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Abstract

Background: To understand transcriptional regulatory networks (TRNs), especially the coordinated dynamic
regulation between transcription factors (TFs) and their corresponding target genes during development,
computational approaches would represent significant advances in the genome-wide expression analysis. The
major challenges for the experiments include monitoring the time-specific TFs’ activities and identifying the
dynamic regulatory relationships between TFs and their target genes, both of which are currently not yet available
at the large scale. However, various methods have been proposed to computationally estimate those activities and
regulations. During the past decade, significant progresses have been made towards understanding pollen
development at each development stage under the molecular level, yet the regulatory mechanisms that control
the dynamic pollen development processes remain largely unknown. Here, we adopt Networks Component
Analysis (NCA) to identify TF activities over time couse, and infer their regulatory relationships based on the
coexpression of TFs and their target genes during pollen development.

Results: We carried out meta-analysis by integrating several sets of gene expression data related to Arabidopsis
thaliana pollen development (stages range from UNM, BCP, TCP, HP to 0.5 hr pollen tube and 4 hr pollen tube).
We constructed a regulatory network, including 19 TFs, 101 target genes and 319 regulatory interactions. The
computationally estimated TF activities were well correlated to their coordinated genes’ expressions during the
development process. We clustered the expression of their target genes in the context of regulatory influences,
and inferred new regulatory relationships between those TFs and their target genes, such as transcription factor
WRKY34, which was identified that specifically expressed in pollen, and regulated several new target genes. Our
finding facilitates the interpretation of the expression patterns with more biological relevancy, since the clusters
corresponding to the activity of specific TF or the combination of TFs suggest the coordinated regulation of TFs to
their target genes.

Conclusions: Through integrating different resources, we constructed a dynamic regulatory network of Arabidopsis
thaliana during pollen development with gene coexpression and NCA. The network illustrated the relationships
between the TFs’ activities and their target genes’ expression, as well as the interactions between TFs, which
provide new insight into the molecular mechanisms that control the pollen development.
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Background
Genome specifies the gene expression programs that
control cells’ differentiation through transcriptional reg-
ulatory networks, which are characterized as the
dynamic interactions between transcription factors and
their target genes during development. Transcription
factors regulate the expression of their target genes at
transcriptional level with spatiotemporal specificity, thus
the modification of transcription factor activity can dra-
matically alter the gene expression profile. The primary
challenge to understand the transcriptional regulation
network is to measure the activities of the transcription
factors at genome-scale, which are not yet practicable.
However, computational methods have recently been
developed to infer the transcription factor activities and
the regulatory relationships between TFs and their tar-
get-genes.
Recent development of high-throughput technologies

has made it possible to measure the expression activities
of transcription factors and their target genes at the
genome-scale. Microarrays can detect the expression
levels of thousands of genes simultaneously [1]. But
identifying transcription factor activities at such scale is
still a challenge, especially for plants. Several technolo-
gies for assessing transcriptional activities, such as ChIP-
chip, flow cytometer, have their inherent limitation on
genome-scale [2-4] and merely detect the activities at
specific time point. In order to utilize the genome
expression profile and compensate the inability to assay
transcription factor activity on the genome-scale, many
computational tools have been developed to accomplish
this task through inferring gene regulatory networks
[5-8]. One of these approaches, Network Component
Analysis (NCA) is to determine both activities and regu-
latory influences for a set of transcription factors on
known target genes [9]. It has been successfully applied
in several species and in various research perspectives,
including yeast cell cycle [9] and cytokinesis-related
gene regulation [10], time course of E. coli protein [11],
knockout analysis in mouse [12], and transcriptional
regulatory network of human [13].
In flowering plants, the male gametophyte (or pollen

grain) plays a vital role in plant fertility through genera-
tion and delivery of the male gametes to the embryo sac
for double fertilization. The male gametophyte develop-
ment is a complex process that requires the coordinated
participation of various cells and tissue types, and their
associated specific gene expression patterns. The avail-
ability of the genome sequence of Arabidopsis (The Ara-
bidopsis Genome Initiative, 2000) and the concomitant
accumulation in available transcriptional profile data
(TAIR) make Arabidopsis a preferable model plant for
large scale genetic studies of pollen development. In

