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Abstract

the target compounds to a source set of compounds.

biosynthetic pathway design.

Background: We consider the possibility of engineering metabolic pathways in a chassis organism in order to
synthesize novel target compounds that are heterologous to the chassis. For this purpose, we model metabolic
networks through hypergraphs where reactions are represented by hyperarcs. Fach hyperarc represents an
enzyme-catalyzed reaction that transforms set of substrates compounds into product compounds. We follow a
retrosynthetic approach in order to search in the metabolic space (hypergraphs) for pathways (hyperpaths) linking

Results: To select the best pathways to engineer, we have developed an objective function that computes the
cost of inserting a heterologous pathway in a given chassis organism. In order to find minimum-cost pathways, we
propose in this paper two methods based on steady state analysis and network topology that are to the best of
our knowledge, the first to enumerate all possible heterologous pathways linking a target compounds to a source
set of compounds. In the context of metabolic engineering, the source set is composed of all naturally produced
chassis compounds (endogenuous chassis metabolites) and the target set can be any compound of the chemical
space. We also provide an algorithm for identifying precursors which can be supplied to the growth media in
order to increase the number of ways to synthesize specific target compounds.

Conclusions: We find the topological approach to be faster by several orders of magnitude than the steady state
approach. Yet both methods are generally scalable in time with the number of pathways in the metabolic
network. Therefore this work provides a powerful tool for pathway enumeration with direct application to

Background

Metabolism is the process of synthesis and degradation
of molecules occurring in living organisms. Metabolism
is generally represented as a network where metabolites
are interconnected by reactions. In order to give a func-
tional description of metabolism, metabolic networks
are often decomposed into separated parts, called meta-
bolic pathways. The description of metabolism through
metabolic pathways is useful, even though any division
in pathways is arbitrary, because it helps in modeling
and understanding the behavior of the full network. A
metabolic pathway can be defined as a coherent set of
enzyme-catalyzed biochemical reactions by which a
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living organism transforms a set of source compounds
into a set of target compounds. By regulating enzyme
and protein synthesis, living organisms can adapt to dif-
ferent environments. This model of metabolism as com-
posed by independent metabolic pathways is simplistic,
since pathways are nested and interdependent. In fact,
metabolism is a complex system and pathways interact
with each other.

The aim of the work presented here is to find all the
viable sets of heterologous enzymes, which can produce
a predefined target compound when added to the pool
of endogenous enzymes of a given organism. Our
method enables a metabolic engineer to find all hetero-
logous metabolic pathways producing a target com-
pound, for instance liquiritigenin (a plant secondary
metabolite with therapeutic applications), from the
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endogenous metabolites of E. coli K-12, as shown in
Figure 1.

As depicted in Figure 1, our problem can be formu-
lated as searching for all possible heterologous pathways
linking a target compound to the endogenous metabo-
lites of an organism. To this purpose we provide soft-
ware tools that enable the discovery of potential
pathways producing a target chosen by the user [1].
More precisely the user enters a target compound, a
chassis organism, and our software tools return a ranked
list of pathways (each list being composed of enzymes)
to be engineered into the chassis organism. To achieve
this task we have developed an approach composed of
three steps. In the first step, using a retrosynthesis soft-
ware, reactions producing a target compound are itera-
tively searched backwards until the set of needed
precursors only contains source metabolites. This first

Figure 1 Known heterologous reactions leading to the
production of liquiritigenin (white circular node). Squares
represent reactions and circular nodes represent molecules. Dark
green nodes are present in the host organism, E. coli K-12, light
green can be produced via enzyme catalyzed reactions and red
ones cannot. Liquiritigenin, a highly selective estrogen receptor 8
agonist, is represented by the white node v;. Side products not
consumed in this pathway are not represented for simplicity. Four
pathways lead from the host compounds to the production of the
target molecule, one for instance is the pathway involving reactions
Ry, Ry, Ry, Ry. Legend: vy: liquiritigenin, vo: ATP, vs: NADH, v;: NADPH,
vs: NADP+, v oxygen, v, COA, vg: acetate, vg: H+, vqo: L-tyrosine, vq1:
malonyl-CoA, vy,: 4-hydroxybenzoate, v;3: trans-cinnamate, vy4: p-
coumaroyl-CoA, v;s: cinnamoyl-CoA, vy 4-coumarate, vy,
isoliquiritigenin, v;g: cinnamaldehyde, v;q: 3-(4-hydroxyphenyl)lactate,
Vo0: 4-hydroxycinnamy! aldehyde.
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step returns a retrosynthetic network connecting a tar-
get compound to the endogenous metabolites of an
organism. There may be several pathways in the retro-
synthetic network linking the source metabolites to the
target compounds and there is thus a need to enumer-
ate all the possibilities. Pathway enumeration is per-
formed by in the second step. Once the pathways have
been enumerated, we evaluate in the third step the pos-
sibility to insert each pathway and its associated hetero-
logous enzymes in the host organism. This step consist
of determining the catalytic efficacy of the enzymes, the
toxicity of the products and the coproducts [2], and the
easiness of inserting the enzymes into the host. The effi-
ciency of the pathways can then be further estimated by
flux models for the cell metabolism such as flux balance
analysis [3].

