drug
discovery. Developing high-efficacy drugs that alter the
activity of multiple targets or repositioning existing
drugs to treat different diseases highlight the possibilities
of a systems biology approach. However, off-target
effects may result in adverse drug reactions that account
for around one-third of drug failures during develop-
ment and may contribute to idiosyncratic drug-induced
damage to tissues. Reliable and reproducible strategies
and models for predicting efficacy and safety, particu-
larly in being able to identify the direct and indirect tar-
gets early in the drug development process are greatly
needed. Such strategies are increasingly relevant for the
development of successful combination therapies for
patients suffering from complex, multifactorial cardio-
metabolic pathologies. Examples include patients treated

Figure 9 Validation of in vivo endpoint effects of the drugs on
early atherosclerosis. Atherosclerotic lesion area determined in the
aortic valve area of ApoE3Leiden mice treated with an atherogenic
high cholesterol diet (HC) in the presence or absence of
rosuvastatin (RSV), fenofibrate (FF) and LXR agonist T0901317 (T09).
*P<0.05 versus HC (ANOVA and least significant difference post-hoc
testing).
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with one or more drugs such as lipid-lowering and/or
hypotensive drug therapies. This report provides an
example of and extends the scope of systems biology
approaches for drug discovery.

Conclusions
We have developed a generic cheminformatic strategy
that is applicable to any chemical entity and that allows
the prediction of drug effects on biological processes.
The method is based on a very large database containing
700,000 chemical structures and approximately 500,000
protein-compound interactions. The new method can
provide mechanistic rationales for the differential and
common effects of pharmaceuticals as demonstrated for
three prototype cardiovascular drugs (a statin, a fibrate
and an LXR activator). The biological pathway activity
of these liver-targeting drugs was predicted using Meta-
Drug software and the results were tested against gene
expression and protein measurements from a huma-
nized mouse model of atherosclerosis. Consistent with
the predictions, the drugs suppressed different facets of
inflammation and displayed differential efficacy on early
atherogenic processes and cardiovascular endpoints
(atherosclerotic lesion area). This study exemplifes the
power of computational strategies for efficacy prediction
and the role that systems biology may have in future
drug discovery.

Methods
Animal atherosclerosis experiment
12-week old female ApoE*3Leiden transgenic (E3L)
mice were used. E3L mice express a 27 kb genomic
region from an ApoE*3Leiden proband encoding the
human APOE*3Leiden gene, the APOC1 gene, and all
their known regulatory elements, including those for
liver-specific expression [9]. Animal experiments were
approved by an Independent Animal Care and Use
Committee (DEC) and were in compliance with Eur-
opean Community specifications regarding the use of
laboratory animals.
All animals were fed an atherogenic diet consisting of

(all w/w) 20% casein, 40.5% sucrose, 15% cocoa butter,
1% corn oil, 10% corn starch, 0.25% standard vitamin,
0.25% mineral premix, 0.7% CaHPO4, 1% CaCO3 0.7%
KH2PO4, 0.7% KCl, 0.3% NaCl, 0.4% MgSO4, 0.2%
MgO, 0.2% methionine, 2% choline CL, 6.2% dicacel2+4
cellulose (Hope Farms, Woerden, The Netherlands).
This diet was fed for 10 weeks to a reference control
group (Con group). A high cholesterol group (HC
group) received the same diet but supplemented with
1% (w/w) cholesterol to induce atherosclerosis. Athero-
sclerosis and transcriptomics data of these two groups
were published separately[27]. All drug treatment
groups were fed the same high cholesterol diet as the

HC group but supplemented with one of the following:
PPAR-alpha activator fenofibrate (FF; 0.03% w/w), HMG
CoA-reductase inhibitor rosuvastatin (RSV; 0.05% w/w),
or LXR-activator, T-0901317 (T09; 0.01% w/w). After 10
weeks of diet feeding, animals were euthanized to collect
livers and hearts (including the aortic root). Livers were
snap-frozen in liquid nitrogen and stored at -80°C until
use for transcriptomics and metabolomics analysis.
Hearts were fixed in formaldehyde for analysis of ather-
osclerotic lesions [36]. Cross sections were analyzed
blindly in four cross-sections of each specimen (at inter-
vals of 30 μm) [14]. Significance of difference in athero-
sclerosis lesion area was calculated by 1-way analysis of
variance (ANOVA) test followed by a least significant
difference post hoc analysis using SPSS 11.5 for Win-
dows (SPSS, Chicago, USA). The level of statistical sig-
nificance was set at a<0.05.

Analysis of plasma lipids and proteins
Total plasma cholesterol and triglycerides were mea-
sured using kits No.1489437 (Roche Diagnostics,
Almere, The Netherlands) and No.337-B (Sigma,
Aldrich Chemie BV, Zwijndrecht, The Netherlands)
[36]. The levels of the liver-derived inflammation mar-
kers serum amyloid A (SAA) and fibrinogen were deter-
mined by established ELISAs [36].

Nucleic acid extraction and microarray analysis
Nuclear acid extraction and gene expression data analy-
sis have been performed as described previously in detail
[27]. Briefly, total RNA was extracted (n = 5 livers per
group) using glass beads and RNAzol (Campro Scienti-
fic, Veenendaal, The Netherlands). Integrity of obtained
RNA was examined using the RNA 6000 Nano Lab-on-
a-Chip kit and a bioanalyzer 2100 (both Agilent Tech-
nologies, Amstelveen, The Netherlands). Biotinylated
cRNA (from 5 μg of total RNA) was prepared with a
One-Cycle Target Labeling and Control Reagent kit
(Affymetrix #900493). Intermediate products, i.e. biotin-
labeled cRNA and fragmented cRNA, were again
checked (Agilent bioanalyzer). Microarray analysis was
carried out using Affymetrix mouse GeneChip® 430 2.0
arrays containing 45,037 probe sets and 34,000 well-
characterized mouse genes. Fragmented cRNA was
mixed with spiked controls, applied to Affymetrix Test
chips, and good quality samples were then used to
hybridize with arrays. The hybridization, probe array
washing and staining procedures were executed as speci-
fied by Affymetrix, and probe arrays were scanned with
a Hewlett-Packard Gene Array Scanner.