previous studies, several sets of gene expression profiles
for Arabidopsis pollen development time series have
been generated [14-18]. These data cover almost all the
stages of Arabidopsis pollen development: from unin-
ucleate microspores, bicellular pollen, tricellular pollen,
mature pollen grain, the 0.5 hr pollen tube, to 4 hr pol-
len tube. Besides the availability of those gene expres-
sion profile data, the researches on the TFs in
Arabidopsis become increasing intensive, and a number
of new transcription factors has been identified, either
experimentally confirmed or computationally predicted.
The total transcription factors of A. thaliana are pro-
posed to be more than 2000 according to the four
representative databases of Arabidopsis transcription
factors: RARTF [19], AGRIS [20], DATF [21], PlnTFDB
[22]. Among them, a few families of transcription factors
have been intensively examined for their functionalities
in development. However, the data for regulatory rela-
tionships between these transcription factors and their
confirmed target genes are very limited.
During the past decade, major advances in genetic and

genomic technologies have facilitated our understanding
of pollen development at the molecular level. The achieve-
ment includes the highly annotated A. thaliana genome,
comprehensive A. thaliana transcriptomic datasets, and
various gametophytic mutants. Although significant pro-
gress has been made towards understanding pollen devel-
opment at each development stage, yet the dynamic
regulatory network remains further characterized, the
transcription factors and their target genes involved in the
dynamic processes need investigation in deeper.
By taking advantage of NCA, we explored the regula-

tory relationships between those TFs and their target
genes specifically involved in the A. thaliana pollen
development process. We identified new regulatory rela-
tionships with our most comprehensive dynamic regula-
tory networks, which provide new information to
uncover the underlying mechanisms for the pollen
development.

Results and discussion
When predicting interactions between TFs and their tar-
get genes based on gene expression profile, a key
assumption is that mRNA expression level is informative
in the prediction of protein activity. Although expres-
sion levels between mRNAs and their corresponding
proteins in different cell types exhibit a range of correla-
tions for different genes [23], an overall positive correla-
tion between mRNA and protein expression levels has
been identified [24,25], therefore, we adopt this strategy
in our study.
The NCA requires two inputs: a time series of gene

expression profiles and a pre-defined regulatory
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network. The original gene expression data are obtained
from the Arabidopsis Information Resource (TAIR) and
Gene Expression Omnibus (GEO) of NCBI. They cover
seven A. thaliana pollen developmental stages with 23
profiles in total for wild type Columbia (Col-0): unin-
ucleate microspores (UM), bicellular pollen (BP), tricel-
lular pollen (TP), mature pollen (MP), hydrated pollen
grains (HP), 0.5 hours germinated pollen tubes (0.5 hr),
and 4 hours germinated pollen tubes (4 hr). Those data-
sets of pollen developmental stages were generated by
three labs [14-16], each of which includes at least one
MP sample as control. In order to make comparison
between datasets from different labs, the MP sample
from that lab is used as the control to process the
related dataset, and only the fold change values of each
gene from each dataset is kept for the future calculation.
The insufficiency of the availability and comparability

of A. thaliana pollen development expression data limit
the power of NCA. To overcome the limitation, besides
we take the mature pollen expression data as the control
from the same experiment, we also collect the pollen
development-related transcription factors from the
Database of Arabidopsis Transcription Factors (DATF),
The Arabidopsis Gene Regulatory Information Server
(AGRIS), and the Plant Transcription Factor Database
(PlnTFDB).
In NCA, the pre-defined regulatory network initially

