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Abstract

Background: Epistatic Miniarray Profiling(E-MAP) quantifies the net effect on growth rate of disrupting pairs of
genes, often producing phenotypes that may be more (negative epistasis) or less (positive epistasis) severe than
the phenotype predicted based on single gene disruptions. Epistatic interactions are important for understanding
cell biology because they define relationships between individual genes, and between sets of genes involved in
biochemical pathways and protein complexes. Each E-MAP screen quantifies the interactions between a logically
selected subset of genes (e.g. genes whose products share a common function). Interactions that occur between
genes involved in different cellular processes are not as frequently measured, yet these interactions are important
for providing an overview of cellular organization.

Results: We introduce a method for combining overlapping E-MAP screens and inferring new interactions
between them. We use this method to infer with high confidence 2,240 new strongly epistatic interactions and
34,469 weakly epistatic or neutral interactions. We show that accuracy of the predicted interactions approaches
that of replicate experiments and that, like measured interactions, they are enriched for features such as shared
biochemical pathways and knockout phenotypes. We constructed an expanded epistasis map for yeast cell protein
complexes and show that our new interactions increase the evidence for previously proposed inter-complex
connections, and predict many new links. We validated a number of these in the laboratory, including new
interactions linking the SWR-C chromatin modifying complex and the nuclear transport apparatus.

Conclusion: Overall, our data support a modular model of yeast cell protein network organization and show how
prediction methods can considerably extend the information that can be extracted from overlapping E-MAP
screens.

Background
The representation of genetic interactions as networks
emerges from continuing studies aimed at characterizing
the functions of individual genes, and anticipates sys-
tems biology analyses that focus on dynamic network
behavior. An important testing ground for such
approaches is the single cell eukaryote Saccharomyces
cerevisiae, for which a more extensive knowledge of
individual gene function has been established than for
any other organism, and for which by far the largest set

of gene-gene and protein-protein interactions has been
assembled [1].
For instance, the publication of the S. cerevisiae DNA

sequence in 1996[2] allowed a set of yeast strains to be
generated that each contained a disruption in a single
gene [3]. This, and other strain sets, facilitated a wide
range of systematic studies aimed at establishing the
function of the genes, e.g. [4-8]. At the same time, a
number of genetic [9,10] and biochemical methods
[11,12] allowed the mapping of > 30,000 protein-protein
interactions [13], that could be represented as a large
(~4000 node) undirected graph. Within such networks,
proteins often form local densely connected network
structures that correspond to stable physically associat-
ing heteropolymeric complexes that form in vivo (e.g.
the ribosome, the proteasome). Complexes are an
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example of groups of proteins that come together to
carry out one or more biochemical tasks, for example
synthesis of new proteins by the ribosome. Proteins can
also associate in a more transient manner in pathways
to carry out a biochemical task, often in sequential rapid
enzyme-substrate interactions. Because protein functions
in the cell operate over different time scales, in different
locations, and in different biochemical contexts, under-
standing how the cell organizes biological events in
terms of protein-protein interaction networks has there-
fore been a major challenge.
One way to improve our ability to interpret protein net-

works is to combine protein interaction data with addi-
tional data sources [14]. In recent years, a distinct class of
interaction data has been mapped on a large scale in yeast
cells using Synthetic Genetic Arrays (SGA) technology
[15]. Termed “synthetic lethal”, these interactions describe
the negative (i.e. cell death, or a severe growth defect)
effects of disrupting two genes, additional ("synthetic”) to
the effect of disrupting either gene alone [16]. A synthetic
lethal interaction implies a functional relationship between
the interacting genes. Notably, they are enriched for genes
known to be involved in the same biochemical pathways,
including cases where the protein products of the gene are
known to physically interact and cases where they interact
indirectly. Several authors have exploited the distinct char-
acteristics of physical protein interaction data and genetic
interaction data to shed light on the organization of yeast
cellular pathways [17]. In 2005, a variant of the SGA
method was developed that quantified the synthetic effect
[18,19]. Notably, this method (Epistatic Miniarray Profil-
ing- or E-Mapping), detects pairwise gene disruptions that
cause the yeast to grow more slowly (negative epistasis) or
more rapidly (positive epistasis) than the rate predicted
using the individual gene disruptions. E-MAP data and
protein interaction data has recently been successfully
integrated to give insightful views of cellular organization.
In particular, several workers have noted clusters of
genetic interactions between functional modules [20-22].
Furthermore, these clusters are often ‘monochromatic’ -
predominantly positive or predominantly negative, an
observation that agrees with a predicted model of epistasis
in the yeast metabolic network, created using flux balance
analysis [23].
Although the E-MAP method can in principle be used

