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Abstract

Background: On the basis of large proteomics datasets measured from seven human cell lines we consider their
intersection as an approximation of the human central proteome, which is the set of proteins ubiquitously
expressed in all human cells. Composition and properties of the central proteome are investigated through
bioinformatics analyses.

Results: We experimentally identify a central proteome comprising 1,124 proteins that are ubiquitously and
abundantly expressed in human cells using state of the art mass spectrometry and protein identification
bioinformatics. The main represented functions are proteostasis, primary metabolism and proliferation. We further
characterize the central proteome considering gene structures, conservation, interaction networks, pathways, drug
targets, and coordination of biological processes. Among other new findings, we show that the central proteome
is encoded by exon-rich genes, indicating an increased regulatory flexibility through alternative splicing to adapt to
multiple environments, and that the protein interaction network linking the central proteome is very efficient for
synchronizing translation with other biological processes. Surprisingly, at least 10% of the central proteome has no

or very limited functional annotation.

Conclusions: Our data and analysis provide a new and deeper description of the human central proteome
compared to previous results thereby extending and complementing our knowledge of commonly expressed
human proteins. All the data are made publicly available to help other researchers who, for instance, need to
compare or link focused datasets to a common background.

Background

The understanding of living cells at a systemic level is
being recognized more and more as an important com-
ponent of biology and medicine research [1-9]. Biologi-
cal pathways and networks of protein interactions are
key paradigms to link molecules to biological functions
and by so doing bridging the genotype-to-phenotype
gap as well as understanding properties of the organiza-
tion of biological matter [10-13]. In this work we aim at
answering three simple but fundamental questions: i)
What is the complement of human proteins expressed
ubiquitously and abundantly in different cell types? ii)
Does this central proteome (C.Prot) [14] display
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properties that are distinct from the rest? iii) Can one
identify global features of this central proteome?

Gene expression microarrays allow analyzing a large
variety of transcriptomes [15] and several studies using
mRNA detection or abundance as a proxy for protein
expression or concentration have revealed important
properties of gene sets related to tissue specificity [16-18].
Recently, Bossi and Lehner [19] showed that tissue-specific
proteins are less interacting but bind to core cellular com-
ponents and common proteins. Domains enriched in tis-
sue-specific genes tend to be metazoan-specific and are
non-essential [20]. It is also known that widely expressed
genes encode protein domains involved in protein degra-
dation, cytoskeleton or RNA-binding [20].

It is well known that correlation between transcripts
and protein abundance is variable [21] and, as a general
rule of thumb, a good correlation is observed in
one third of the observed entities only. Subsequent
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mechanisms of regulation can significantly decouple
protein and transcript abundance [22]. For this reason,
we believe that it is important to study the central pro-
teome from proteomics data directly. As our data show,
mass spectrometry sensitivity has achieved a level that
permits such direct approaches. Similar work was con-
ducted by Schirle, et al. [14], who first coined the term
central proteome and used human cell lines as we did,
though they limited their analysis to technical aspects
related to the proteomics technology. Kislinger, et al.
[23] profiled protein expression in six mouse organs.
Another related project is the Human Protein Atlas [24]
that maps protein expression in human tissues through
a selected set of antibodies.

The focus of our work is different compared to the
aforementioned transcriptomics and proteomics studies.
After a brief and classical analysis of the functions of
the proteins present in the central proteome, which
matches gene microarray results, we reveal important
new findings regarding the gene structures of genes cod-
ing the central proteome, location on pathways in rela-
tion with drug targets, and global properties of the
interaction network connecting the central proteome.
Furthermore, we show how several characteristics of
common proteins vary with protein abundance.

The large amount of data generated for this research
constitutes a unique and homogeneous dataset that
should interest other investigators. Data are made avail-
able as supplementary material and are accessible from
the ProteomeCommons.org Tranche public repository.

Results

Cell lines, proteomics and protein identifications

We measured the proteomes of seven cell lines from the
three germ layers (HaCat, HepG2, K562, HEK293,
Namalwa, U937, HeLa) with 1D SDS-Page followed by
LC-MS/MS. The proteomes contained between 2031
and 4154 proteins each (see Table 1). Protein identifica-
tion was accomplished by a bioinformatics platform
combining two database search engines, Mascot [25]
and Phenyx [26], and an innovative and very stringent
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validation strategy enforcing a maximum false discovery
rate (FDR) of 0.25% on protein groups [27]. In addition,
protein groups that were not made of alternative splice
variants exclusively (2%) were discarded. Specific pep-
tides allowed us to ascertain the presence of some
variants.

Each cell line was analyzed twice in technical repli-
cates (merged results in Table 1) and modest variability
in the identified proteins was observed (<4%).

