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Abstract

Background: The primary objectives of this paper are: 1.) to apply Statistical Learning Theory (SLT), specifically
Partial Least Squares (PLS) and Kernelized PLS (K-PLS), to the universal “feature-rich/case-poor” (also known as “large
p small n, or “high-dimension, low-sample size”) microarray problem by eliminating those features (or probes) that
do not contribute to the “best” chromosome bio-markers for lung cancer, and 2.) quantitatively measure and verify
(by an independent means) the efficacy of this PLS process. A secondary objective is to integrate these significant
improvements in diagnostic and prognostic biomedical applications into the clinical research arena. That is, to
devise a framework for converting SLT results into direct, useful clinical information for patient care or
pharmaceutical research. We, therefore, propose and preliminarily evaluate, a process whereby PLS, K-PLS, and
Support Vector Machines (SYM) may be integrated with the accepted and well understood traditional biostatistical
“gold standard”, Cox Proportional Hazard model and Kaplan-Meier survival analysis methods. Specifically, this new
combination will be illustrated with both PLS and Kaplan-Meier followed by PLS and Cox Hazard Ratios (CHR) and
can be easily extended for both the K-PLS and SVM paradigms. Finally, these previously described processes are
contained in the Fine Feature Selection (FFS) component of our overall feature reduction/evaluation process, which
consists of the following components: 1.) coarse feature reduction, 2.) fine feature selection and 3.) classification (as
described in this paper) and prediction.

Results: Our results for PLS and K-PLS showed that these techniques, as part of our overall feature reduction
process, performed well on noisy microarray data. The best performance was a good 0.794 Area Under a Receiver
Operating Characteristic (ROC) Curve (AUQ) for classification of recurrence prior to or after 36 months and a strong
0.869 AUC for classification of recurrence prior to or after 60 months. Kaplan-Meier curves for the classification
groups were clearly separated, with p-values below 4.5e-12 for both 36 and 60 months. CHRs were also good, with
ratios of 2.846341 (36 months) and 3.996732 (60 months).

Conclusions: SLT techniques such as PLS and K-PLS can effectively address difficult problems with analyzing
biomedical data such as microarrays. The combinations with established biostatistical techniques demonstrated in
this paper allow these methods to move from academic research and into clinical practice.
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Introduction

One of the most popular and challenging topics in
bioinformatics research is gene selection from microar-
ray data because it involves both statistical processing as
well as biological interpretation. The statistical problems
are daunting because of the large number of represented
genes relative to the small number of samples. This pro-
vides a prime opportunity to over-fit the data during the
model building process. Biology is a significant compo-
nent because identifying significant genes representative
of a given clinical endpoint is a critical step toward
understanding the biological process. Several conse-
quences arise as a result of the statistical over-fitting
problem. Very large Receiver Operating Characteristic
(ROC) Area Under the Curve (AUC) values can be
achieved on both training and validation data sets, but
the results provided by these trained Complex Adaptive
Systems (CAS) frequently fail to generalize to data sets
other than training and validation sets. Furthermore,
these CAS system designs do not necessarily operate on
similar data sets with larger representative samples. Dif-
ferent CAS solutions may produce different gene sets
from the same set of microarray data. Consequently, any
CAS should first attempt to achieve some sort of gener-
alization ability. Secondly, because of the over-fitting
problem described above, each proposed feature (or
gene) reduction CAS generally is based on a unique the-
oretical analysis, which means that how these separate
CAS are connected is not well understood. Conse-
quently, this difficulty results in the same problem sta-
ted above: different algorithms will generate different
prognostic gene sets using the same microarray data.
This means that developing an underlying theory for
feature selection would help to understand these algo-
rithms as well as classify which of these are the “most”
useful for gene selection. Song [1] presents a BAHSIC
algorithm which claims to address this unifying algo-
rithm principle proposal. BAHSIC defines a class of
backward (BA) elimination feature selection algorithms
that uses kernels and the Hilbert-Schmidt Independence
Criterion (HSIC) [2]. Song demonstrates that the BAH-
SIC algorithm encompasses the following well-known
feature selection algorithms: (1) Pearson’s correlation
coefficient [3,4], (2) t-test [5], (3) signal-to-noise ratio
[6], (4) Centroid [7,8], (5) Shrunken Certroid [9,10], and
finally, (6) ridge regression [11]. These collective results
suggest that the Evolutionary Programming driven Sup-
port Vector Machine (EP-SVM) [12,13] with a choice of
similarity, sum and product kernels might be a good
wrapper/classification candidate for gene selection. This
paper adapts a method, summarized in the methods sec-
tion, originally developed for the social sciences and
subsequently adapted to chemometrics, called Partial
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Least Squares (PLS) to this “feature-rich/case-poor”
environment, as subsequently described, by theoretically
attempting to eliminate those features which do not
contribute to the “best” chromosome marker for lung
cancer.

Background of lung cancer

Lung cancer is the leading cause of death in cancer
patients worldwide. The American Cancer Society pre-
dicts that 156,940 people will fall victim to the disease in
2011, accounting for 27% of all cancer deaths [14]. The
5-year survival rate of lung cancer patients is 16% pri-
marily due to late stage diagnosis. Of the 221,130 esti-
mated cases that will be diagnosed in 2011, 85% will have
late stage tumors (stages II, III, IV) that have begun to
advance. For these patients, treatment often includes sur-
gical resection of tumors where possible, post-operative
radiation and adjuvant chemotherapy. The 5-year survi-
val rate for early stage (stage I), non-small cell lung can-
cer (NSCLC) patients is 53% [14] and treatment often
only includes surgical resection [15]. However, 35%-50%
of these patients will suffer a relapse of the disease within
5 years of surgery [16]. Post-operative chemotherapy can,
in most cases, improve survival in early stage cancer
patients. But its use is controversial. Doctors currently
lack a validated and clinically accepted method to predict
which patients are at a high risk of recurring cancer [17].
Those patients that are at a high risk of recurrence might
benefit from post-operative adjuvant chemotherapy,
whereas those patients that are at a low risk can be
spared the side effects of chemotherapy [18].