to quantify the epistasis effect for all pairwise combina-
tions in a model organism, in practice experimental
efforts have to date been carried out on smaller gene
sets, typically containing 400-800 genes. It has been
shown that there is a greater density of genetic interac-
tions between genes whose products share the same
function or location [6,24]. Based on this principle, the
gene sets chosen for E-MAP screens are selected in
order to maximize the number of epistatic interactions

identified, and to provide an overview of a broad biolo-
gical process (e.g. RNA processing, chromosome biol-
ogy). Interactions that occur between genes involved in
different cellular processes are not as frequently mea-
sured, yet these interactions are important for providing
an overview of cellular organization. A considerable
number (~30 - 160) of genes overlap between different
E-MAP sets, raising the possibility that the correlation
between related genes could be exploited in order to
predict epistasis scores not directly measured in an indi-
vidual E-MAP. Here we develop such an approach and
use it to predict new epistatic interactions that enhance
our understanding of the yeast interaction network.
To date the majority of methods for predicting genetic

interactions have focused on synthetic lethal interac-
tions, while the problem of predicting quantitative epi-
static interactions has received less attention.
Techniques for the predicting of synthetic lethal interac-
tions have had some success by mixing heterogeneous
biological data [25,26]or by exploiting the topology of
the underlying protein interaction network [21,27].
Chipman and Singh [28] used random walks on diverse
biological networks to predict synthetic lethality while
Qi et al [29] have used graph based methods, using only
the graph of synthetic lethal interactions.
Recently two papers have addressed the problem of

imputing missing values within E-MAPs [30,31]. These
papers both used information from ‘nearest neighbors’
to perform the imputation. These neighbor-based tech-
niques exploit the similarity between the interaction
profiles of different genes to predict missing values. The
simplest neighbor-based technique is K-nearest neigh-
bors, which works as follows: when a gene has a miss-
ing value for a condition, the K genes with the most
similar interaction profiles are identified, and their mea-
surements for that interaction are combined using a
weighted average. We assessed a number of neighbor-
based techniques, and found that they could be used to
effectively impute the missing values within an E-MAP.
Ulitsky et al[31] used a similar approach, but incorpo-
rated additional genomic features along with neighbor-
based information for the imputation. The incorpora-
tion of these additional features resulted in minor
increases in imputation accuracy, but the authors noted
that the applicability of the method was limited to
organisms for which such external data were available.
Additionally, Ulitsky et al used a logistic regression clas-
sifier trained on the same features to predict qualitative
interactions (positive, neutral, negative) between gene
pairs.
Here we develop a prediction approach for E-MAPs

and use it to predict new epistatic interactions that
enhance our understanding of the yeast interaction
network.
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Results
A method for predicting quantitative epistatic
interactions
To address the problem of inferring epistatic interac-
tions between untested gene pairs, we propose a con-
strained nearest neighbor-based approach, which
exploits the similarity between interaction profiles. Our
goal can be most succinctly stated using terms from set
theory: given two E-MAPs containing overlapping sets
of genes (A and B), we wish to predict scores for inter-
actions between those genes present in A but not in B
(A \ B) and those genes present in B but not in A (B \
A) (Figure 1). We achieve this by identifying the nearest
neighbors from the genes present in both datasets (A ∩
B). Predictions between genes are only made when one
of the genes has a neighbor that is similar enough, i.e.
above a specified similarity threshold (using Pearson’s
correlation as a similarity metric).
The steps of our algorithm are as follows :
1) First we calculated a similarity matrix for the genes

within each E-MAP. For each gene in (A \ B), we calcu-
lated its similarity to every gene in (A ∩ B). Similarity
was defined as the Pearson’s correlation coefficient
between the interaction profiles of the two genes. The
interaction profile for a gene was defined as the vector
containing the measured interactions between that gene
and all other genes in the E-MAP. Due to missing inter-
actions the correlation is measured over vectors of dif-
ferent sizes - however in 90% of cases there are over

two hundred data points in common, and the minimum
number of data points used for our experiments was
over seventy genes. Even at this minimum number of
measurements, the p-value for a correlation of 0.6 is less
than 10-7. We repeated the process for (B \ A).
2) Using these similarity matrices we identified the

nearest neighbor for each gene: the gene with the high-
est similarity score. If the neighbor was close enough, i.
e. above some threshold for similarity, we used it in our
imputation.
3) For each interaction pair (i,j) where i Î (A \ B) and

j Î (B \ A) we checked if i had a close neighbor i’, and
if j had a close neighbor j’. If (i,j’) was present in E-MAP
B or (i’,j) was present in E-MAP A, then we used their
value as our prediction. If both were available then we
used their average as our prediction.
Our method is distinct from existing nearest neighbor

imputation methods in three ways: 1) we do not attempt
to impute missing or erroneous values, rather we impute
values that were never measured in the original screen;
2) we infer the novel interactions by combining pairs of
independent but overlapping datasets; and 3) we only
provide scores for those interactions which we can esti-
mate accurately.
We carried out our procedure for three published E-