The central proteome

A large number of proteins were identified in each cell
line (Table 1). We constructed the central proteome
(C.Prot) by selecting proteins found in all the 7 cell
lines, i.e. 1124 proteins. HEK293 cell line yielded notably
more protein identifications, which was observed by
others already [14]. In addition, as mentioned above,
technical replicates of all the cell lines were highly
reproducible. HEK293 higher number of proteins is
hence unlikely to have been caused by experimental
bias. In fact, HEK293 cells provide a convenient system
for expressing many proteins, notably in affinity purifi-
cation MS experiments [28].

We compared the proteins identified in the 7 cell lines
and C.Prot with all the human proteins listed in Uni-
ProtKB/Swiss-Prot [29] to determine possible experi-
mental biases in molecular weight, isoelectric point,
hydrophobicity, and aliphatic index [30]; see Additional
file 1: Suppl. Figure 1. We observed very modest shifts
towards larger (+2.3% on average) and more acidic pro-
teins (-5.5%) in C.Prot. These slight biases are conse-
quences of the analytical technologies used and we do
not believe they have any significant impact on what
follows.

Overlap between C.Prot and the Human Protein Altlas
(HPA) was of less than 40%, depending on HPA detec-
tion strength. Namely, HPA contains all our cell lines
but Namalwa and we considered the intersection of the
6 shared cell lines in HPA. We found 852 proteins
strongly expressed (178 of which are in C.Prot, 16% of
C.Prot) and 3314 at least weakly expressed (413 in

Table 1 Number of protein groups and distinct peptides identified in the proteomics data

Cell line Protein groups With isoforms® Specific isoforms® Distinct peptides Germ layer
HaCat 2031 2673 13 29040 Ectoderm
HEK293 4154 5412 64 71571 Mesoderm
Hela 2379 3075 31 31609 Mesoderm
HepG2 2494 3298 24 30194 Endoderm
K562 3141 4078 37 48202 Mesoderm
Namalwa 2686 3527 29 37512 Mesoderm
U937 2073 2720 25 28786 Mesoderm

(a) Number of protein group reporters in case alternative splice variants are counted as well because they have all the peptides of the protein group, although
they do not necessarily have a specific peptide detected. (b) Isoforms supported by a specific peptide.
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C.Prot, 37%). We also considered all (union) the pro-
teins expressed in all the 46 HPA cell lines, weakly or
better, and we found 4314 proteins (445 in C.Prot, 40%).

Accession codes, IDs, description, and gene names of
the 1124 proteins found in the central proteome are
provided as Additional file 2.

Main functions represented in the central proteome

We classified the main categories of proteins present in
C.Prot by using a slimmed gene ontology (generic GO
slim) [31] and KEGG [32,33]. GO term statistics were
obtained via topGO ([34] with a 5% cutoff on the
P-values ("weight.log” method).

C.Prot was mainly enriched for vital processes of the
cell, see Table 2 and Suppl. Figure 2. The GO categories
broadly ranged from proteostasis, such as translation
and protein transport, over metabolic processes to cell
cycle and death. The metabolic processes mainly con-
sisted of primary metabolism, which is vital for mainte-
nance and proliferation. Major catabolic KEGG
pathways covered by C.Prot were proteasome,
citrate cycle, oxidative phosphorylation, glycolysis/gluco-
neogenesis, phosphate pentose pathway, fatty acid degra-
dation and few amino acid degradation pathways. On
the biosynthetic side we found translation, most ami-
noacyl-tRNA biosynthesis enzymes and pyrimidine
metabolism. The GO category “cellular component
organization and biogenesis” contained important com-
plexes such as signal recognition particle, coatomer
protein complex and the splicosome. Finally, the cell
cycle together with DNA metabolism and cell death,

Table 2 Gene ontology terms (biological process) found
significant at the 5% level in the central proteome

GO ID GO Term P-value Coverage®
GO:0006412  translation 1.00E-30 0.37
G0O:0016043  cellular component organization 1.40E-29 0.13
and biogenesis
GO:0015031 protein transport 1.90E-25 0.19
GO:0043170 macromolecule metabolic process  5.10E-23 0.14
GO:0009056 catabolic process 3.60E-19 0.15
GO:0044238 primary metabolic process 1.00E-16 0.10
GO:0006091 generation of precursor metabolites 2.90E-14 0.25
and energy
GO:0007049 cell cycle 510E-12 0.14
GO:0006259 DNA metabolic process 4.30E-07 0.13
GO:0009058  biosynthetic process 7.50E-06 0.20
GO:0009719 response to endogenous stimulus ~ 6.10E-04 0.12
GO:0008219  cell death 8.90E-04 0.10
G0O:0019725  cellular homeostasis 2.95E-03 0.12
GO:0006950  response to stress 4.30E-03 0.10

“Coverage indicates the proportion of proteins annotated in Swiss-Prot with
the term that are found in C.Prot.
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which are vital functions of living in a cellular popula-
tion, were also enriched. The same broad coverage
could be observed for the molecular functions and the
cellular localizations in C.Prot, except for the plasma
membrane and the extracellular space due to proteo-
mics technical limitations and use of cell lines, see
Suppl. Figures 3 and 4.