Data set description and modifications
The experiments designed used the gene expression
profiles of 442 lung adenocarcinomas compiled by
Shedded et al. [19]. These samples were compiled from
six institutions and originally handled by a consortium
that included: the University of Michigan (177 samples),
the H. Lee Moffit Cancer Center (79 samples), the
Dana-Farber Cancer Institute (82 samples) and the
Memorial Sloan-Kettering Cancer Center (104 samples).
It is important to note that in Dobbin et al. [20] these
samples were shown to be comparable because the
variability in gene expression values can be attributed
more to the biology of the samples than to the institu-
tion effect. As a result, the data can be combined for
the purposes of our analysis despite being processed at
different institutions. Furthermore, none of the patients
in the study received pre-operative chemotherapy or
radiation and at least two years of follow up information
was available. Tumor samples were required to contain
a minimum of 60% tumor cellularity for inclusion in the
study with most containing 70%-90%.
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Gene expression profiles of all samples were quanti-
fied using the Affymetrix Human Genome-U133A Gen-
eChip. The resulting CEL files generated at each of the
four institutions were quantile normalized using the
NCI_U133A_61L array as a reference. Final expression
values were calculated using the DChip software (Build
version February 2006) using the default settings. Each
sample is characterized by 22,283 probes/genes (also
referred to as features in this paper) as well as a host of
clinical covariates including age, gender, and T/N cancer
stage. A few minor discrepancies were found in the
probe data obtained from the caArray website. First,
probe 207140 at contained expression values of “NA”
for all patients in the study. To mitigate this problem,
the data corresponding to this probe were removed
prior to our analysis. Secondly, patients Moff 18351,
Moff 2362A and Moff 3009D did not have expression
values for the 222086_s_at probe. In lieu of removing
this probe entirely, the data for these patients were
assigned an expression value equal to the mean
(18.37114) of that probe’s expression values across all
other patients. The CEL files, DChip normalized expres-
sion values and clinical information for all patients
involved in this study are available through the caArray
website https://array.nci.nih.gov/caarray/project/details.
action?project.id=182. Other work with this data set is
described in [18] and [19].

Experimental design for 3 and 5 Years

To address the clinical issue of determining risk of
recurrence delineated above, two classification experi-
ments were designed. The first experiment classified
NSCLC patients as “high risk” if cancer were likely to
recur within 3 years of surgery and “low risk” otherwise.
The 3 year cut-off was chosen because the majority of
patients that do relapse will do so within the first 3
years [16]. The second experiment objective was to clas-
sify patients as “high risk” if cancer were likely to recur
within 5 years of surgery, and “low risk” otherwise. This
cut-off was chosen because, in current clinical practice,
a patient that does not recur cancer within 5 years is
often considered “cancer free” due to the low chance of
recurrence after that time [21].

The first experiment contained 295 patients obtained
from the Shedden et al. [19] data set. This subset con-
tained all patients for which cancer recurred as well as
those that survived beyond 3 years (without recurrence).
For purposes of training and validating the algorithms
discussed in this paper, patients for which cancer
recurred within 3 years (of surgery) are considered
recurrent (high risk) and those that had recurrent can-
cer, or survived without recurrence beyond 3 years, are
considered non-recurrent (low risk).
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The second experiment was composed of 257 patients,
which were also obtained from the Shedden et al. [19]
data set. All recurrent patients, as well as those that sur-
vived without recurrence beyond 5 years, were included
in this analysis. Patients for which cancer recurred
within 5 years of surgery were considered recurrent
(high risk). Those that recurred, or survived without
recurrence beyond 5 years, were considered non-recur-
rent (low risk). Finally, it also should be noted that
Shedden et al. [19] showed that the use of the clinical
covariates age, gender and tumor stage during analysis
improved the performance of most classifiers. Conse-
quently, it was required that all patients included in the
two experiments described above have available clinical
information pertaining to the features: age, gender and
tumor stage.

Methods

Overview of Feature Reduction/Classification Process
Microarray data sets have a significant feature-rich/case-
poor problem which can lead to over-fitting (i.e. models
that produce excellent results on the training data exist,
but none of which may be valid and have good perfor-
mance on the test data) unless the number of features
are significantly reduced prior to the generation of any
classification or prediction model. The objective of this
three-step process is to identify those significant features
which are most useful in producing an accurate classifi-
cation or prediction model. The process of feature
reduction/classification is depicted in Figure 1, and con-
sists of a Coarse Feature Reduction (CFR) process, fol-
lowed by a Fine Feature Selection (FFS) process and
then classification.

Coarse Feature Reduction

The automated CFR employees a simple two sample ¢-
test followed by variance pruning (cut-off based on coef-
ficient of variation). It is a simple process to remove lot
of probes that are not useful for classification, ie., those
not considered statistically significant to classification.
See [22-24] for details on variance pruning.

Partial Least Squares

This section contains a brief, heuristic overview of Par-
tial Least Squares (PLS). PLS is an extension of least
squares regression (LSR). In LSR, the response variable
y is predicted from p coordinates and » observations,
denoted by X = {x1,x,, .%,) ", where each x; € %. PLS
finds “new variables” through the construction of speci-
fic combinations of the original coordinates. These
“latent variables” explain both the y response as well as
the covariate space and are denoted by the following
expressions:

X=tp1 +bpr+ ... +Lps + ¢ (1)
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Coarse Feature
Reduction

Fine Feature
Selection

Classification

- 4

Figure 1 Feature (probe) reduction process. Description of
feature reduction process

y=tiq1 +taga+ ... +tqs+ ¢ (2)

where:

« t, = the s” latent variable (or conjugate vector; a n
by 1 column vector). Generally most of the variabil-
ity is characterized by M latent variables with a max-
imum of M = 5 required for most problems.