MAP studies: Chromosome Biology [32], Signalling [33]
and RNA Processing [34] (henceforth referred to as
Chromosome, Signalling, and RNA respectively). Within
these E-MAPs, the proportion of missing values varies
from ~12 - 34% (Table 1). In general, only small sets of
overlapping genes are shared between each pair of E-
MAPs (e.g. of the 552 genes in the RNA E-MAP, only
125 are also present in the Chromosome E-MAP) yet the
correlation between them is high (≥ 0.5, see Table 2)
allowing inferences based on shared genes to be exploited
by our method. In total, we predicted 34,469 putative epi-
static interactions using these overlapping profiles (based
on a correlation threshold of 0.6), including 2,240
strongly epistatic interactions (S-score < -2.5 or S-score >
2 [33]), the class of interactions that are most informative
in terms of understanding biological function.

Epistasis scores can be accurately predicted by
combining datasets
In order to assess the effectiveness of our method, we first
performed a ‘leave-one-out’ style validation procedure

i' 

i 

j' j 

A \ B 

A ∩ B

B \ A 
(i,j) 

(i’,j) 

(i,j’) 

j)

j) ) 

B \ A A \ B A ∩ B 
Figure 1 Symmetric Nearest neighbors: The area in grey
represents the space where we predict interactions. The labels
represent the standard set theory definitions - e.g. A\B signifies
genes that are in A but not in B. For the missing value (i, j), values
from (i’,j) and (i,j’) would be combined

Table 1 An overview of the E-MAPs analyzed in this
study

Dataset Alleles % Missing Reference

Chromosome 754 34.65 [32]

RNA 483 12.69 [34]

Signalling 552 29.53 [33]
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using the Chromosome, RNA and Signalling datasets. The
values for interactions between genes in (A \ B) and genes
in (A ∩ B) are removed one at a time, and an attempt is
made to predict them. This is repeated for interactions
between genes in (B \ A) and genes in (A ∩ B), allowing us
to assess the effect of altering the similarity threshold on
the accuracy of the resulting predictions. We used two
measures of accuracy: the Pearson’s correlation between
the predicted and actual interactions, and the normalized
root mean squared error (NRMSE, see Eqn. 1). An
improvement in accuracy should result in a higher correla-
tion, and a lower NRMSE value.

NRMSE =

√
mean[(ijanswer − ijguess)

2]

variance[ijanswer]

Both measures show a similar trend (Figure 2).
Beyond a minimum similarity threshold of ~0.4, there
appears to be an almost linear relationship between the
threshold used and the measured accuracy. Scatter plots
constructed to compare predicted and experimentally
observed epistasis scores show that our predictions have
similar variance to independent E-MAP experiments at
a correlation threshold of 0.6. Importantly, at a thresh-
old of 0.6 the number of gene pairs misclassified into
incorrect epistasis categories (positive classed as negative
etc.) is very low (~1%). Thus, for our analysis we used a
threshold of 0.6, preferring a smaller number of more
accurate predictions to a significantly larger number of
less accurate predictions (~35,000 vs ~160,000). How-
ever, all predictions made with a threshold of 0.4 and
above are given in additional files 1, 2 and 3.

Predicted epistatic interactions overlap with known
interactions and pathways
It has been widely observed that epistatically interacting
gene pairs are more likely to share annotated biological
properties than randomly selected gene pairs [24]. For
instance, gene pairs that show strong epistatic interac-
tions are likely to be involved in the same biological
pathways, and so are likely to share Gene Ontology [35]
annotations, and to display similar phenotypes. If our
predicted epistatic interactions are accurate, then we
would expect that they would be similarly enriched for
shared annotations and phenotypes. They are also more
likely to have been previously identified in genetic

interaction screening experiments than randomly
selected genes. Furthermore, enrichment for synthetic
lethal interactions is likely to be stronger for negative
than positive interactions, because synthetic lethal
screens primarily report on negative growth phenotypes.
We therefore sought to validate our predictions by

comparison with a number of additional data sets. We
selected the strongly epistatic pairs from our set of pre-
dictions using the thresholds identified in [33] (positive,
S-score > 2.0; and negative, S-score < -2.5), and asked
whether they are enriched in a variety of annotated
properties associated with genetically interacting gene
pairs obtained from the literature including the presence
of synthetic lethal (genetic) interactions, positive genetic
interactions, genes sharing experimental phenotypes,
and genes sharing database annotations (Gene
Ontology).
Our set of predicted epistatic interactions were indeed