It is worth noting that advanced GO analysis supported
by the topGO R package, where detailed GO annotations
are reported to ancestor terms if they do not yield signifi-
cant results only, combined with generic GO slim helped
considerably dealing with a large dataset such as C.Prot.
Classical enrichment analysis methods overvalued very
general categories and/or returned numerous very
detailed hits. We found the “weight.ratio” method of
topGO too stringent and the “classic” one too “verbose”.

A well conserved set of proteins coded by exon rich
genes

The presence of a protein in many species is an indica-
tor of high conservation and fundamental functional
role. Therefore, we queried all orthologs of the human
genome from Ensembl and we measured conservation
by counting, for each human protein, the number of
species that had one ortholog. We found that, on aver-
age, C.Prot proteins had 5.9 orthologs more than
human proteins taken from SwissProt (P = 0, Wil-
coxon), that is they were present in more species
thereby indicating their higher degree of conservation.

To contrast our results we wanted to compare with
cell specific proteins. Due to the limited number of cell
lines available it was not feasible to define such specific
proteins. We hence used tissue specific genes as a proxy
[15]. In the Su et al. dataset, testis genes contributed for
almost one third and hence we defined a specific tran-
scriptome (Spe.Trans) ignoring testis specific. As a mat-
ter of fact, such diversity in testis gene expression would
hide gene specificity in many other tissues otherwise.
Without testis genes, Spe.Trans contained 282 genes
that, on average, had -0.6 orthologs (P = 0.06) compared
to the reference Swiss-Prot database.

An important feature of eukaryote proteins is that
they have the possibility to exist in different splice var-
iants. The total count of exons indicates combination
diversity. Remarkably, in C.Prot, the exon count was sig-
nificantly shifted towards higher values with an average
shift as large as +3.7 (P = 0, Wilcoxon). Conversely, Spe.
Trans had -0.7 exons on average (P = 0.5). To prevent a
potential bias in exon counts through a slight bias in
protein sequence lengths in our data, we compared
exon counts in C.Prot with Swiss-Prot applying a boot-
strap procedure to draw appropriate sequence length
distributions from Swiss-Prot.
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A well connected and central central proteome

Using an integrated interaction database, we extracted a
human interactome comprising 9,495 proteins and
70,083 interactions. We computed 5 commonly used
connectivity measures (betweenness and eigenvector
centrality, clustering coefficient, degree, k-core score) to
reflect various local and global aspects of the interac-
tome topology at the positions occupied by C.Prot. All 5
measures indicated significant positive biases, i.e. more
centrality, higher connectivity, and more frequent parti-
cipation in protein complexes. Remarkably, a further
significant increase for abundant C.Prot proteins was
observed. Node degree and eigenvector centrality statis-
tics appear in Figures 1A and 1B as examples.

There was a significant association of C.Prot with drug
targets as listed in DrugBank [35] (176 targets among
the 1465 listed, P = 1.6E-23, bootstrapped > see Meth-
ods). In the human interactome, we observed that drug
targets were more central and more connected nodes as
reported previously by others [8]. We did not see a con-
sistent increase of this trend with targets restricted to C.
Prot. On the contrary, considering relative positions in
pathways (see Methods), drug targets in C.Prot displayed
a significantly different profile compared to targets in
general. Targets not restricted to C.Prot appeared to be
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Figure 1 Network and pathways statistics. (A) Node degree
(number of edges). Note the strong shift of C.Prot towards higher
values. We also observe the absence of shift of the tissue specific
genes (Spe.Trans) and the gradual shift from low abundant CProt
entities to high abundant ones. (B) Eigenvector centrality values also
display similar shifts, although in this case Spe.Trans even reverses
the trend and differences between low and high abundant C.Prot
are more modest. (C) Relative positions in pathways; 0 = beginning,
1 = end. No real bias for CProt but a strong preference for central
position for its abundant proteins. Spe.Trans and low abundant C.
Prot are more spread over all possible positions. (D) The same for
drug targets. Note the strong shift towards initial positions for C.Prot
drug targets, which significantly amplifies the already present

preference of drug targets for such positions.
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preferentially at the beginning of pathways as opposed
to more central positions (P < 3.0E-2). When restricted
to C.Prot, this trend was much augmented (P < 1.4E-
34). NCI-PID [36], the pathway database we used,
included 759 DrugBank targets (21%), 133 of which
were in C.Prot (12% of C.Prot).