« ps and g, = the s weight vectors (p, is a 1 by p
row vector, ¢ is scalar).

+ ¢, { = small errors in the remaining parts not
explained by the latent variables.

For this microarray data set, we began with 271 fea-
tures after CFR and reduced this set to a minimum of 1
latent variable and a maximum of 5 latent variables (see
Results section). Therefore, the principle advantage of
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PLS for a problem of this type is its ability to handle a
very large number of features: a fundamental problem of
a feature-rich/case-poor data set. PLS then performs a
least-squares fit (LSF) onto these latent variables, where
this LSF is a linear combination that is highly correlated
with the desired y response while, at the same time,
accounting for the feature space variability. A summary
of the features and advantages of PLS follows:

» PLS algorithms are very resistant to over-fitting,
when compared to LSR, and are fast and reasonably
easy to implement.
+ For most problems with few data points and high
dimensionality where PLS excels, a least squares
solution may not be possible due to the singularity
problem.
« PLS regression maps the original data into a lower-
dimensional space using a W projection matrix and
computes a least squares solution in this space. See
the algorithm below for the definition of W.
+ What makes PLS especially interesting for biome-
dical and data mining applications is its extension
using kernels, which leads to kernelized PLS (K-
PLS), similar to the treatment in SVM.
+ PLS may be considered a better principal compo-
nent analysis (PCA).
- The first key difference from PCA is that PLS
computes an orthogonal factorization of the
input vector X and response y (note: y can also
be a vector) in the process of computing the pro-
jection matrix W.
- The second key difference from PCA is that the
least squares model for K-PLS is based on
approximation of the input and response data,
not the original data.
- PLS and PCA use different mathematical mod-
els to compute the final regression coefficients.
Specifically, the difference between PCA and PLS
is that a new set of basis vectors (similar to the
eigenvectors of X" X in PCA) is not a set of suc-
cession of orthogonal directions that explain the
largest variance in data, but rather are a set of
conjugate gradient vectors in the correlation
matrices which span a Krylov space.

An algorithm of PLS paradigm follows:

1L.Let: X3 =Xy, =y

2. For m = 1 to M, where M = the desired number of
latent variables, do:

(a) Compute direction of maximum variance Wi
= (Xm)Tym

(b) Project X onto w
(c) Normalize ¢

by = Xm Wom
Im = tm/ltm|
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(d) Deflate X Xpwe1 = Xt Xo
(e) Deflate y Vet = Votm(E) Vi
(f) Normalize Y after deflation Vi1 = Yme1! [V |

3. Finally, compute the regression coefficients using
latent variables: B = W(I"xw) 1"y
where:

o w,, is the m™ column vector of W
o t,, is the m™ column vector of T
+ X,,, and y,,, are the input matrix and response vec-
tor that are being deflated, and f is the linear regres-
sion coefficient vector. A geometric representation of
part of the algorithm and the insight of deflation can
be seen in Figure 2.
Kernelized Partial Least Squares
Non-linear relationships between variables may be found
by embedding this data into a kernel induced feature
space. See [25] for a good reference of kernel learning.
This kernel “trick” is used in PLS and is called K-PLS.
Consider now a mapping ¢, which maps any data vector
from the sample space to some other (possibly infinite
dimensional) Euclidean space 7 (feature space):

¢ R —H 3)
The mapping will “recode” the data set as:

{(@(x1),11), ((x2),¥2) -+ (@ (%n), yn)} 4)

This mapping of the data set is from non-linear input
space to a linear feature space. That is, although the
environment data representation in the input X space is
non-linear, after the data are processed by the ¢
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mapping, the data characterized by this mapping is lin-
ear in 7, with the happy result that linear techniques
may be used on the mapped data while preserving the
non-linear properties represented in the input space.
This mapping is accomplished, as previously stated, by
using a valid kernel function.

Adding this kernel-induced capability to the PLS
approach means that a real time, non-linear optimal
training method now exists which can be used to per-
form computer aided diagnosis. A second advantage of
this approach is that a kernel function K(x;,x,) com-
putes the inner products (¢(x;),@(x,)) in the feature
space H directly from the samples x; and x,, without
having to explicitly perform the mapping, making the
technique computationally efficient. This is especially
useful for algorithms that only depend on the inner pro-
duct of the sample vectors, such as SVM and PLS.

Computationally, kernel mappings have the following
important properties: (1) they enable access to excep-
tionally high (even infinitely) dimensional and, conse-
quently, very flexible feature space, with a
correspondingly low time and space computational cost,
(2) they solve the convex optimization problem without
becoming “trapped” in local minimal and, more impor-
tantly, (3) the approach decouples the design of the
algorithms from the specifications of the feature space.
Therefore, both learning algorithms and specific kernel
designs are not as difficult to analyze.

The algorithm used to develop the K-PLS model, is
given below. Details can be found in [26].

L. Let Ko = (Kj; = {p(x2), ¢(x))) = K(x%}))(j = 1,..n) De the n
by n Gram matrix induced by K, the selected kernel func-
tion corresponding to ¢(-). Let K; be the centered form of

Original Data

A

What is Deflation?

Line L spanned by w™ vector

\

v

vector W

Projectiononto L

Figure 2 Deflation. The geometric interpretation of the ‘deflation’ step in the PLS Algorithm. This ‘Deflation’ effectively removes one dimension
by projecting the data onto a subspace that is one dimension less than the row number of the current data matrix, and orthogonal to the

Y

T subtract projection on L to deflate
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Ko,y be the be the response variable, normalized to have a
mean of 0 and a standard deviation of 1, and M be the
desired number of latent variables.