accounts for the gene expression response. The regula-
tory relationships between the transcription factors and
their target genes can be collected from published litera-
tures and transcriptional factors related databases [26].
From the three databases mentioned above, we collect
2, 283 transcription factors which can be mapped to
microarray probes. We also collect 8 interaction pairs
between transcription factors specific for A. thaliana
pollen development through text-mining. However, the
interaction data between transcription factors and their
target genes in pollen development is very limited.
Therefore, we have not enough prior interactions avail-
able for NCA. To overcome this limitation, we use the
microarray data to explore the potential regulatory
interactions according to the correlation coefficient (r)
of each pair of transcription factors and the fold change
(FC) of each gene under different conditions. We choose
those gene pairs with correlation coefficient |r|>0.9 and
the genes with |FC|>1.6. To reduce false positive data,
all differentially expressed genes (DEGs) are hierarchi-
cally clustered by FC values, and those genes with high
correlation are grouped into corresponding clusters. The
resulting clusters indicate that all the genes under a
cluster can be regulated by the related TF. Taking the
correlation coefficient as control strength for NCA, we
define a matrix of regulatory relationships between the
selected TFs and their target genes, and generate a

regulatory network for the pollen development. The reg-
ulatory network includes 289 transcription factors, 5530
target genes and 429, 790 regulatory relations. Processed
by NCA, we obtain 15 TFs and 101 target genes.
Because of the inability of NCA to predict the regulatory
pattern of transcription factors, we take the positive cor-
relation between TF and its target genes as positive reg-
ulation, and negative correlation as negative regulatory
relation. Based on the network and the expression data,
we further estimate the activities of the transcription
factors in the network over pollen development with
NCA and characterize the dynamic regulatory network.
NCA decomposes the matrix of gene expression values
into two matrixes, one matrix represents the influence
of a transcription factor on a target gene and another
reflects the activities of transcription factor [9].

Transcription factor activities under different pollen
development stages
The activities of 15 TFs clearly show stage-specific
actions in pollen and pollen tube development. 12 of
them (AT4G17490, AT5G43990, AT5G05410,
AT5G04760, AT3G49530, AT5G03510, AT3G63360,
AT4G26440, AT3G20670, AT3G24500, AT1G01720,
AT1G52520) are activated during pollen development,
while the genes for the rest 3 TFs (AT3G63350,
AT4G00130, AT3G04100) remain relatively high expres-
sion without significant change (Figure 1). AT4G17490
(ATERF6) gene, encoding the ethylene responsive ele-
ment binding factor 6 [22], belongs to AP2-EREBP gene
family and shows its maximum activity at 0.5 hr with a
slight decrease at 4 hr in pollen tube development. Pre-
vious research has indicated that members in AP2-
EREBP gene family play a role in floral organ identity
determination [27]. AT5G43990 (SUVR2) gene, its pro-
duct acting as a histone-lysine N-methyltransferase/zinc
ion binding factor [22], is expressed during the fourth
anthesis [28], reaching its peak expression at TCP stage
and returning to baseline at 4 hr stage during pollen
development. SUVR2 is one of SUVR family protein,
which can act in concert to achieve various functional
H3K9 methylation states that will eventually lead to
DNA methylation in a locus-specific manner (Mutskov
and Felsenfeld 2004). The up-regulation of SUVR gene
in the specific stage of pollen development indicates the
involvement of histone remodification in the gene
expression switch and regulation rewiring at the epige-
netic level during the process. Gene AT5G05410
(DREB2A) is expressed in pollen tube cell, and its activ-
ity steadily increased from BCP to HP. DREB2A is an
important transcription factor that has been confirmed
to involve in heat or water stress-inducible gene expres-
sion of A. thaliana. It specifically interacts with cis-act-
ing dehydration-responsive element/C-repeat (DRE/
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CRT), thus functions in cold and drought stress-respon-
sive gene expression in A. thaliana [29]. The expression
pattern of DREB2A gene indicates that some cold and
drought stress related biological processes are also
involved in the pollen tube cell development and
growth. AT5G04760 (MUK11.7) expression is detected
in germinated pollen grain and pollen tube cell, and
exhibits a sharp increase from MP to HP stage.
AT5G03510 (F12E4.290), a C2H2-type zinc finger family
protein, changes its gene expression from HP stage. As
a member of heat stress transcription factor family,
AT3G63350 (HSFA7B) has been shown to be expressed
during the fourth anthesis stage [28], and down-regu-
lated at BCP, HP stage and eventually return to its base
level. AT3G62260 gene (T17J13.220, encoding a protein
phosphatase 2c family protein), which expression has