A central interactome

It was natural to define the central interactome as the
network made of direct interactions between C.Prot pro-
teins; this network is likely to exist in all the human
cells. Shortest path distance distributions were com-
puted (Figure 2A). We also found both the central and
whole interactome to be scale-free [37], with the central
interactome comprising more highly-connected regions
(protein complexes), see Figure 2B. The central interac-
tome contained several essential protein complexes, see
Figure 2C. The central interactome can be regarded as
platform used by biological processes to exchange infor-
mation through protein interactions. Therefore, we
introduced a notion of flux between biological processes.
As explained in Methods, fluxes between biological pro-
cesses (BPs) mediated by protein-protein interactions
(PPIs) can be scored and we compared fluxes over the
central interactome with fluxes outside the central inter-
actome and fluxes between C.Prot and non C.Prot pro-
teins. In each case, we generated random interaction
networks and GO annotations to determine which
fluxes were significantly more intense than what would
be expected by chance from the network topology and
GO terms frequencies. At the 1% significance level, the
random networks simulation yielded 57 significant GO
BP fluxes within the central interactome, 135 between
C.Prot and proteins of the human interactome not in
more than 5 cell lines, and 365 outside the central inter-
actome. In every case, the expected number was 12.75.
See Figure 3.

Discussion
The central proteome dataset
We present results characterizing the human central
proteome (C.Prot), i.e. the set of proteins commonly
expressed by human cells. Although previous related
studies have been conducted successfully on the basis of
transcriptomics data, we based our work on proteomics
data. Proteomics is likely to yield additional insight
because it directly measures the entities of interest, pro-
vided it reaches sufficient sensitivity and does not intro-
duce excessive experimental biases. Moreover, our
results comprise several important new findings never
covered by transcriptomics studies.

We defined C.Prot to be the proteins shared by 7 cell
lines whose total cell lysates were analyzed by state of
the art proteomics and followed by very stringent
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Figure 2 The central interactome. (A) Shortest path distance distributions. We first remark that distances between C.Prot entities (red) are
closer than distances between proteins of the human interactome (black), i.e. short distances below 4, which is the mean and median distance,
are over-represented. Remarkably, C.Prot is also closer than on average to the non CProt proteins (orange). The abundant C.Prot proteins are
even closer to each other and to the non CProt proteins (cyan and blue). It shows that C.Prot (and its most abundant components) are
embedded “uniformly” in the human proteome. (B) Power law distribution of the whole human interactome versus the central interactome. The
central interactome is more connected (exponent -1.1), i.e. frequency of high node degrees decreases slower, than the whole (exponent -1.8). (C)
Central interactome with mapped significant biological processes (Table 2). Processes not significantly enriched in C.Prot are in black and
multiple GO annotations are depicted by a circle (color chosen randomly) as opposed to a square for single GO. Shared GO term ancestors at a
node were removed to eliminate trivial multiple annotations and stay at the most specific levels. We note that, except for a few, processes are
not strongly localized in this network. It does not represent juxtaposed pathways but rather an exchange platform. We also observe that most
proteins have multiple GO BP annotations (circular node shape), which de facto establish additional exchanges between fundamental cellular
processes. Finally, we recognized some important complexes: (a) exosome, (b) ubiquitinol-cytochrome ¢ reducatase, (c) NADH dehydrogenase,
(d) oligosaccharyl transferase, (e) proteasome, (f) COPI, (g) ribonucleoprotein/splicosome, (h) proton-transporting ATP synthase, (i) ribosome, (j)
signal recognition particle, (k) cytochrome ¢ oxidase subunits, (I) pyruvate/2-oxoglutarate dehydrogenase complex, (m) prefoldin, (n) condensin,
(o) Signal peptidase complex, (p) COPII, (q) septin complex. Network visualized with Cytoscape [56].
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Figure 3 Inter-biological process exchanges over the central
interactome. High-scoring fluxes between biological processes
provide us with a mean to summarize the main function of the
central interactome, a subset of the human interactome that is likely
to be expressed in all the human cells. In our scoring scheme, high
scores represent fluxes that are much more intense than expected
from GO term frequencies and protein connectivity, i.e. exchanges
significantly favored by protein interactions. GO biological processes
are represented as nodes and scores by the edge thickness. (A)
Fluxes within the central interactome. The star-like topology with
translation (red) at its center shows that most exchanges
synchronize other cellular processes with translation. The strongest
crosstalk can be observed between translation and GO categories
(blue), which contain many members of the nucleic acid
metabolism (needed for mMRNA generation) and complexes such as
signal recognition particle, coatomer protein complex and the
splicosome. (B) Fluxes between C.Prot proteins and proteins not in
CProt. As soon as the focus shifts away from the central
interactome, translation loses its role as central commmunicator.
Communication between CProt and non C.Prot are less specialized.
Also, note the lost interconnectivity of the blue cluster, which
reflects reduced activity of the processes mentioned above. (C) This
trend is further amplified in the external fluxes between proteins
not in C.Prot that become essentially global and ignore translation.

protein bioinformatic identifications; it contains 1124
proteins. Clearly, the intersection of a much larger num-
ber of cell lines would be too stringent a criterion but
we found it appropriate with 7 cell lines. Experimental
biases were modest in our data (Suppl. Figure 1).