2. For m = 1 to M, do:

(a) by = 1<m *Ym
(b) t =
(©) Kins1 = (I — twt} )K (I — tint})
(d) yme1 = Yrym_ﬂ(tmt%) Vm
(e) Vm+1 =

NYmell

3. Finally, compute the regression coefficients using:
a=Y(T'KTY)'TTY where:

« I'is an m x m identity matrix

» K, is the Gram matrix

+ t,, and y,, are the m™ columns of T and Y
respectively

4. The regression equation then becomes:

flx) = ZKI (xi, ) - ai (5)

i=1

Note x is any sample from the testing data to be pre-
dicted and K;(x;x) is element from the centered form of
the training/testing kernel matrix.

Evolutionary Programming derived K-PLS machines

The particular K-PLS kernel types and kernel para-
meters were derived using an evolutionary process
based on the work of Fogel [27] called Evolutionary Pro-
gramming (EP). EP is a stochastic process in which a
population of candidate solutions is evolved to match
the complexity and structure of the problem space.

This process iteratively generates, valuates, and selects
candidates to produce a near-optimal solution without
using gradient information, and is therefore well suited
to the task of simultaneously generating both the K-PLS
model architecture (kernel) and parameters. Figure 3
and found in more detaA description of this process is
shown in Figuil below.

1. Initial K-PLS parameter population created: A
population of candidate solutions (K-PLS kernel
architectures and parameters) is randomly generated.
2. Mutation of K-PLS machines: Each of these candi-
date solutions then is copied and mutated, yielding a
solution pool of twice the original size, using the
equation given below:

1 1
(\/ZmN(O'l)+ \/ZJmNi(Oll)) (6)

/
v; = vie
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where m is the total number of configurable
parameters being evolved, N(0,1) is a standard
normal random variable sampled once for all m
parameters of the v vector, and N;(0,1) is a stan-
dard normal random variable sampled for each
of the m parameters in the v vector.

The second step of this mutation process com-
prises the updating of each configurable para-
meter for all elements of the evolving population.
If we let the vector y; denote these elements for
each of the individual member of the population,
this update process will be accomplished as fol-
lows:

Y, =yi+ Cv (7)

Here C is a standard Cauchy random variable. It

is used because it has longer tails and offers bet-

ter mutation performance.
3. Selection of K-PLS machines: All elements of this
pool are scored using an objective function. These
objective function scores are then used to order the
candidate solutions from the “most fit” to “least fit.”
Better results usually are obtained from using tour-
nament selection methodologies. With tournament
selection, each candidate solution competes against a
random subset of the remaining solutions. Finally,
the upper 50% of the solution pool is selected to
continue as the basis for the next generation and the
remaining 50% are “killed off” (discarded) to reduce
the pool to the original population size. This process
is generally repeated for a specified number of gen-
erations, unless some other “stopping” criteria is
used.

For more details on the EP process, refer to our pre-
vious work [28].

Support Vector Machine and its capacity to reach the
global optimum

The K-PLS results were validated by using another ker-
nel-based Statistical Learning Theory model called a
Kernelized Support Vector Machine (K-SVM). SVMs
was developed by Vapnik [29-31]. Tutorials to SVM can
be found in [32] and [25].

The discussion below provides the theoretical explana-
tion for why SVMs can always be trained to a global
minimum, and thereby should provide better diagnostic
accuracy, when compared with neural network perfor-
mance trained by back propagation.

Assume there exist n experimentally derived observa-
tions. Each observation (or training example) consists of
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{

Initial Population of
Candidate Solutions
Created

Kernel Type, Parameter Value,

Chromosome Architecture: }
& Number of Latent Variables

-
Run Mutation on
Chromosomes at user-
defined probability

(pop size N -> 2N)

L 4
Evaluate Candidate
Chromosome

Configurations on
data using KPLS

v

Run Tournament
Selection without
Replacement

(select top 50%,
2N -> N)

Figure 3 Evolutionary Programming. Shown is the process of the Evolutionary Programming optimization technique utilized to find the
optimal kernel parameters. The process creates an initial population of candidate solutions (chromosomes) which undergo a stochastic search
for the optimal parameter through the sub-processes of mutation and tournament selection of the ‘most-fit’ genes.

No

Number of
Generations
Completed?

Optimized Kernel Parameter
Determined

a vector x; containing the input pattern and a corre-
sponding known classification y,. The objective of the
learning machine is to formulate a mapping x; — y,.
Now consider a set of functions flx,or) with adjustable
parameters o, that defines a set of possible mappings x
— fix,a). Here, x is given and « is chosen. In the case
of a traditional neural network of fixed architecture, the
o values would correspond to the weights and biases.
The quantity R(a), known as the expected risk, asso-
ciated with learning machines is defined as:

R@) = [ = a)lp(e sy ®

where, p(x, y) is an unknown probability density func-
tion from which the examples were drawn. This risk
function is the expected value of the test (or validation)
error for a trained learning machine. It may be shown
that the best possible generalization ability of a learning
machine is achieved by minimizing R(c), the expected
risk. There exists a error bound of generalization, for
binary classification, which holds with the probability of
at least 1 - , 0 < 1 < 1 for all approximating functions
that minimize the expected risk.

R(0) < Romp(@) + \/ (h(log(i");l)flos(Z)) 9)
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The first term on the right hand side, R,,,,(c), is
known as the “empirical risk”, expressed by:

Ram(@) = ) >y = f(x,) (10)
i=1

Empirical risk is a measure of the error rate for the
training set for a fixed, finite number of observations.
This value is fixed for a particular choice of o and a
given training set {(x;y;),i = 1,2, -~-n}. The second term
in (9) is the “Vapnik-Chervonenkis (VC) confidence
interval.” This term is a function of the number of train-
ing samples n, the probability value n and the VC
dimension 4. The VC dimension is the maximum num-
ber of training samples that can be learned by a learning
machine without error for all possible labeling of the
classification functions flx,cr), and is, therefore, a mea-
sure of the capacity of the learning machine. In tradi-
tional neural network implementations, the confidence
interval is fixed by choosing a network architecture a
priori. Neural network training by back-propagation
minimizes the empirical risk only.