enriched for these properties for all three E-MAPs
(Table 3).
As expected, pairs of genes predicted to interact both

positively and negatively tend to share GO Process and
SGD Phenotype annotations (Table 3), confirming that
these genes generally operate within similar biological
processes in the cell. Furthermore, the predicted nega-
tively interacting pairs were at least 20-fold more likely
to have previously been identified as Synthetic Sick/
Lethal in published experiments than random pairs,
while pairs predicted to interact positively were at least
13 times as likely to have previously been labeled as
such (Table 3). These observations hold for all three
pairs of E-MAPs considered, and so are likely to be
widely applicable. Overall, validation using both internal
(leave-one-out analysis) and external (comparison with
annotated biological features) measures supports the
assertion that our method successfully generates reliable
predictions of epistatic relationships of both positive and
negative polarity. The ability of our method to accu-
rately predict the polarity of an predicted epistatic inter-
action is important, because distinguishing between
positive and negative epistasis is critical to mapping the
high level relationships between biochemical processes
and protein complexes in the cell.
Having used both internal and external procedures to

ensure that our predicted interactions were of high qual-
ity, we next validated a number of our interactions using
a small scale E-MAP in the lab. The results are sum-
marised in Table 4, and the measured interactions are
available in additional file 4.

Improved mapping of epistatic relationships among
complexes using inferred interactions
A prime motivation for identifying epistatically interact-
ing genes is to improve our understanding of how the

Table 2 Overlap between different E-MAPs

Dataset A Dataset
B

Common
Alleles

Common
Interactions

Correlation

Chromosome RNA 125 4030 0.66

Chromosome Signalling 142 5321 0.50

RNA Signalling 63 890 0.60
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Figure 2 Similarity threshold vs accuracy: the impact of the similarity threshold on the accuracy of the predicted S-scores, as measured by
correlation between predicted and experimentally observed values (A) and NRMSE (B). (C) is a density plot showing agreement between
independent E-MAP experiments [32,34] and agreement between observed and predicted interactions at thresholds 0.8 (D), 0.6 (E) and 0.4 (F).
Lines are drawn at the thresholds which have previously been used to identify ‘significantly negative’ and ‘significantly positive’ interactions [33].
Interactions in the light green boxes indicate values which should be positive or negative, which have been predicted as neutral(and vice versa).
Interactions in the dark green boxes indicate values whose polarity has been switched – significant negatives predicted as positives and vice
versa.
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various activities of the cell are coordinated. Kelley and
Ideker [21] combined synthetic lethal interactions with
physical protein-protein interaction, protein-DNA inter-
action, and pathway information from the KEGG data-
base [36] to construct ‘between pathway’ and ‘within
pathway’ models for genetic interactions. This work
found that ‘between pathway’ interactions were the
more common class, perhaps because negative interac-
tions typically reflect redundant behavior that is more
likely to be found between parallel biochemical path-
ways than within a single pathway focusing on a given
biochemical function. Segre and coworkers [23], used a
flux balance model to predict both positive and negative
epistatic interactions between gene pairs, and showed
that sets of genes involved in coordinated activities tend
to show aligned (’monochromatic’) epistatic polarity.
Bandyopadhyay and coworkers [20] extended these

approaches by combining E-MAP data with protein-pro-
tein interaction data, to identify modules defined by
physical interactions and the largely monochromatic
interactions between them.
In order to show how our predicted epistatic interactions

can supplement and extend these overviews of the cell, we
created a combined E-MAP, consisting of the published
RNA, Chromosome and Signalling E-MAPs, augmented
with new predictions arising from this manuscript. We
mapped the resulting combined E-MAP onto a recently
produced high quality list of yeast protein complexes [37],
using the method of Bandyopadhyay and coworkers
[20,34]. We identified pairs of complexes bridged by
genetic interactions which were significantly more negative
or positive than one would expect by chance (P < 0.001).
Additionally we identified complexes whose internal inter-
actions were similarly ‘monochromatic’.