We could not find comparable human datasets from
public repositories [38,39] to complement our data and
cover more cell lines or tissues. The dataset of Schirle,
et al. [14] is much smaller after mapping to Swiss-Prot
(5-10 times) and covered by our data essentially (>92%).
The modest 8% that is not covered can certainly been
explained by MS detection and sample preparation
variability. Also, the few false positives contained in
both datasets reduce the overlap further.
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Data from the Human Protein Atlas [24] (HPA) are
not appropriate for completing ours as they derive
from a biased a priori selection of proteins and anti-
body availability. Antibody-based assays can also be
very variable in their sensitivity, thus making expres-
sion profiles of different proteins difficult to compare.
Nonetheless, HPA is a very valuable resource and com-
parison with our data showed that strong HPA com-
mon detections in 6 out of the 7 cell lines of our study
available in HPA have similar sizes (852 proteins),
whereas including weak detections increased this num-
ber dramatically to 3314. The overlap with C.Prot is
modest in both cases: 178 and 413 proteins respec-
tively (17% and 37%). This shows higher sensitivity
detection of targeted antibody-based assays compared
to broad unbiased MS analysis, which is no surprise.
This also shows that HPA is not covering so far an
important proportion of C.Prot.

HPA data can reveal an important characteristic of
our data: if we consider all the proteins expressed in all
the 46 HPA cell lines weakly or stronger, we find 4314
proteins (445 in C.Prot, 40%), which is a very small
improvement compared to 413 above although HPA
detections rose from 3314 to 4314. This indicates that,
within the limitation of current MS detectability, we
already identify with 7 cell lines only a significant part
of the MS measurable central proteome. To improve
coverage of the central proteome it is more important
to improve MS sensitivity than to increase the number
of cell lines.

We compared C.Prot with the most abundant proteins
detected in any of the 7 cell lines that were not in C.
Prot (see Methods). GO annotations were very different
for the two datasets (Suppl. Figures 2-4). In fact, the
non central abundant proteins had no strong functional
association, which indicates that the sole abundance is
not sufficient to associate with a function and is no
longer a dominating factor for inclusion in the central
proteome.

From Su et al. [15] microarray data we assembled a
central transcriptome (C.Trans) for comparison taking
the intersection of genes expressed in each tissue (com-
monly used MAS5 > 200), which resulted in a list of
2002 genes. C.Trans only covered 501 proteins of C.
Prot. Su et al. chip contained 917 out of the 1124 pro-
teins of C.Prot, meaning that 45% of the proteins we
detected would be missed by a transcriptomics
approach. Releasing the criterion for central transcrip-
tome inclusion by requiring genes in all but 4 samples
(instead of all), we increased its size to 3197 genes and
cover 683 proteins, i.e. a missing part representing 26%.
Such losses were most likely due to low degradation
rate proteins that do not require permanent expression
of their coding genes.
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Analysis

Functional analyses revealed prevalence for proteins
involved in proteostasis, RNA-binding, primary metabo-
lism, cell cycle and cell death (Table 2, Suppl. Figures 2
and 3). The transcriptomics data set of specific genes
(Spe.Trans) [15] was associated with different biological
processes related to signaling and multicellular organiza-
tion, whereas vital biological processes were much less
prevalent (Suppl. Figure 2). Spe.Trans thus seems to
play an important role in the establishment of distinct
anatomies via cell-cell signaling, whereas C.Prot covers
the more “archaic” needs, what is supported by the
higher degree of conservation of its members. These
observations corroborate results found from transcrip-
tomics data previously [20]. Proteins expressed across
many cell types require augmented gene expression flex-
ibility to adapt to local conditions. Our finding that C.
Prot proteins have on average almost 4 additional exons
compared to all human proteins shows that evolution
preferred this economic way of gaining flexibility in
common parts instead of augmenting their number
through duplication events. Spe.Trans reduced exon
count contrasts nicely.

Kislinger, et al. [23] did not extract a central proteome
from their data. Taking the intersection of their 6 organ
datasets and mapping the mouse proteins to their
human orthologs, we obtained 393 Swiss-Prot entries,
which are also biased towards high exon counts (+3).

Implication in central processes of the cell’s life is
naturally reflected by augmented PPIs and participation
in complexes formation as well as central positions in
interaction networks. Common proteins are more con-
nected and central in the human interactome than on
average as shown by the 5 different global and local net-
work topology measures we computed. This trend is
reversed for tissue specific genes and, in addition, we
observed a significant dependence with protein abun-
dance: the more abundant a protein the stronger the
connectivity/centrality and vice versa, see Figures 1A
and 1B. Such observations might be thought to be arti-
factual since common proteins are likely to be over-
represented in interaction databases and abundantly
expressed proteins might be more successful in PPI
experiments. To exclude this potential confounding
effect we mapped C.Prot down to yeast where large-
scale unbiased data are available. Using our integrated
database we obtained a yeast interactome comprising
datasets published with at least 5000 physical interac-
tions only and confirmed that C.Prot increased connec-
tivity/centrality is still valid in yeast (P < 2.0E-7 for all 5
measures).