In contrast to neural network, in a SVM design and
implementation, not only is the empirical risk mini-
mized, the VC confidence interval is also minimized by
using the principles of structural risk minimization
(SRM). Therefore, SVM implementations simultaneously
minimize the empirical risk as well as the risk associated
with the VC confidence interval, as defined in the above
expression. The bound in (9) also shows that as #n — oo,
the empirical risk approaches the true risk because the
VC confidence interval risk approaches zero. The reader
may recall that obtaining larger and larger sets of valid
training data would sometimes produce (with a great
deal of training experience) a better performing neural
network using classical training methods. This restric-
tion is not incumbent on the SRM principle and is the
fundamental difference between training neural net-
works and training SVMs. Finally, because SVMs mini-
mize the expected risk, they provide a global minimum.
Measures of similarity for classification provided by various
kernels
Understanding what similarity as applied to K-PLS and
K-SVM often provides additional insight in proper ker-
nel selection. Therefore, we now consider kernel func-
tions and their application to K-PLS and K-SVMs. K-
PLS and K-SVM solutions in non-linear, non-separable
learning environments utilize kernel based learning
methods. Consequently, it is important to understand
the practical implications of using these kernels. Kernel
based learning methods are those methods which use a
kernel as a non-linear similarity to perform compari-
sons. That is, these kernel mappings are used to con-
struct a decision surface that is non-linear in the input
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space, but has a linear image in the feature space. To be
a valid mapping, these inner product kernels must be
symmetric and also satisfy Mercer’s theorem [33]. The
concepts described here are not limited to K-PLS and
K-SVMs, and the general principles also apply to other
kernel based classifiers as well.

A kernel function should yield a higher output from
input vectors which are very similar than from input
vectors which are less similar. An ideal kernel would
provide an exact mapping from the input space to a fea-
ture space which was a precise, separable model of the
two input classes; however, such a model is usually
unobtainable, particularly for complex, real-world pro-
blems, and those problems in which the input vector
provided contains only a subset of the information con-
tent needed to make the classes completely separable.
As such, a number of statistically-based kernel functions
have been developed, each providing a mapping into a
generic feature space that provides a reasonable approxi-
mation to the true feature space for a wide variety of
problem domains. The kernel function that best repre-
sents the true similarity between the input vectors will
yield the best results, and kernel functions that poorly
discriminate between similar and dissimilar input vec-
tors will yield poor results. As such, intelligent kernel
selection requires at least a basic understanding of the
source data and the ways different kernels will interpret
that data.

Some of the more popular kernel functions are the
(linear) dot product (11), the polynomial kernel (12), the
Gaussian Radial Basis Function (GRBF) (13), and the
Exponential Radial Basis Function (ERBF) (14), which
will be discussed below.

The dot and polynomial kernels are given by,

K(it, ¥) = it - ¥ = [[il|[[#]|cos(0), (11)

and K(#,7) = (i - v+ 1)4, (12)

respectively, both use the dot product (and therefore
the angle between the vectors) to express similarity;
however, the input vectors to the polynomial kernel
must be normalized (i.e., unit vectors). This restricts the
range of the dot product in (12) to 1, yielding kernel
outputs between 0 and 2, where d is the degree of the
polynomial. The implication of the dot product kernel
having a positive and negative range (versus the strictly
non-negative polynomial kernel) is that the classification
process can learn from the unknown vector’s dissimilar-
ity to a known sample, rather than just its similarity.
While the dot product kernel will give relatively equal
consideration to similar and dissimilar input vectors, the
polynomial kernel will give exponentially greater consid-
eration to those cases which are very similar than those
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that are orthogonal or dissimilar. The value of d deter-
mines the relative importance given to the more similar
cases, with higher values implying a greater importance.
Measures of similarity for these two kernels are depicted
in Figures 4 and 5.
The Gaussian and Exponential RBF kernels are given
by:
T2
K(l_j’ 1_)) e H“ngZH (13)

[u—v|

and K(i,7) = e 202 (14)

respectively.

The Gaussian and Exponential RBF kernels use the
Euclidean distance between the two input vectors as a
measure of similarity instead of the angle between them
(see Figures 6 and 7).

Since ||u - v|| is always non-negative, both kernels
achieve a maximum output of one when ||u - v|| = 0,
and approach zero as ||u - v|| increases. This approach
is made faster or slower by smaller or larger values for
o, respectively. Figure 6 shows the output of the GRBF
kernel as a function of the distance between the input
vectors for several different values of 0. Figure 7 shows
the output of the ERBF kernel.

It is clear from Figures 6 and 7 that the distance at
which the kernel output reaches approximately zero var-
ies with o, and therefore the choice of o for this kernel
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is essential in properly distinguishing the level of simi-
larity between two input vectors. If the value of o is too
small-that is, most pairs of vectors are far enough apart
that the kernel output is near zero, the SVM will have
too little information to make an accurate classification.
If the value of o is too large, so that even very distant
pairs of input vectors produce a moderate output, the
decision surface will be overly smooth. This may mask
smaller distinctive characteristics which exist in the
ideal decision surface, and will also increase the effect
outliers in the training data have on the classification of
an unknown point.