been reported during the fourth anthesis stage as
AT3G63350 does [28], is turned on at TCP stage.
AT3G49530 (NTL6), auto-stimulated in pollen tube cell
development [30], is up-regulated at HP stage.
AT4G26440 (ATWRKY34, a member of WRKY tran-
scription factor family), which gene expression has been
detected in anther and pollen tube cell [28], is activated
at BCP. Its gene expression has been confirmed as pol-
len specific [31-33]. AT4G00130 (F6N15.6) gene pre-
sents a rapidly reduced activity from BCP to HP and a
sharp increase from HP to 0.5 hr stage. AT3G20670
(HTA13) gene, which is expressed in pollen tube cell,
increases its expression steadily from UNM to HP stage.
AT3G24500 (MBF1C) is a key regulator of a coordi-
nated heat stress-response network involving SA-, treha-
lose- and ethylene-signaling pathways, and its gene is

Figure 1 Transcription factor activities calculated using NCA. (A) Predicted activities of the fifteen transcription factors used in this study. For
each transcription factor, rows represent development stage. Activities of each row are normalized to the MP stage. (B) Transcription factor
activities (red) compared to gene expression (blue), with Pearson correlation coefficients noted. Both activity and expression at each time point
are normalized to the MP stage values, and the activity is further scaled for direct comparison with the expression values. (C) Correlation matrix
between transcription factor activities. Red represents positive correlation, and blue represents negative correlation. (D) Inferred combinatorial
regulation pairs of transcription factors. Red lines represent positive regulation, and blue lines represent negative regulation. Green square
represents TFs associated with pollen development found by text-mining (The regulation of these TFs are putative).
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expressed in pollen tube; its expression is steadily
increased from BCP and reaches its peak at HP stage.
AT3G04100 (ATAF1) belongs to a large family of puta-
tive transcriptional activators with NAC domain; its
expression is detected in pollen tube cell and deacti-
vated from BCP stage. As the same family as
AT3G04100 with NAC domain, AT1G01720 (ATAF1)
gene also shows its expression in pollen tube cell, it is
steadily up-regulated from BCM and reaches its peak
expression at HP stage. ATAF1 has been proposed to
modulate plant ABA signaling and high ATAF1 expres-
sion has been considered to contribute to ABA hyper-
sensitivity in Arabidopsis [34]. AT1G52520 (FRS6),
which potentially acts as positive regulators in phyB sig-
naling pathway controlling flowering time [35], is stea-
dily up-regulated from UNM and reaches its peak
expression at 0.5 hr stage.
The correlations between gene expressions for tran-

scription factors and their activities are not identical
among all the transcription factors. Five transcription
factors (AT4G17490, AT5G03510, AT3G62260,
AT1G52520, AT3G20670) present strong positive corre-
lation between their activities and expressions (r > 0.5),
when three transcription factors (AT5G43990,
AT5G04760, AT4G26440) show strong negative correla-
tion (r < -0.5). However, the rest seven TFs
(AT3G63350, AT5G05410, AT3G49530, AT3G24500,
AT3G04100, AT1G01720, and AT4G00130) display less
consistence or no correlation at all (|r|< 0.5).
Since the linear model of gene expression upon which

NCA rests does not reveal the relationships between
transcription factors, we search all the transcription fac-
tor pairs with high correlation (|r|> 0.5) from the pro-
tein-protein interactions catalogued in the A. thaliana
Protein Interactome Database [36]. However, no protein-
protein interaction has been recorded for any pair of the
15 TFs. Although no experimental data confirms the
direct interactions between those TFs, the high correla-
tions between some TFs under different development
states suggest their possible relations. Interestingly, the
correlation matrix between transcription factor activities
reveals that two sets of TFs’ activities are apparently posi-
tively correlated. One set includes 6 TFs: HSFA7B,
AT3G62260, FRS6, ERF6, AT4G00130, and AGL57,
another includes WRKY34, AT3G04760, SUVR2.
Although no experimental data supports that the TFs in
each set form direct interaction, the results inferred from
NCA represent an indirect evidence of the interaction or
cooperation among them.