Because human interactome data have been gathered
in many cell types and conditions, we do not believe
that higher connectivity necessarily implies that C.Prot
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entities are permanently connected to more partners.
We rather consider it as a strong indication that these
proteins have gained, during evolution, the capability to
bind to more partners when needed; another way to
augment adaptability to various environments. This is
corroborated by the top over-representation of the GO
molecular function “protein binding”, see Suppl. Figure
3.

To investigate robustness of our findings with respect
to a less stringent definition of the central proteome, we
checked the exon count and network statistics biases
either using the intersection of any six cell lines or tak-
ing proteins found in 6 out of 7 cell lines. In every case,
the results were almost unchanged.

After considering PPIs, it is natural to move to a
higher degree of organization of the living matter, i.e.
biological pathways. We define an intuitive notion of
relative position along a pathway (0 = source, 1 = end
point, see Methods and Suppl. Figure 5) and we observe
that C.Prot positions just follow the typical distributions
of human proteins (Figure 1C). This is no longer true
for the most abundant common proteins, which tend to
occupy central positions. This indicates that abundant
proteins are more likely at non-rate limiting central
positions while the key steps are under tighter expres-
sional control [40]. This is also supported by more uni-
form presence of Spe.Trans genes and low abundant
common proteins along pathways (Figure 1C).

Where do drugs hit the central proteome? The size of
the overlap between drug targets and C.Prot is signifi-
cantly large (176 proteins, P = 1.6E-23). Generally, drug
targets are mainly designed against catalytic proteins,
transporters and receptors, see Suppl. Figures 3 and 4.
Drug targets in C.Prot are mainly enzymes (146), which
play a pivotal role in primary metabolic processes (130).
The biological processes of amino acid metabolism, pre-
cursor generation and carbohydrate metabolism are
strongly targeted. A preference against nucleotide bind-
ing proteins, e.g. 50 ATP binders, and electron carrier
activity processes is observed. Pathway position analysis
showed that drug targets are clearly shifted towards
sources of pathways, see Figure 1D. This trend was
strongly reinforced considering C.Prot drug targets. Fig-
ure 4 features GO analysis localized along pathway posi-
tions and shows that less central positions are targeted
in all the biological processes. We believe that the rea-
son for an additional shift towards initial pathway posi-
tions is that C.Prot targets contain metabolic proteins
mostly. As a matter of fact, drugs targeting metabolic
pathways are frequently designed against rate limiting
enzymes, e.g. ATP- or NAD-binding proteins, which are
found at the beginning of pathways.

Within the human interactome, C.Prot entities tend to
be both closer - in terms of shortest path distance - to
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Figure 4 Drug targets GO terms variation along pathways. Integration of GO biological process (BP) analysis and pathway positions. Proteins
at the source (0-0.2), center (0.4-0.6) and end (0.8-1) of pathways in C.Prot and drug targets restricted to C.Prot are submitted to GO analysis. All
the BP terms with P-values < 0.1% in at least one case are reported and we see that the general strong reduction for central pathway position
(Figure 1D) is rather uniform over the BPs. The barplots represent the coverage of the GO terms.

themselves and to the non C.Prot proteins than on aver-
age in the whole human interactome, Figure 2A. This
bias is increased within abundant C.Prot entities. It indi-
cates that C.Prot is embedded in the interactome rather
uniformly and does not constitute an isolated island,
which certainly increases the robustness of the commu-
nications between C.Prot and the rest of the proteome
through PPIs.

To better understand internal and external communi-
cation within and with C.Prot, we have introduced the
central interactome and measured how it synchronizes
certain biological processes (BPs) preferentially.
Obviously, all the (true) PPIs are biologically relevant
but our analysis aimed at identifying the main streams
of communication. High-scoring exchanges (fluxes)
between BPs provide a summary of the communications
for which the interaction network is the most efficient.
From Figure 3A we see that most exchanges in the cen-
tral interactome are used to synchronize BPs with trans-
lation. BP communication between C.Prot and non C.
Prot and outside the central interactome is no longer
specialized and translation has a marginal role.

How well do we know these essential components
found in C.Prot? Surprisingly, C.Prot contains 22 pro-
teins lacking any information in PubMed (http://www.
ncbi.nlm.nih.gov/), searching abstracts with gene sym-
bols and their synonyms; 73 proteins appear in no more
than 3 abstracts and 112 in no more than 6, see Suppl.
Figure 6 and Suppl. Table 1.