Using PLS, KPLS, and SVM in clinical research

While the methods covered in this paper offer statisti-
cally significant improvements in diagnostic and prog-
nostic biomedical applications, there has been great
difficulty in utilizing advances such as these in clinical
research. The statistics used to evaluate the performance
of these techniques are not readily converted into direct
clinical information that may help in patient care or
pharmaceutical research. In order to address this, we
have devised a framework to combine these techniques
with well accepted and understood traditional biostatis-
tics methods, the Cox Proportional Hazard model and
the Kaplan-Meier (K-M) Curve. These two techniques
each help address the question of how important a par-
ticular parameter is to evaluating risk/survival. The fol-
lowing subsections will give a basic overview of how

Dot Product Kernel
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Figure 4 Dot product kernel. The outputs of dot product kernel as functions of the angles between vectors. Four functions are depicted in
solid-blue, long-dashed-red, short-dashed-green and dotted-purple curves, corresponding to the cases where the product of the norms of the 7;
and 7 vectors is equal to 0.5, 1, 2 and 3 respectively.
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Cox and K-M can be combined with our techniques.
For simplicity, such a combination will only be
described with PLS, though it could just as easily be
done with KPLS or SVM.

PLS and Kaplan-Meier curves

Developed in the 1950s, the K-M curve is the gold stan-
dard in survival analysis [34]. In a normal survival curve,
the number of survivors at a particular moment in time

Gaussian Radial Basis Function Kernel
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Figure 6 Gaussian RBF kernel. The outputs of the Gaussian radial basis function kernel as functions of the Euclidean distance between vectors.
Four functions are depicted in dashed-double-dotted-blue, long-dashed-red, dashed-green, and dotted-purple curves, corresponding to the

cases where the sigma is 0.5, 0.7, 1.0, and 2.0 respectively.
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Figure 7 Exponential RBF kernel. The outputs of the exponential radial basis function kernel as functions of the Euclidean distance between
vectors. Four functions are depicted in dashed-double-dotted-blue, long-dashed-red, dashed-green, and dotted-purple curves, corresponding to

sigma(o)

is divided by the total number of patients. These points
are plotted against time to give a curve which starts at 1
and slowly curves downward until at some time when it
reaches 0. A K-M curve introduces an additional ele-
ment, the ability to utilize censored data. Censored data
is partial data; where a final survival time is unknown
but a minimum survival time is known. This can happen
when patients die of unrelated causes, patient data is
lost, or patients no longer keep contact with the
researcher. To handle this censored data, when the par-
tial survival time is reached, the patients are removed
from the number of survivors and the total number of
patients. These removals are marked on a K-M curve
with a cross. The best way to utilize a K-M curve is to
create different curves for different groups and compare
them. For instance, a K-M curve for men and one for
women would be far apart if a particular condition was
much more fatal in one gender than the other. Using
this concept with our techniques, we can use the PLS
(or KPLS/SVM) to split a data set of patients into good
and poor prognosis categories. This can be done by first
splitting training data around some cut-off survival time
(survival being the lack of recurrence), such as survival
before or after 36-months, and training the system to
make predictions on a validation set. K-M curves can
then be made for those predicted groups, and if the dif-
ference between them is significant, then the system is
performing well. A chi-square test is the standard for
comparing curves, and a p-value derived from that test
of below .05 would indicate statistically significant

difference between the two prognosis categories pre-
dicted by PLS.

PLS and Cox Hazard Ratios

Another common survival analysis technique is the Cox
Proportional Hazard model [35]. The Cox model is a
semi-parametric linear regression model which assumes
that the hazard of an observation is proportional to an
unknown “baseline” hazard common to all observations.
Proportionality to this baseline, it is modeled as an
exponential of a linear function of the covariates. From
this model, a single Cox Hazard Ratio (CHR) value is
derived which represents the “risk” of an event occur-
ring associated with being in a particular group. The lar-
ger the CHR, the greater the risk over time of the event
occurring for one group than the other. Similar to the
K-M curve, the PLS can separate patients into two prog-
nosis categories, and the CHR will be a measure of the
effectiveness of that categorization. A large ratio would
indicate that the output of this method was a useful
prognostic prediction for a patient to have recurrence.

Results

The goal of the experiments discussed herein were to
derive models from the microarray data to classify each
sample as belonging to either the class of recurrent or
non-recurrent patients. The class of non-recurrent sam-
ples are those samples belonging to patients which, after
being treated did not recur cancer before the given cut-
off period. Patients that did recur cancer before the cut-
off period are considered to belong to the recurrent
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class. Two separate experiments were performed with
cut-off periods of 36 and 60 months respectively.

As mentioned in the Methods section, the data were
pre-processed using CFR, followed by FFS, and finally
classification model building and evaluation.

Coarse Feature Reduction

For the 36 month classification experiment, CFR was
used to reduce the original number of features
(probes) from 22,282 to 2,675 using a hard cut-off ¢-
test p-value of 0.05. Then, this probe count was further
reduced to 594 using a coefficient of variation cut-off
of 0.632. In like manner, using CFR for the 60 month
classification experiment, the number of probes was
reduced from 22,282 to 829 using the same hard cut-
off t-test p-value of 0.05. This number was then
further reduced to 212 using coefficient of variation
cut-off of 0.641. After reducing the initial feature set
using the CFR technique, the process of FFS and clas-
sification was performed.

Fine Feature Selection/Classification

Fine Feature Selection using Partial Least Squares

In this section, we use the AUC value as the fitness
metric to evaluate the relative worth of the classification
model. Higher AUC values are indicative of better clas-
sifiers, with an AUC value of 1.0 indicating a perfect
classifier, which is arguably impossible for any non-tri-
vial classification task.

The FFS process utilizes the weight vector of the first
latent variable generated by the Linear PLS (L-PLS)
algorithm to ascertain feature importance. The most
important features (those with the largest corresponding
weight vector components) are ranked highest and fea-
tures with lower corresponding components are dis-
carded. This step, called Fine Feature Selection, provides
a ranking of importance, which means the magnitude of
each feature’s respective component is directly corre-
lated with its predictive power in the model.