We have already discuss elsewhere the first and third
step [1,2], i.e. methods to generate retrosynthetic net-
works and methods to rank pathway efficiency. To apply
these methods in the context of heterologous target pro-
duction, we need a computationally fast method to enu-
merate all possible pathways. We address the
enumeration problem in the current paper.

Different mathematical models that describe metabo-
lism have been proposed (cf. [4] for a review of the dif-
ferent models). We distinguish two main families of
approaches: the ones computing steady states of the
fluxes of reactions (one well-known application being
the flux balance analysis) and the ones based only the
topology of the network. Typically, steady states are stu-
died and simulated by generating the flux space. Of par-
ticular interest are the extreme pathways and the
elementary modes, they both represent the smallest
(minimal) generating set of the flux space and they both
are composed of independent non-decomposable path-
ways in the network [4]. The differences between
extreme pathways and elementary modes have already
been discussed in details [5] and these differences arise
when dealing with reversible reactions. In the present
paper we consider all reaction irreversible, and networks
comprising reversible reactions are modeled by doubling
each reversible reaction into a forward reaction and a
reverse reaction. Algorithms have been developed to
enumerate both extreme pathways [6] and elementary
modes [7] and these algorithm are all variants of the
double description method [8], which enumerates all
extreme rays of a polyhedral cone. The algorithms use
as input a stoichiometric matrix (S) representing the
network (cf. [3] for definition of stoichiometric matrix)
and output sets of fluxes (v) satisfying Sv = 0. One
notices that extreme pathways and elementary modes
while representing pathways (to each flux verifying Sv =
0 correspond a stoichiometrically balanced pathway) do
not directly enumerate all pathways linking a source set
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to a target set of compounds. However as shown in the
subsection “Enumerating pathways using the steady
state approach” one can construct stoichiometric
matrices where input fluxes are added to the set of
source compounds and outgoing fluxes are associated to
the target and heterologous coproducts such that the
extreme pathways and elementary modes enumerated
from these matrices do correspond to all pathways link-
ing the source set to the target.

While as mentioned above, the problem of systemati-
cally enumerating pathways for heterologous production
in chassis organisms has not yet been addressed, there
are methods based on the steady state approach to
search for heterologous pathways optimizing target pro-
ductions [9], and methods to search for shortest path-
ways between source and target sets of compounds [10]
and [11]. All these methods are based on optimization
and make use of integer linear programming. Precisely,
the method of Pharkya et al. [9], is aimed at redesigning
microbial chassis organisms through heterologous reac-
tion addition and native reaction deletion for the over-
production of a target compound. The addition and
deletion are parameterized using binary variables
attached to each reaction. A mixed integer linear pro-
gram (MILP) is then set up to maximize the target yield
while minimizing the number of added reactions. The
methods of de Figueiredo et al. [10], and Pey et al. [11]
are both aimed at searching for the k shortest pathways.
In de Figueiredo et al. [10] the k first shortest pathways
are searched in entire metabolic networks, while in Pey
et al. [11] the pathways are searched between a source
metabolite and a target metabolite. Both methods solve
the problem at steady state and search for fluxes, v, veri-
fying Sv = 0, while minimizing the number of reactions
turned on (using a binary variable). Aside from the fact
that integer linear programs suffer from computational
complexity (MILP is an NP-hard problem) all the above
methods search for at most k optimized (shortest) path-
ways and do not guarantee a full enumeration of the
possibilities. In our methods the optimal pathways are
computed in a post process by ranking the pathways
that have been enumerated. Our approach allows one to
decouple enumeration from optimization, and thus to
plug any optimization criteria, including nonlinear func-
tions and not only target yield or pathway length (cf.
page 3 and Carbonell et al. [1] for a list of criteria enter-
ing our metabolic engineering optimization problem).

Aside from using extreme pathways and elementary
modes, we also present in this paper a topological
model which directly enumerates all the possible hetero-
logous pathways linking target compounds to a source
set of compounds. The main advantage of the topologi-
cal approach compared to the stationary state approach
is computational speed. Speed is in fact an important
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aspect when searching for the best pathways to engi-
neer, as there are generally a combinatorial number of
pathways between given source sets and target sets. As
an illustration of this combinatorial complexity, the
work of Hatzimanikatis et al. [12], which provides a list
of 75,000 novel biochemical routes from chorismate to
phenylalanine, and the work of Cho et al. [13], which
enumerates 107,272 reaction routes to produce
isobutanol.