Table 3 Enrichment of predicted interactions between pairs of E-MAPs

Chromosome - RNA

Positive Negative

Dataset Overlap Enrichment p-value Overlap Enrichment p-value

GO Process 238 1.50 2.76E-12 393 1.66 9.55E-29

SGD Phenotype 59 2.73 8.45E-12 135 4.19 9.35E-44

Positive Genetic 20 23.82 7.29E-21 3 2.39 0.13

Synthetic Sick 2 1.30 0.67 49 21.35 1.44E-46

Chromosome - Signalling

Positive Negative

Dataset Overlap Enrichment p-value Overlap Enrichment p-value

GO Process 56 1.39 5.98E-03 121 1.30 1.12E-03

SGD Phenotype 10 1.40 2.50E-01 67 4.07 2.13E-22

Positive Genetic 3 13.48 1.56E-03 2 3.90 0.09

Synthetic Sick 0 0.00 1.00 24 19.98 3.06E-23

RNA - Signalling

Positive Negative

Dataset Overlap Enrichment p-value Overlap Enrichment p-value

GO Process 65 2.03 5.97E-09 162 2.25 7.63E-26

SGD Phenotype 33 5.07 1.87E-14 88 6.02 7.13E-42

Positive Genetic 16 71.81 1.19E-24 2 4.00 0.09

Synthetic Sick 1 2.40 0.34 54 57.77 1.98E-74

Enrichment of predicted interactions between the different E-MAPs. Significantly enriched values (P < 0.01) are highlighted in bold. All p-values in these tables
are calculated using Fisher’s exact test, and the results are generated using a correlation threshold of 0.6.

Table 4 Accuracy as measured by a new small-scale E-MAP

Positive Neutral Negative

Correlation Precision Recall Precision Recall Precision Recall

Predictions 0.482 0.279 0.182 0.894 0.929 0.491 0.402

Chromosome 0.560 0.233 0.306 0.912 0.931 0.566 0.430

RNA 0.574 0.358 0.351 0.901 0.914 0.578 0.524

Kinase 0.599 0.172 0.458 0.952 0.940 0.528 0.518

The overlap between our predictions and a new small-scale E-MAP. In total 1731 of our predictions were evaluated using this E-MAP. The overlap between the
existing E-MAPs and the small-scale E-MAP are given for comparison.
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Our inferred interactions have two main uses in this
context. First, they provide additional evidence for pre-
viously proposed connections among protein complexes,
and second, they establish new connections. By compar-
ing the resulting network of linked complexes before
and after the addition of predicted interactions, we can
see which links are a direct result of our predicted inter-
actions. In total 105 ‘inter complex’ links were signifi-
cantly ‘monochromatic’ after the addition of our
predictions, in other words a set of previously unknown
inter-complex links identified with the help of inference.
In contrast, the statistical significance of only one ‘intra
complex’ link increased after including our predictions.
This apparent discrepancy chiefly arises due to the com-
position of the E-MAPs published to date, where com-
plexes tend to be represented in only a single E-MAP.
Interactions between complexes therefore frequently
correspond to links between E-MAPs (Table 5 and Fig-
ure 3).
The largest connected component of these 105 novel

‘inter-complex’ links. Is shown in Figure 4A. This figure
is effectively an overview of how cellular processes are
organized into modular arrangements, while operating
at different hierarchical levels. At the level of the protein
complex, individual proteins physically interact, while at
the pathway or function level, protein complexes com-
municate with each other through interactions that are
reflected at the epistatic level.
For instance, the cytoplasmic small ribosomal subunit

is central to a cluster of protein complexes linking pro-
tein translation (guanyl nucleotide exchange factor; pre-
foldin complex) to DNA biology(e.g. replication factor
C, RecQ helicase-Topoisomerase III) and complexes
mediating gene expression/chromatin biology (e.g.
NuA3 HAT complex). This is consistent with a coordi-
nating role for the ribosome in regulating different
aspects of these processes during the cell cycle [38].
Interestingly, the DNA biology gene clusters interact
negatively with the ribosome (suggestive of a supportive
or co-operative function), while the prefoldin and guanyl
nucleotide exchange factor genes interact positively
(suggestive of a modifying or regulating relationship).

Insights into chromatin modifying machines
A good example of how prediction consolidates pre-
viously proposed links between complexes, while high-
lighting new ones, is the SWR-C complex (Figure 4B).
This 13 subunit complex is responsible for deposition of
the H2A histone variant Htz1 into chromatin in order
to promote gene expression and inhibit silencing by het-
erochromatin [39,40]. Unsurprisingly, SWR-C has been
functionally linked to other chromatin modifying com-
plexes including the NuA4 histone acetyltransfersase
and the Ino80-C chromatin remodeling complexes [41].
In fact, several proteins are shared among these com-
plexes, including Rvb1p, Arp4p and Yaf9p. Connections
between SWR-C and NuA4 or Ino80-C components
have previously been observed in E-MAP experiments,
and also between SWR-C and another chromatin modi-
fying complex, COMPASS. COMPASS houses a histone
H3K4 methyltransferase activity that contributes to gene
silencing near telomeres, and is linked to SWR-1 activity
via three previously observed E-MAP pairs: SDC1 with
SWR1, SWC5 and VPS71. Our predicted interactions
however, link the COMPASS subunit SDC1 to eight
additional SWR-C subunits: five via negative epistasis
(SWC3, VPS72, ARP4, ARP6, YAF9) and three (RVB1,
RVB2, ACT1) via weakly positive epistatic interactions
(Figure 4 B). We tested the SDC1-SWC5 combination
in the small-scale E-MAP (Table 4) and found a very
strong negative epistasis (S-score = -15) that agreed
with our imputation from the Chromosome Biology/
RNA Processing pair of E-MAPs (S-score = -7).
We also predicted an interaction between components