Conclusions

We have determined experimentally an approximation
of the central human proteome that is suitable for ana-
lyzing its global properties. It is made of rather well
conserved proteins which have gained additional expres-
sion flexibility through the acquisition of additional
exons. These proteins are mainly involved in proteosta-
sis, primary metabolism, cell cycle and death. They tend
to be well connected with other proteins via PPIs. Ran-
dom network simulations show that the central interac-
tome was made very efficient, through evolution, to
coordinate translation with other biological processes, or
the latter ones via translation indirectly. More abundant
proteins tend to be located at biological pathway central
positions. Such central positions are generally devoid of
drug targets, especially when they are part of the central
proteome, which underline the fundamental role of
these proteins whose activity should not be altered. Sur-
prisingly, 10% of these common proteins are essentially
uncharacterized. Our data can help other researchers to
prioritize protein characterization or serve as back-
ground when analyzing focused datasets. They are made
publicly available through the journal web site (Addi-
tional file 2) and a public repository: the complete lists
of protein/peptide identifications in each cell line with
spectra have been deposited in ProteomeCommons.org
Tranche (hash= “JUrzEylShYDDUoKVrxHaoMrAu/
CGbqv3xqOS/zuErFvID8MOrVPRu5kOSlcxwK+/EY
dA9WoLN5eMeprBzh9rPMIuYksAAAAAAAAPLQ==");
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a more compact version of all the identifications found
in each cell line in tabular format and without the spec-
tra has also been deposited in Tranche (hash="
DrsqOg2DmUzUlJVLom+O6AHQTyJa2v+Ekhbw8az6-
OfF/JfF4hv51cyWqCKmaOHZZnOKJTUDI9ziTdCKp
Ezirhmjt9csAAAAAAAANKw==").

Methods

Proteomics

Total lysates of wild-type K562, HEK293, Namalwa,
HaCat, HepG2, U937, HeLa cells (50 pg total protein)
were reduced, alkylated, and separated by 1D SDS-
PAGE. After visualization of the proteins by Coomassie
Blue, entire gel lanes were sliced into 50 equal pieces
and digested in situ with modified porcine trypsin [41].
The resultant peptide mixture was extracted from the
gel slices and desalted with customized reversed-phase
stage tips [42]. Each cell line was grown to complete
confluence in appropriate media.

Approximately 10% of each tryptically-digested sample
was analyzed as technical replicates by data-dependent
nanocapillary reversed-phase LC-MSMS. Peptide separa-
tion was via customized 50 pm inner diameter columns
packed with 3 um diameter C18 Reprosil beads coupled
to a hybrid LTQ-Orbitrap XL mass spectrometer (Ther-
moFisher Scientific, Waltham, MA). Data-dependent
acquisition was performed for 100 min using one MS
channel for every four MSMS channels and a dynamic
exclusion for selected ions of 60 s.

Protein identifications

Protein identification combined Mascot [25] and Phenyx
[26], both with 4 ppm/0.3 Da parent/fragment mass tol-
erance, maximum 1 missed cleavage, carbamidomethyl
cystein as fixed modification, and methionine oxidation
variable, minimum peptide length 6 amino acids.
Searches were performed against UniProtKB/Swiss-Prot
(vers. 56.1) [29] human section, including all the iso-
forms. Results of the two engines were parsed separately
and a minimum of 2 distinct peptides above a score
threshold was required. Single peptide hits (SPHs) were
also accepted but above a much higher score threshold
and provided the protein sequence coverage was 2.5% or
more, see hereafter. We discarded spectra assigned to
different peptides by the two search engines during the
merge of the results. The identified proteins passing this
selection were grouped according to shared peptides,
and groups with no specific peptides were discarded
(1%), Suppl. Figure S7. Based on reverse database
searches, we imposed a protein group FDR of 0.25%, see
Suppl. Figure S8, which resulted in the following Mascot
thresholds: 2 peptides with ion score 18 or more, export
all additional peptides with score 10 or more, SPHs with
ion score 50 at least; and Phenyx thresholds: 2 peptides
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with z-score 4.5 or more and P-value 0.001 or less,
export all additional peptides with z-score above 3.5,
SPHs z-score above 6.

We characterized the robustness of protein groups by
determining the peptide false positive (FP) rate induced
by the score thresholds we obtained constraining the
protein groups FDR. We observed that this FP rate is <
0.1%. Since we discarded protein groups not having any
specific peptide (Suppl. Figure 7), the probability that a
group is nonetheless artifactual, but not detected as
such because of a single FP specific peptide identifica-
tion, is less than 0.1%.

We have identified more proteins with Phenyx than
with Mascot (+4% on average) and with a better
sequence coverage: 30% of the proteins have higher
sequence coverage with Phenyx, whereas 15% have
higher sequence coverage with Mascot. Phenyx scoring
function used for this work is available as Additional
File 3.

Protein abundance estimation

It is well-known that spectral and peptide counts can
provide reasonable estimates of protein abundance
[43-45]. We decided to employ emPAI [45], which is a
modified spectral count taking into account the instru-
ment mass range, because it has been carefully validated
by its authors and is well accepted. We used a mass
range of 698 to 2370 Da that covered 99% of the
detected peptides.