Regulatory influence matrix and gene expression
clustering
According to the assumptions of NCA, the target gene
expression is controlled by an adjusted strength matrix

and the transcription factor activities. The assigned
quantitative values of the adjusted strength are able to
be used to obtain more biologically meaningful clusters
than by using target genes’ expression. Based on their
expressions, the target genes are hierarchically clustered
with the adjusted strengths of transcription factors (Fig-
ure 2A). In total, eleven major clusters are identified
(Additional file 1), which represents the coordinated
actions of transcription factors to regulate the gene
expression. Cluster 4, 7, 8, and 9 highlight the influence
of single TF on a set of genes, whereas cluster 3, 11, 10,
and 5 display a set of TFs influence on a set of genes.
Interestingly, the regulatory relationships from the clus-
ters can also disclose the auto-regulation of the tran-
scription factors. For example, in the cluster 4, it reveals
that the gene AT3G04100 (AGL57), which encodes a
MADS-box family protein, is also a target of its own
protein, and the same as AT1G01720 in cluster 8,
AT1G01720 in cluster 9 and AT4G00130 in cluster 12,
as well as AT5G43990, AT5G04760, AT3G63350,
AT3G49530 in cluster 3. Those self-regulations are
unable to be identified from the coexpression approach.
NCA shows certain advantages and the auto-regulation
can be inferred from clustering on the matrix of regula-
tion influence.
On the other hand, clustering by regulatory strength

can identify new clusters unobtainable by clustering the
expression data alone. For example, cluster 9 and 5
could not be distinguished when clustering is applied to
the gene expression data alone (Figure 2B). In contrast,
those two groups can be separated with clustering on
the regulatory strength matrix, and are linked to the
regulatory influence of transcription factor DREB2A,
HTA13 and NTL6. For the target genes FZR2 and
SVR1, they cannot be grouped together with the cluster-
ing method on the gene expression data alone (Figure
2B), but they are grouped into cluster 3 based on regu-
latory strength and supposedly regulated by transcrip-
tion factors SUVR2, AT5G04760, HSFA7B, AT3G62260,
NTL6, HTA13, MBF1C, and FRS6. Furthermore, the
clustering of the NCA-processed strength matrix
adjusted from the initial connectivity matrix can group
genes with different expression patterns (Figure 2A and
2C).
Our results further demonstrate that the estimated

transcriptional regulation strengths have certain advan-
tages over the gene coexpression approaches for explor-
ing the regulatory relationships and can provide a new
insight to the regulatory relations of between transcrip-
tion factors and their target genes.

Coexpression analysis of the regulatory gene sets
Each pair of TF and its target gene(s) classified by NCA
have a high correlation coefficient (|p|>0.9) based on
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gene expression. Considering that our identified regula-
tory relationships between each TF and its target genes
are derived only from process of pollen development,
we further test the robustness of the coexpression under
other conditions, such as tissue, abiotic and light

conditions. We explore each pair of the TFs and its tar-
get gene(s) inferred from NCA in ATTED [37] which is
a database of gene coexpression in Arabidopsis under a
wide variety of experiment conditions, and find 65 coex-
pression pairs (in total 472 identified pairs) with