of the SWR-C complex (VPS72, SWC5, ARP6, YAF9,

Table 5 Inter and Intra complex links

Dataset Intra Complex
Links

Inter Complex
Links

Combined without
predictions

20 674

Combined with predictions 21 761

Counts of the significant monochromatic epistatic interactions that occur
within and between physical complexes defined by Pu et al. Inter complex
links are genetic interactions that bridge two physical complexes, while intra
complex links are genetic interactions within a single complex. Interactions
are counted here if they are significantly more negative or positive than one
would expect at random (P < 0.001).

Figure 3 Novel inter-complex edges generated by newly-
inferred epistatic interactions: Nodes represent protein complexes
(as cataloged by Pu et al [57]) while edges represent strong net
positive or net negative genetic interactions between complexes.
Grey edges represent interactions which are unaffected by our
predicted interactions, violet edges represent interactions which
have been given additional links by our predicted interactions, and
red edges represent previously unreported interactions between
complexes, established using our method. Edges are only drawn if
the median genetic interaction is significantly more positive or
negative than one would expect by chance (P < 0.001)
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SWC3) and the nuclear pore complex (NPC) compo-
nents Nup170 and Nup188, Figure 4(B). We experimen-
tally tested and validated four of these newly predicted
epistatic interactions between these two complexes in

the small-scale E-MAP where the predicted S-score
agreed with the measured interaction (all S < -3). Inter-
actions between these two components and SWR-C had
not been observed before E-MAP screening, but are

A. 

SWR1

box C/D snoRNP

Rpd3L

B. C. 

Figure 4 Novel and Supporting Inter complex edges: A. Monochromatic interactions between complexes whose significance is increased
after the addtion of our predicted epistatic interactions. B. A close up of the Swr1 complex. C. Positive interactions between the “box C/D
snoRNP” complex and “Rpd3L” complex
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consistent with observations in the RNA processing E-
MAP that connected SWR-C components with the NPC
components Nup120p and Mex67p, and a recent report
linking Htz1p deposition and the tethering of genes of
the nuclear pore [42].
We also experimentally confirmed negative interac-

tions between SWC5 and VPS72 and the nuclear impor-
tin KAP122, Figure 4(B), whose gene product binds to
the NPC components Nup1p and Nup2p (predicted and
observed S-scores = -10/-8 for both interactions). Thus
our predicted epistatic interactions suggest new links
between SWR-C and components of both the NPC and
soluble nuclear transport factors, consistent with a bio-
logical rationale whereby histone exchange within
nucleosomes is likely to be coordinated with several
aspects of the biology of the nucleus [43].
New connections were also made between SWR-C

and protein complexes involved in different steps of
gene expression. The snRNP Brr1p is involved in snRNP
biogenesis pre-mRNA splicing and the cognate gene was
predicted to strongly negatively interact with ARP6,
VPS72, SWC3, SWC5, and YAF9 Figure 4(B). Two of
these interactions were tested and confirmed in the
small-scale E-MAP (predicted and observed S-score for
SWC5-BRR1 was -8/-9, and for VPS72-BRR1 is -8/-6),
while further connections had already been reported in
the RNA E-MAP(SWR1-BRR1 and VPS71-BRR1). Simi-
larly, five members of SWR-C were predicted to interact
with LEA1, a gene encoding a U2 snRNP component
involved in telomere maintenance [44]. Two interactions
were tested and confirmed (S-score for VPS72-LEA1
predicated/observed was -7/-7; for SWC5-LEA1 was -7/-
8), Figure 4(B). Four members of SWR-C, VPS72, APR6,
SWC3 and SWC5, were predicted to negatively interact
with the APT cleavage and polyadenylation factor sub-
complex component SYC1, with both VPS72 and SWC5
tested and confirmed (predicted and observed S-scores
-3/-2 in both cases), Figure 4(B). Thus our predicted
interactions link SWR-C to several aspects of gene
expression. Interestingly, mRNA splicing and poly(A)
cleavage, previously believed to be independent steps of
gene expression, are now considered to be linked
through large protein complexes that mediate surveil-
lance mechanisms [45].