The FFS process builds this “importance metric” by
iterating the analysis of the weight vectors of randomly
assigned training folds 10,000 times employing three
sensitivity settings, where these three sensitivities score
the top 20, 30, and 150 most influential performers for
each of their respective 10,000 runs, based on each fea-
ture’s weight in the weight vector of L-PLS. For exam-
ple, if ‘Age’ has the largest component and ‘Sex’ has the
second largest in the top 30 sensitivity setting, the score
for ‘Age’ would be 30 and that for ‘Sex’ would be 29.
For each run time, the data is split randomly into train-
ing and validation folds. These data are normalized then
analyzed using Linear PLS and the weight vector is
extracted, sorted, and ‘winning’ features have their
scores updated by position.
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In each of the three settings, a number, p, of features
are retained based on theirs aggregated score over
10000 runs. The number to retain, p, is user-specified.
In FFS, we tried several p values, with increments of 50
features, beginning at 50 and ending at 550. By gradually
increasing the size of feature retention, one can empiri-
cally optimize the number of features for classification/
prediction. Lastly, a ‘global (most important) feature set
(Sggs)’ is created, which is the union of the retained fea-
ture sets from all three settings. These Sgrg features are
the final product of the FFS process and the only ones
included in the construction of the refined input data
matrix, Xgrs. In summary, Sgrs is given by:

Si;“Fs = Sgo U Sgo U quo

where SI’;FS = the union set of all three top performing
feature subsets, Sf = each setting’s top performers, [ =
20, 30, 150, and p = the number of features retained in
each setting. Note that the number of features in S‘;FS
may not be exactly 3p or p.

In our study, we have selected 361 and 102 features
using this FFS process for the 36- and 60-month experi-
ment respectively, from the 594 and 212 features that
were selected by CFR.

Comparisons using PLS classification

As noted, we compared four separate models’ perfor-
mances based on different data: L-PLS and K-PLS Poly-
nomial Kernel (KPLS-Poly) based on the Coarse Feature
Reduced (CFR) data, and on the Fine Feature Selected
(FES) data respectively (the FFS-data is actually pro-
cessed by both CFR and FES).

(15)

+ We sought out to determine which model pro-
duced the most accurate prediction of recurrence.

+ We also sought to determine whether the data was
linear or non-linear, which was determined by which
class of model yielded better results: L-PLS or K-
PLS with non-linear kernels.

+ Finally, we sought to determine the effectiveness of
our PLS weight vector-based Fine Feature Selection
method. This was determined by the comparison
between the validation AUC values for the same
models on the CFR-data and the FFS-data. If the
results on the FFS-data are better than the CFR-
data, then FFS is effective.

What we found was that both the 36-month and 60-
month data sets were inherently linear in nature, mean-
ing the L-PLS gave better AUC values on validation
folds. These results can be seen in Table 1. This is a
particularly surprising find, considering most real world
phenomena are non-linear by nature. Yet, this was veri-
fied by our K-PLS Evolutionary Programming
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Table 1 Model Comparison The comparison of optimal performance values and number of latent variables for three

independent models on the 36- and 60-month data

(CFR-data) Model

Top Validation AUC Value (36 mo/60 mo)

Number of Latent Variables (30 mo/60 mo)

L-PLS .791/.831 3/2
KPLS-Poly (Degree = 1) .784/.830 31
SVM 78/- -

The best performance was seen with the L-PLS, out-competing the non-linear SVM and KPLS techniques in AUC performance. The number of latent variables

required for the PLS-based techniques was no more than three for both data sets.

optimization technique which selected polynomial ker-
nel parameter of degree 1 as the best performer (K-PLS
with polynomial kernel whose degree equals 1 is equiva-
lent to L-PLS.) The validation AUC values, as we will
show, were near equivalent for L-PLS and the KPLS-
Poly of degree 1. As a second verification of our results,
a Support Vector Machine (Lib-SVM) [36] analysis on
the same data supported our findings by producing the
same validation AUC values with the polynomial kernel.
The LibSVM analysis also supported our pre-analysis
which showed extremely poor performance of the Gaus-
sian/Exponential RBF kernels on these data sets. Due to
this inadequate performance, we did not continue our
study with the RBF kernels.

In addition to these findings, the number of latent
variables required to reach optimal performance, by L-
PLS and KPLS-Poly when they are applied to the FFS
processed data was roughly the same (see Figures 8 and
9 for 36 months and 60 months respectively). In the
case of 36 months, the best number of latent variables is
3 (Figure 8) for both L-PLS and KPLS-Poly models. For
the 60-month data set (Figure 9), the KPLS-Poly had a
slightly lower required number, 1, for latent variables

than the PLS model, which requires 2. As is also shown
in Table 1, the KPLS-Poly reached the maximum perfor-
mance at 1 latent variable whereas the L-PLS reached
maximum at 2 latent variables for the 60-month experi-
ment. This means that the KPLS-Poly analysis did not
require as much smoothing of the data to reach its opti-
mal validation AUC value. This is also indicative that
the best system generalization was seen between 1 and
3 latent variables, which is typical to most data analyses
using these techniques (most are less than 5).

The analysis of the efficacy of our PLS weight vector-
based FES technique in reducing noisy features shows
that is effective only for the L-PLS method. The results
can be seen in Table 2. In both the 36-and 60-month
datasets, top performance was only improved in terms
of AUC value for the L-PLS. It is to our belief that this
is due to the fact that we base our FFS of the features
on their linear combination of the contributions that
they have to the time of recurrence. We believe that the
use of a KPLS-based method embedded in the FFS pro-
cess would capture those features which show non-lin-
ear contributions to the response variable. The KPLS-
Poly model was, in both cases, impacted by the removal
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of some features which must have had a critical role in
its classification model. This was seen more severely in
the 60-month data set, may be due to the fact that it,
from the beginning, had half the amount of features
than the 36-month after CFR.