Gene expression data analysis
Raw signal intensities were normalized using the
GCRMA algorithm (Affylm package in R). Datasets are
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freely accessible online through ArrayExpress database
http://www.ebi.ac.uk/arrayexpress. The datasets of the
control groups and drug treatment groups can be
accessed at ArrayExpress under E-TABM-253 and E-
MEXP-3282, respectively. Normalized signal intensities
below 10 were replaced by the value of 10. Probe sets
with an absent call in all arrays were removed before
further analysis of the data. The gene expression
changes obtained by microarray were positively validated
in a head-to-head comparison by RT-PCR for the genes
HMG-CoA reductase, lipoprotein lipase, apolipoprotein
A1, serum Amyloid A1, fibrinogen, ATP transporter A1
and ATP transporter G1 in a previous study [27].
Statistical analysis was performed in BRB ArrayTools

(Dr. Richard Simon and Amy Peng Lam, http://linus.nci.
nih.gov/BRB-ArrayTools.html). Groups were tested for
differentially expressed genes using class comparisons
with multiple testing corrections by estimation of false
discovery rates (FDR). Differentially expressed genes
were identified at a threshold for significance of a<0.01
and a FDR<5%. Within the set of differentially expressed
genes, a Student’s t-test was carried out to test whether
individual genes were differentially expressed between
two groups (P<0.01 was considered significant).

Prediction of biological effects of small molecule
compounds using MetaDrug™
A detailed methodological description of the systems
biology procedures and protocols to study of drug
effects with details on experimental design, omics data
handling and a step-by-step protocol for using Meta-
Drug™ (GeneGo, Inc.) software has been published
[37]. Briefly, in a two-step workflow, the chemoinfor-
matics tools in MetaDrug™ transform the chemical
structure of a compound of interest into a list of poten-
tially affected proteins allowing the prediction of biologi-
cal effects (Figure 1). In the first step, human
metabolites were predicted for the uploaded structure
for RSV, FF and LXR by a set of empirical metabolic
rules. The resulting list of metabolites and the parent
compounds were then queried by a chemical similarity
search against a MetaDrug™ database of some 700,000
manually annotated compounds linked via physical com-
pound-protein interactions with some 4,500 proteins
known as targets for at least one small molecule xeno-
biotic. Accord Chemistry Cartridge™ (Accelrys, San
Diego, USA) fragment based fingerprints were applied
to perform the similarity search.
This generated a list of compounds similar to the

structure with a chosen similarity score (Tanimoto coef-
ficient). The list of similar compounds retrieved the list
of their protein targets using the collection of protein-
target interactions annotated and stored in the Meta-
Drug™ database. In a next step, the protein target lists

for RSV, FF and T09 were computationally expanded by
their nearest neighbors, i.e. by their first-step physical
protein-protein interaction partners, and intersected to
identify common (shared by all compounds), similar
(shared by any two compounds) and unique targets for
every compound. Common and unique lists were sub-
jected to enrichment analysis. Methodological and prac-
tical details about the use of the Compare Experiment
Workflow, Gene List Enrichment Analysis, Network
Generation, Transcription Factor Analysis and Network
Expansion are described in a recent methodological
paper [37]. The current limitations of the tools available
for pathway mapping to the study of cardiovascular dis-
ease have been summarized in [38].

Ontology enrichment analysis
We identified and ranked cellular pathways and pro-
cesses most influenced by the uploaded compounds by
enrichment analysis (EA) in two GeneGo ontologies
(GeneGo Pathway Maps, GeneGo Toxicity Networks)
and in GO Processes. Every map or network in a given
ontological category consists of proteins or endogenous
compounds (e.g. secondary messengers) participating in
a pathway or a process (GeneGo Pathway Maps, GO
Processes) or implicated in a disease or toxic state (Gen-
eGo Toxicity Networks) linked by well-established inter-
actions. The significance of enrichment was defined by
p-values of hypergeometric distribution [16]. As a result,
each compound was associated with a quantitatively
ranked list of processes and diseases summarizing its
pharmacological and toxic effects at a systems-biology
level.

Analysis of activated pathways and transcription factor
binding activity
STAT3-DNA, AP-1 (c-jun), C/EBP-DNA and p65-NFkB
binding activity was assessed using ELISA-based tran-
scription factor assay kits #45196, #46096, #44196 and
#40097-Chemi (TransAM™; Active Motif, Rixensart,
Belgium) following the protocols provided by the manu-
facturer. Briefly, homogenous liver extracts were pre-
pared using ‘Active Motif Nuclear Extract Kit’ and
analyzed in 96-well microplates coated with the oligonu-
cleotide-containing consensus binding site for the
respective transcription factor. Thereafter, a primary
antibody against the transcription factor was added, fol-
lowed by the addition of a horseradish peroxidase-con-
jugated secondary antibody. Colorimetry was performed
with tetramethylbenzidine, and optical density was read
using a spectrophotometer at 450 nm with a reference
wavelength of 650 nm. Specific for p65-NFkB, activity
was determined by chemiluminescence using a lumines-
cent image workstation (Roche Diagnostics, Almere,
The Netherlands). The active phosphorylated form of
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IkB-a was quantified by a Functional IkB-a ELISA™
(Active Motif).
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