Evidence for links between the RPD3L complex and
ribosome maturation
Another notable connection is that established between
proteins associated with the Box C/D small nucleolar
RNAs (snoRNAs) and the Rpd3L histone deacetylase.
Genes encoding the Box C/D snRNP associated pro-
teins Nop1 and Sik1 were previously linked to Rpd3L
components Pho23, Sin3, and Rtx2, but this was
extended in our study to four additional Rpd3L-C

genes, Cti6, Dep1, Sds3, Rpd3 (Figure 4C). It is cur-
rently unclear how these two complexes functionally
interact. The Box C/D snoRNP is responsible for 2’-O-
methylation of pre-RNA during ribosome maturation
[46], while Rpd3L-C is involved in the regulation of a
wide variety of yeast genes [47-49]. Perhaps the exten-
sive genetic interactions between genes encoding the
complex subunits, all positive, reflect some communi-
cation between ribosome biogenesis and global gene
expression changes during growth or during the cell
cycle. A number of replication defects that map to the
snoRNP component Sik1 (also known as Nop56) have
been reported [50], while human snoRNP associated
proteins have been co-purified with proteins involved
in DNA replication and transcription [51]. Very
recently, Rpd3L-C proteins were implicated in replica-
tion timing events in yeast [52], so a plausible explana-
tion for epistasis between these complexes could be
based on the coordination of DNA replication or the
regulation of gene expression or both.

Discussion
We have developed and implemented a method for pre-
dicting E-MAP interactions whose accuracy is similar to
that reported for replicate E-MAP screens.
While it is not possible to carry out a direct compari-

son of our approach to that of previously proposed
‘within E-MAP’ imputation approaches [30,31], we can
gain some insight from a comparison of the reported
results.
Ulitsky et al evaluated their imputation methods using

a number of different models for the source of the miss-
ing data. One such model, dubbed ‘Cross’, was used to
model the potential merging of two E-MAP datasets
and resembles the problem we are trying to solve. Their
method was able to achieve accurate imputations (r >
0.4) in instances when the two E-MAPs shared over
64% of their genes. However, the E-MAPs published to
date rarely have an overlap greater than 20% of their
genes because they focus on different aspects of cell
biology. Additionally, the Ulitsky model was limited to
cases where over 50% of the potential interactions were
present, a condition not met by any of the overlapping
datasets discussed in this paper.
Furthermore, Ulitsky et al assessed the accuracy of

their imputations within the Chromosome E-MAP by
comparing them to the overlap region with the RNA E-
MAP. The correlation of their imputed interactions with
these measured interactions was ~0.45. Similar to our
own results, this was considerably lower than the results
expected based on internal cross-validation. This appar-
ent discrepancy can be attributed to the limitations of
internal cross validation, and the addition of experiment
specific noise.
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Finally, we note that the recall for positive interactions
is generally lower than that for negative interactions. The
authors of both ‘within E-MAP’ imputation papers have
previously highlighted this phenomenon, and put forward
plausible explanations for its cause. There are fewer posi-
tive interactions overall, and thus fewer examples to draw
upon. Also the relative growth rate changes arising from
negative interactions are generally higher than those
from positive interactions, and these strong negative
interactions are likely to be more dominant than positive
interactions when assessing the similarity of neighbors.
Overall, comparisons with the published results indi-

cate that we are achieving similar accuracy for our pre-
dictions ‘between E-MAPs’ to that of the reported
accuracy ‘within E-MAPs’.
One potential caveat to our approach is that we are

assuming genes which have similar interaction profiles
across a subset of their interactions, i.e. within an E-
MAP, will have globally similar interaction profiles. This
is potentially not true for all multi-functional genes, for
which we could identify neighbors that are locally, but
not globally, similar. However given the size of the E-
MAPs (hundreds of genes), and the high correlation
threshold we set (0.6) it is likely that the number of
such spurious neighbor relationships is minimal.

Conclusion
In summary, we have developed and implemented a proce-
dure for predicting quantitative genetic (or epistatic) inter-
actions using independent experiments that contain
overlapping query genes. We show that our predictions are
accurate and that the predicted gene pairs share biological
properties of experimentally determined gene pairs. We
supplemented the known yeast epistasis network (compris-
ing all E-MAP experiments carried out to date) with our
new predictions, generating an enlarged yeast epistasis
map containing both novel inter-complex links and rein-
forced links that add confidence to existing links through
additional data. Studies using quantitative genetic interac-
tions have increased in number dramatically in recent
years. Although we have focused on E-MAP technology,
large numbers of interactions continue to be generated
using traditional screens or the synthetic genetic analysis
(SGA)[53,24] or D-SLAM methods [54]. Furthermore,
while they largely originated in yeast models, methods for
carrying out epistasis screens have now been developed in
other multi-cellular organism models, so it is likely that
our method will prove increasingly important in future.