To separate the common presence from the sole
abundance in the analyses below, we built a comparison
dataset Top.CL representing the abundant proteins not
commonly expressed. For each protein, we estimated its
abundance in the 7 cell lines with emPAI and, to obtain
a single number, we took the median. Then, considering
the proteins that did not appear in more than 5 cell
lines, Top.CL was defined as the proteins in the top
25% median emPAI (463 proteins). To distinguish
between different levels of expression within C.Prot, we
followed a similar procedure and defined Low.C.Prot
(low 25%, 278 proteins) and Top.C.Prot (top 25%, 281
proteins).

Protein interaction data and pathways

We have integrated five public databases containing
human protein-protein interactions (PPIs) (MINT [46],
IntAct [47], HPRD [48], BioGRID [49], protein com-
plexes found in NCI-PID [36]) mapping all accession
codes onto Swiss-Prot. From this integrated database,
restricting to physical measurements of PPIs by tandem
affinity purification (TAP), we extracted 70083 interac-
tions between 9495 distinct human proteins and we
built a network model of the human interactome; 859
proteins of C.Prot (76%) were found in this network.
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Many measures have been proposed to characterize
connectivity in networks [50]. We retained 5 well-estab-
lished measures ranging from centrality of nodes to
likely involvement in complexes and modules: Between-
ness centrality [51], which measures the ratio of the
number of shortest paths through a given node by the
total number of shortest paths, i.e. how likely it is that a
sequence of protein interactions - a pathway - goes
through this node; Eigenvector centrality [52] measures
centrality in dependence of neighbors own centrality, i.e.
the centrality of a node increases when it is connect to
nodes that are central themselves; Node degree is the
number of neighbors of a node; Clustering coefficient
[53] measures the ratio between the maximum number
of edges theoretically possible in the sub-network
spanned by a node and its immediate neighbors and the
actual number of edges; k-core score measures the max-
imum number k for a node to be in a k -core [54]. A k-
core is a sub-network with all nodes connected to at
least k nodes of the sub-network.

To compare distributions of topological measures,
such as the clustering coefficient above, for different
sets of proteins, e.g. C.Prot versus C.Trans, we applied a
goodness-of-fit test. Using classical y test yielded exces-
sively small P-values since a lot of data points were
available and very little differences became significant.
To circumvent this problem, we re-sampled the data
1000 times, using 500 data points from each of the two
sets to compare, and we computed the y? statistic (10
bins). We thus obtained 1000 y? statistics, took the
median and obtained the P-value from the y?
distribution.

To investigate positions of proteins in biological path-
ways, we used the NCI-PID database [36], which com-
prises BioCarta (http://www.biocarta.com/) and
Reactome [55] pathways in addition to NCI-PID unique
pathways. We found 573 of our proteins (55%) in these
pathways and we computed the relative position of each.
The relative position was defined considering the short-
est paths to the closest source and end nodes, see
Suppl. Figure S5 for an example. If a protein appeared
several times in a pathway, relative positions were aver-
aged. We did not distinguish between isolated proteins
and proteins in complexes, and occurrences of proteins
in several pathways were averaged as well. Replacing the
shortest path to the closest source/end nodes by the
average over all the shortest paths to all the source/end
nodes, which would be a reasonable alternative measure,
we obtained nearly identical results (data not shown).

GO fluxes

To measure fluxes between GO [31] biological pro-
cesses (BPs) mediated by PPIs, we counted pairs of
GO terms. Namely, given two proteins in interaction,
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P; annotated with BPs A and B and P, annotated with
C, D, and E, we count 1 for the pairs AC, AD, AE, BC,
BD, and BE. The counts are summed over all PPIs. To
avoid “re-discovering” the GO structure, we removed
all common ancestors of GO terms found at each
protein.

To identify GO fluxes that were stronger than what
would be expected as a result of the frequencies of GO
terms and protein connectivity in the interactome, we
generated 100 random interaction networks and GO
annotations. We used 90 such random annotated net-
works to determine the means and standard deviations
of random fluxes between BPs: mean,,ndom(BP;,BP)),
8drandom (BP;,BP;). Normalized scores were then defined
as NScore(BP;,BP;) = (flux(BP;,BP;) - mean,andom(BP;,
BP;))/sdandom(BP;,BP;) and brought all terms to a com-
mon scale, independent of their frequencies. The last 10
random networks were used to learn the normalized
scores null distribution, which is bell-shaped. Random
networks were generated with topologies, GO term fre-
quencies, and central proteome nodes matching the ori-
ginal data. We considered random networks, where
node degrees and GO term frequencies were preserved
individually but decoupled.

Additional material

Additional file 1: Supplementary material. Supplementary material
contains several figures and tables that further support the results
discussed in the paper.

Additional file 2: Central proteome list. A table listing all the accession
codes, IDs, description, and gene names of the 1124 proteins found in
the central proteome.

Additional file 3: Linear trap Phenyx scoring function. The scoring

function used in this study that we developed for ThermoFisher linear
traps. It can be added to any Phenyx installation.
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spectrometry; PPI: physical protein interaction; SPH: single peptide hit; GO:
gene ontology; BP: biological process; emPAl: exponentially modified protein
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