Figure 2 Hierarchical clustering in the context of a defined regulatory network. (A) The adjusted strength matrix is used for clustering,
with gene expression matrix appended. In the adjusted strength matrix heatmap, red color indicates positive regulatory influence, while blue
color indicates negative regulatory influence. (B) Clustering with gene expression only. (C) Clustering with the binary regulatory relations (initial
connectivity matrix), assuming the absolute values of all regulatory strengths are equal.
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correlation coefficient larger than 0.4 (|r|> 0.4), includ-
ing 8 TFs and 35 target genes. Almost a quarter (15/65)
of these coexpressions are negative. Since the rest 407
TF and target gene pairs display the low correlation
under all other experimental conditions but show a high
correlation in pollen development process, it is reason-
able to state that those pairs could be specific in pollen
development. There are 5 clusters with more than one
TF in each cluster. We search the coexpression for
those TFs in each cluster, and find 9 pairs of TFs to
present the relatively significant coexpression (in total
15 TFs; |r| >0.4). Almost all pairs of those coexpressed
TFs are positively correlated, except one pair between
At5g04760 and At5g43990 in cluster 3 (r = -0.41). In
addition, we also search every pair of target genes in
each cluster for the coexpression, and find 118 coex-
pression pairs with 6 highly correlated ones (r>0.8),
which implies that the rest 112 pairs of coexpression
genes in each cluster could be specific in the related
stage of pollen development process.

The regulatory dynamics of pollen development
According to the relationships inferred from NCA, we
built an integrated model of A. thaliana pollen develop-
ment (Figure 3). The final dynamic network integrates
the inferred transcription factor activities, the regulatory
relationships between TFs and their target genes, clus-
tering on the adjusted strengths, the gene expression
profiles, and the text-mining data. The network includes
19 TFs and 101 target genes. Several transcription fac-
tors present their specific dynamic expression pattern

during the pollen development. For example, the expres-
sion of AT5G04760 is not detectable during UNM
development stage, while AGL18, OFP1, TSO1 and
MYB65 are not expressed during TCP, HP, 0.5 hr and 4
hr development stages. The rest genes present their
expression during all of the pollen development pro-
cesses and display different expression at least ones.
AT5G04760 is found no expression at UNM stage.

From UNM to BCP stage, AT5G04760 is activated and
interacts with SUVR2 to regulate their downstream
gene expression. In contrast, AGL57 is deactivated
during the stage switch. By the end of BCP stage,
AT5G04760 and AGL57 have already executed their
function and affected gene expression, including the
genes in clusters 3, 4, 5, 10, and 11. From BCP to TCP
stage, all genes show trends of not differently
expressed. The pollen in TCP stage is similar to MP
stage since the number of DEGs detected in both
stages is very small. For transcription factors AGL18,
OFP1, TSO1, and MYB65, they are curated to play the
roles in pollen development from literature and there-
fore incorporated in the regulatory network. Those
transcription factors show no detectable expression
until into the 4 hr stage. Another transcription factor,
DREB2A, is dramatically deactivated from the begin-
ning. After TCP stage, DREB2A keeps steadily acti-
vated; until HP stage, it begins to restore to their basal
level of activity. The temporal model therefore pro-
vides a global view of TFs’ activation and the regula-
tory relationships between TFs and their target genes
during the pollen development of A. thaliana.

Figure 3 A dynamic network of transcription during A. thaliana pollen development. The pollen development of A. thaliana ranges from
UNM, BCP, TCP, MP, HP, to 0.5 hr pollen tube, and 4 hour pollen tube stages. The transcription factors are represented as a square, and target
genes as a circle. Blue or red arrow lines show the influence of a transcription factor on a target gene, positively or negatively. The transcription
factors, that are not processed by NCA but collected by text-mining, include AGL18, OFP1, TSO1 and MYB65. The genes with no expression are
denoted with green line. 11 clusters are grouped together in total.
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The transcription networks have been proven to be
made up of a small set of recurring regulation patterns
that are called network motifs, and they serve as basic
building blocks of transcription networks. To obtain the
regulation pattern during pollen development, we detect
network motifs in the network. In total, we retrieve 11
network motifs for motif size 3, 82 motifs with motif
size 4, and 778 motifs with motif size 5. Each motif
embodies a regulation pattern. And most all of the TFs
display different roles in more than one regulation pat-
tern. We detect the network motifs for all pollen devel-
opment stage and find some interesting TF interactions
(Figure 4).
For example, MBF1C, which expresses in pollen tube