Materials and methods
Materials
The three E-MAP datasets analyzed in this paper can be
obtained from the supplementary materials of their cor-
responding papers [32-34].

Genetic interactions can be defined as the divergence
(ε) in the observed fitness of strains with two disrupted
genes(wab) from the expected fitness. The expected fit-
ness is calculated using the fitness of strains with indivi-
dual gene disruptions, typically using a multiplicative
model(wawb).

ε = ωab − ωaωb

E-MAPs model this divergence using the S-score, a
modified t-score, which takes into account both the
magnitude of the divergence, and the variance of the
measurements [19]. It thus represents the magnitude of
the observed effect and the confidence that it is the
result of a true genetic interaction. Each E-MAP consists
of a matrix of these S-scores, indicating the type and
strength of interaction between each pair of genes under
consideration. Negative scores indicate negative epista-
sis, i.e. the yeast grew more slowly than expected, while
positive scores indicate positive epistasis, i.e. more rapid
growth was observed. Scores close to zero indicate the
probable absence of an interaction between two genes -
i.e. they function in independent pathways in the cell.
The GO Slim mapping at the Saccharomyces Genome

Database (SGD)[55] was used as the source of gene
ontology annotations. These are high-level terms, so
annotations which contained more than 1000 genes
were filtered out. Phenotype data was also taken from
the Saccharomyces Genome Database. Phenotypes asso-
ciated with more than 175 genes were filtered out,
resulting in the removal of terms such as ‘inviable’,
‘viable’, and ‘haploinsufficient’. Both annotation sets
were downloaded on 1st February 2010.
Additionally we investigated whether our predicted

interactions were more likely than random to have been
previously identified as genetically interacting. For this
we used annotations from the Biogrid, version 2.0.61
[56]. Our ‘positive’ test set was comprised of gene pairs
annotated with ‘Positive Genetic’ or ‘Synthetic Rescue’,
while our ‘negative’ test set was comprised of gene pairs
annotated with ‘Synthetic Lethality’ or ‘Synthetic Growth
Defect’.

Methods
Creating the combined E-MAP
Our combined E-MAP contained all interactions present
in the three individual E-MAPs and our predicted inter-
actions. It was created as follows: In cases where the
interaction was present in more than one E-MAP, an
average of all available interactions was used. In cases
where both a measured interaction and a predicted
interaction were present, then the measured interaction
was used. In cases where there were multiple predictions
for a single interaction, the results were averaged.
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Identifying Inter and Intra Complex links
Given the large number of predictions generated, a
method to aid their visualization and interpretation was
necessary. We exploited the modular architecture of the
cell, and focused on interactions at the level of the pro-
tein complex. Our set of known protein complexes was
taken from a recent manually curated set developed by
Pu et al [37] as a more up to date alternative to the
widely used MIPS dataset. This set consists of 408 com-
plexes backed by evidence from small scale experiments.
To identify strong monochromatic genetic interactions
between complexes, we used a method developed by
Bandyopadhyay et al [20]. The median genetic interaction
between proteins from two different complexes was com-
pared to the median of 106 equal-sized random samples
of genetic interactions. Interactions were considered sig-
nificant at P < 0.001, the same threshold used in [34].
The same method and threshold were used to identify
strong genetic interactions within individual complexes.

Small Scale E-MAP Validation
Validation was performed using a small-scale E-MAP, and
is evaluated in Table 4. The double mutant strains were
grown and scored using the standard protocols described
in [19,18]. We evaluated the performance of our prediction
using terms borrowed from the information retrieval com-
munity: precision and recall. These are defined as follows:

Precision =
TruePositives

TruePositives + FalsePositives

Recall =
TruePositives

TruePositives + FalseNegatives

The small-scale E-MAP was taken to be the ‘gold-
standard’ for identifying strong positive and negative
interactions, and precision and recall were evaluated for
the overlap between this E-MAP and each of the data-
sets under consideration in Table 4.

Additional material

Additional file 1: Predicted interactions between the Chromosome
and RNA datasets.

Additional file 2: Predicted interactions between the Chromosome
and Signalling datasets.

Additional file 3: Predicted interactions between the RNA and
Signalling datasets.

Additional file 4: A side by side comparison of the predicted
interactions and those measured in a smaller scale E-MAP.
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