SVM Verification of K-PLS polynomial results

The 36 month KPLS-Poly AUC result of 0.784 was not
expected when compared with the L-PLS result AUC
result of 0.791 because these classification problems are
generally non-linear. We therefore validated this result
with an independent analysis using SVM using several
kernels with the exact same data set and cross-validation
process. Specifically, the data was normalized and for-
matted for use with LibSVM [36], a widely-used SVM
implementation. A grid search was implemented to find
good parameters for each of the built-in kernels, Gaus-
sian RBF, Sigmoid, and polynomial. A linear SVM was
not considered as it would not be a good comparison to
K-PLS. With the grid search including four parameters:
gamma, coefficient, degree, and C (regularization para-
meter), the polynomial kernel was found to be the best
performer. Using 1-hold-out cross-validation, the best
results found by this method was ~0.78 (which agrees
with the K-PLS polynomial result to within 0.51%),

though most parameter configurations usually gave an
output of .63-.73. No stochastic optimizer was used, so
it may be possible for slightly higher performance (and
slightly better agreement) with a exhaustive EP para-
meter search. Other results in Table 2 above were not
verified because of the exhaustive analysis performed for
this 36 month K-PLS polynomial result.

Kaplan-Meier and Cox

K-M curves for both PLS using 36 and 60 months can
be seen in Figures 10 and 11 respectively. Using 36
months as the cut-off for training, the resulting K-M
curves for the two categories have a very significant dif-
ference of p = 4.744e-12. For 60 months, the p-value
was so low as to only give ~0 as a result of calculations.
A higher precision computation tool may be capable of
a more specific result. However, these results make it
very clear that PLS is easily able to separate patients
into groups of recurrence sooner and later. The CHR
between the two categories using the 36-month cut-off
for training was 2.846341 (2.088547 and 3.879089 for
95% confidence). For 60-months, it was 3.996732
(2.828351 and 5.647768 for 95% confidence). These
numbers show a significantly increased risk of

Table 2 CFR and FFS Comparison The comparison of model performance on data from the Fine Feature Selection

process and the Coarse Feature Reduction

Model Top Validation AUC Value CFR-data (36 mo/60 mo) Top Validation AUC Value FFS-data (36 mo/60 mo)
L-PLS 791/.831 .794/.869
KPLS-Poly (Degree = 1) .784/. 830 .780/.711

The FFS process enhanced performance for only the L-PLS while the KPLS-Poly suffered in both the 36- and 60-month data.
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PLS using 36 Month Threshold
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Figure 10 PLS at 36 Month Threshold. Kaplan-Meier curve of PLS predicted groups using 36-month threshold
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recurrence over time with being in the poor prognosis
group versus the good prognosis group. These two sta-
tistics, the K-M curve derived p-values and CHR, are
values which can be directly understood by clinicians
without further training. In other words, with this fra-
mework, any new patient’s data could be sent to us by
any doctor who reads this article, given a categorization
by the system as it is currently setup, and then the doc-
tor can take that knowledge and make decisions on how
frequent to make checkups and other treatment
decisions.

Conclusions
Our microarray analysis and information extraction
method comprised three basic components drawing
from Statistical Learning Theory: 1.) Coarse Feature
Reduction, 2.) Fine Feature Selection and 3.)
Classification.

In Coarse Feature Reduction, the original 22,282
probes were reduced to 594 for the 3 year cut-off
(97.5% reduction) and to 212 for the 5 year cut-off
(99.04% reduction) using basic t-test and variance

pruning techniques. The Fine Feature Selection was able
to further reduce the number of features to 361 for the
60-month and 102 for the 36-month data sets (a further
reduction of 39.2% and 51.9%). The FFS process has
been demonstrated to reduce the noise in the data by
filtering out noisy features from the data set produced
by the CFR process. By implementing the FFS process
in our analysis, we were able to enhance the perfor-
mance of our classifier.

After utilizing the FFS process, classification compari-
son is made for the refined data. The optimal classifying
performance of L-PLS was observed at 3 latent variables
and 2 latent variables for the 36- and 60-month experi-
ments, respectively. Similar results were obtained, a
reduction to 3 and 1 latent variables, when using L-PLS
on data refined only by CFR. The Area Under the Curve
(AUC) measure of performance varied from 0.791 to
0.869, depending upon the particular L-PLS or K-PLS
and SVM model used (see Tables 1 and 2). PLS results
for the 36-month cut-off were independently verified
using Support Vector Machines. In summary, it is
important to note that by using the SLT techniques,



Land et al. BMC Systems Biology 2011, 5(Suppl 3):513
http://www.biomedcentral.com/1752-0509/5/53/513

Page 16 of 18

PLS using 60 Month Threshold
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Figure 11 PLS at 60 Month Threshold. Kaplan-Meier curve of PLS predicted groups using 60-month threshold
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over 22,000 probes were eventually reduced to 3 and 2
latent variables (for the 36- and 60-month cut-off peri-
ods, respectively) while still maintaining AUC values in
the range of 0.79 to 0.86.

This research also provided a secondary and clinically
important result, which is that the improved SLT meth-
ods/paradigms can be integrated into the widely
accepted and well understood traditional bio-statistical
Cox Proportional Hazard model and the K-M methods.
For example, using the SLT paradigms as pre-processors
for K-M, the resultant probability vs. survival time cate-
gories have a very significant difference (p = 4.74e-12)
for the 36-month cut-off and a p ~0 for the 60-month
cut-off. (Figures 10 and 11, respectively). These results,
therefore, make it clear that PLS easily and accurately
separates patients into groups of sooner and later recur-
rence. Furthermore, the CHR between the two cate-
gories for the 36-month cut-off was 2.85 (2.09 to 3.88
for 95% confidence). For the 60-month cut-off the ratio
was 3.99 (2.83 to 5.65 for 95% confidence). (Figures 10
and 11, respectively). These results show a significant
increased risk of recurrence over time when classified as

being a member of the poor group vs. the good group.
Consequently, these two results (K-M derived p-values
and the CHR), which are directly understood by practi-
cing clinicians without additional training and were pre-
processed using the PLS and KPLS algorithms, was
made possible by the SLT pre-processing we applied in
this study.
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