and enhances the tolerance to various biotic and abiotic

stresses [38], displays the pattern of up-regulates
AT3G62260 and down-regulates NTL6. AT3G62260
functions as protein serine/threonine phosphatase activ-
ity and NTL6 undergoes proteolytic processing. Our
result indicates that MBF1C regulates protein serine/
threonine phosphorylation and proteolysis in the oppo-
site direction. Since phosphorylation plays an important
role in the pollen-stigma interaction [39] and
AT3G62260 is upregulated before TCP stage, it can be
anticipated that MBF1C promotes the pollen-stigma
recognition.
According to the network motif, WRKY34 upregulates

other 3 target genes: FER3, RHD2 and GRP4 in the pol-
len development. FER3 has been reported to protect
cells against oxidative damage [40] and RHD2 can lead

Figure 4 The over-presented motifs. A: Motif with size 3; B: Motif with size 4; C: Motif with size 5. Black nodes pointed to by an arrow are
target genes, others are transcription factors. Red lines represent positive regulation, and blue lines negative regulation. The numbers represent
the percentage of above motifs in the network.
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the formation of reactive oxygen species [41], whereas
overexpression of GRP4 can increase plant tolerance to
osmotic stress [42].
Therefore, as a gene solely expressed in pollen,

WRKY34 potentially promotes the expression of FER3,
RHD2 and GRP4, which may function as a module to
balance the reactive oxygen species metabolism during
the process.

Conclusions
The ultimate goal of our work is to construct a dynamic
regulation network of pollen development. With NCA,
we have predicted the activities of 15 transcription fac-
tors and the regulatory strengths of those TFs to their
target genes. Based on the regulatory strength matrix,
we have clustered the coexpressed and coregulated
genes into different groups. By incorporating the regula-
tory network information with the regulatory strength
matrix, we have further inferred the activities and inter-
actions between transcription factors and their target
genes.
The regulatory strength matrix is clustered to deter-

mine gene groups which are not only co-expressed, but
also co-regulated. Identification of interactions between
TFs and their target genes enable us to interpret the
activation of regulatory relationship over development
stage. Beyond the 15 TFs, we have also identified addi-
tional 4 TFs and explored the special expression pattern
of the 4 TFs that are not included in the model, but are
pollen development-related by text-mining. Moreover,
WRKY34, which has been reported only expressed in
pollen [43], has also been identified by NCA. We finally
have reconstructed the dynamics of pollen development
process of A. thaliana using above results. Moreover,
we present the dynamic regulatory networks over all
explored pollen development stages.
Although the NCA we used in this work can infer

hidden TF activities by taking advantages of the prior of
network structure, most of the regulatory information
however is not available and the regulatory pairs
retrieved from coexpression tend to be hypothetical. In
addition, NCA is based on a phenomenal model of TFs’
regulatory over target genes, which correlates with Hill
cooperation between TFs, which do not potentially
reflect the biological reality if we consider the complex-
ity and multi-steps of the transcription event [44].
Nevertheless, in this study we combine all available
datasets and construct a comprehensive dynamic net-
work of the A. thaliana pollen development. This net-
work characterizes the stage-specific activities of TFs of
importance and the corresponding dynamics of this net-
work during the stage of development. New relations
between transcription factors and their target genes
have been inferred from the network. Obviously, this

network will shed new light on the study of mechanisms
that governing the development of the pollen.

Methods
Data preprocessing
The gene expression datasets were obtained from Gene
Expression Omnibus (GEO), with accession numbers:
GSE6162, GSE6696, and GSE17343. The log2 ratio of
genes expression in each development stage was calcu-
lated by MAS5 [45], with significance as p-value < 0.01.
For all development stages we explored, the genes with
at least differentially expressed at one stage were
selected. In total, 5, 980 genes, which were differentially
expressed (|FC|>1.6), were selected to be hierarchically
clustered by hcluster of R language and to calculate the
correlation coefficient for each pair of genes. For each
pair of TF and its target gene, only the target gene in
the sub-tree of the TF-node with the coefficient larger
than 0.9 was kept for NCA.

Network component analysis and dynamic network
construction
Network component analysis (NCA) is a powerful math-
ematical tool for uncovering hidden regulatory signals
from gene expression levels with a prior network struc-
ture information in terms of matrix decomposition [46].
The classical decomposition methods, such as PCA and
ICA, assume orthogonality and independence, respec-
tively, all of which lack biological foundation. On the
other hand, the NCA does not make any assumptions
on statistical properties and allows proper handling of
prior network connectivity information.
NCA uses the standard log-linear model to approxi-

mate the relationship between levels of TFs activity and
that of the target-gene expression by assuming the Hill
cooperation between TFs on the promoter region of tar-
get genes. Formally:

Ei(t)
Ei(0)

=
L∏
j=1

(
TFAj(t)

TFAj(0)

)CSij

(1)

Where t represents the time stage, Ei(t) is the gene
expression level and TFAj(t) is TF j’s activities and csij
reflects the control strength of TF j on gene i.
After logarithm, the equation (1) is linearized into (in

forms of matrix):

log[Er] = [CS] log[TFAr] (2)

While the matrix [Er] consists of elements [Er]ij = Eij
(t)/Eij(0) and similarly [TFAr]ij = TFAij(t)/TFAij(0),
represents the relative gene expression levels and TFs’
activities. The dimension of [Er] is N × M (N genes and
M samples or conditions) while that of [TFAr] is L × M
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(L TFs). They respectively indicate the time courses of
relative gene expression levels and TFs’ activities.
Finally, size of [CS] is N × L, which is the control
strength for L TFs on each of N genes. The equation (2)
above can be further simplified as:

[E] = [S][A] (3)

Here, we have the strength matrix, [S], which corre-
sponding to the term of [CS] in equation (2) and the
TFs’ activity matrix [A], which is the equivalent of log
[TFAr] in the equation (2), and finally, the gene expres-
sion matrix of [E] corresponds to the term of log[Er] in
equation (2).
Based on above preparation, the decomposition of [E]

into [S] and [A] can be achieved by minimizing the fol-
lowing object function:

min ||([E] − [S][A])||
Subject to. S ∈ Z0

(4)

In NCA, the above target function is estimated by
using the bootstrap algorithm and the value of [S] and
[A] can be normalized through a nonsingular matrix of
[X] according to,

[E] = [S][A] = [S][X][X−1][A] (5)

Specifically, to guarantee uniqueness of the solution
for the matrix decomposition of Eq. 4, the network
topology needs to satisfy some criteria [9]: (i) The con-
nectivity matrix [A] must have full-column rank. (ii)
When a node in the regulatory layer is removed along
with all of the output nodes connected to it, the result-
ing network must be characterized by a connectivity
matrix that still has full-column rank. (iii) [P] must have
full row rank.
The algorithm of NCA is already implemented in

MATLAB by the authors, which is downloadable at
http://www.seas.ucla.edu/~liaoj/. In this study, we fol-
lowed the manual of this package and performed our
computation.
With NCA, the significant TFs and their target genes

were detected, the control strength of TFs to their target
genes was recalculated, and the activities of the TFs
were estimated. We took the control strength (only as
positive or negative) as the regulatory relationships
between TFs and their target genes (including TFs), and
the TFs activities substitute for their gene expression to
construct the dynamic network.

Over-presented motifs among network
Motifs are small connected sub-networks that a network
displays in significantly higher frequencies than would be
expected for a random network. To uncover the regulation

pattern of dynamic regulation network, we took FAN-
MOD [47,48] to detect the over-presented motifs.

Additional material

Additional file 1: Major clusters formed from the adjusted strength
matrix and the target genes’ GO functions. Cluster of the genes.
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