There exist standard graph-based methods to search
and eventually enumerate pathways in metabolic net-
works, but these methods including PathFinding [14-16]
and Pathway Hunter Tool [17] are computing pathways
and shortest pathways in graphs instead of hypergraphs.
The particularity of these techniques is that only main
substrates and main products are taken into account
when constructing pathways, and consequently these
main compounds must be differentiated from the cofac-
tors (i.e. co-substrates and co-products). In the work of
Croes et al. [14,15] cofactors are filtered out based on
their connectivity in the network. Indeed, compounds
highly connected such as ATP, NADP, or H,O are
cofactors of most reactions as they do not share carbon
atoms with the products of the reactions. In a more
recent work [16], the main compounds in the pathways
linking source metabolites to target metabolites are
detected using the Kegg RPAIR annotation [18,19],
which enables one to follow the fate of atoms when
going from a set of substrates to a set of products.
Another approach to search for main substrates and
main product is the one developed with the Pathway
Hunter Tool, which consists of mapping substrates to
products using cheminformatics fingerprints. While all
the above techniques are computationally efficient, their
main shortcoming is that they are not able to encom-
pass reactions when a main product is formed from two
main substrates. There are plenty of such reactions in
metabolic networks, consider for instance the formation
of guanidinoacetate from arginine and glycine through a
glycine amidinotransferase (EC 2.1.4.1), or the formation
of glutathione from y-L-glutamyl-L-cysteine and glycine
catalyzed by a glutathione synthase (EC 6.3.2.3).
Recently, some of the above topological methods have
been benchmarked against the integer linear program-
ming technique mentioned above [11] to search for the
shortest pathways linking various compounds, the
recovery ratio for a set of 40 predefined reference path-
ways could not reach 100% with the graph based
approach, exemplifying the shortcoming of that
approach.

As reviewed above, while there are methods and theore-
tical results to enumerate elementary modes or extreme
pathways and graph based techniques to search for path-
ways in a given metabolic network, to the best of our
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knowledge there is no known methods to directly enumer-
ate pathways in the context of metabolic engineering, that
is, to enumerate all the pathways encompassing all sub-
strates and products necessary and sufficient to produce a
given set of target compounds from a given set of source
compounds. In the present paper we address that specific
problem and present two methods one based on elemen-
tary modes (steady state approach) and one based on a
direct enumeration algorithm (topological approach). In
order to address this problem we need, in addition, to con-
sider the problem of determining supplement molecules, i.
e. metabolites that the organism cannot synthesize, but
which can be added to the growth media in order to
increase the number of viable pathways; and bootstrap
molecules, i.e. metabolites which are required fist in order
to be produced [20]. While in the general context of meta-
bolic network analysis, finding elementary modes does not
require to first search for bootstrap molecules, in the con-
text of metabolic engineering however any heterologous
pathway solution that comprises a compound that is first
consumed before being produced is valid only when the
compound is added to the growth medium. Therefore, in
our study in the context of metabolic engineering, there is
a need to first compute the bootstrap compounds prior to
elementary modes.

The paper is divided as follows. In the Methods sec-
tion we first provide some definitions, then outline our
algorithms to solve the pathway enumeration problem
with both the steady state approach and the topological
approach. The problem of finding and enumerating all
the pathways going from a large source (as for instance
al the metabolites of an organism) to a target chosen by
the user is considered. All the algorithms presented for
the topological approach (with the exception of the
algorithm for enumeration) have polynomial worst-case
running time, the algorithm for enumeration is a poly-
nomial time per output algorithm on some classes of
hypergraphs. We also provide algorithms to determine
supplements, which are metabolites that the organism
cannot synthesize, but which can be added to the
growth media in order to increase the number of viable
pathways. Furthermore, an analysis of pathways contain-
ing supplements allows finding out pathways that con-
tain bootstrap molecules. In the Results and Discussion
section we illustrate our algorithms with the enumera-
tion of the possible pathways to synthesize more than
5000 compounds in E. coli. We “experimentally” probe
the computational complexity of the steady state and
topological approaches for a series of networks of grow-
ing sizes and discuss the theoretical complexity results
of the topological approach, which are provided in
Appendices A and B.
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While we illustrate our two methods for the produc-
tion of heterologous compounds using as a source set
all the endogenous metabolites of E. coli, our methods
can be applied to any chassis organism and more gener-
ally to any source set (for instance a set of nutrients or
a set of abundant currency metabolites).

Methods

In the context of metabolic engineering, metabolic net-
works have been represented as directed graphs (cf. for
instance Cho et al [13]). In such graphs, edges are direc-
ted and correspond to reactions connecting two com-
pounds if one is the product of the other. Directed
graphs can represent monomolecular reactions (one
substrate gives one product), but they are not well sui-
ted to capture more complex reactions. As already dis-
cussed in the background section, when representing
bimolecular reactions, one has to choose which mole-
cules are connected by the edges of the graph and
which ones have to be excluded from the graph because
they are considered co-substrates or co-products. Addi-
tionally, one of the limitations of a model based on a
graph representation is that depending on the criteria
used to identify the co-substrates and co-products in
the reactions, the networks obtained are different.

In the present paper to palliate the limitations of the
directed graph model, we represent networks as directed
hypergraphs. The first examples of modeling through
hypergraphs can be found in [20]. In a hypergraph, each
hyperarc connects a set of vertices, corresponding to
reactants, to a disjoint set of vertices, representing the
products. In our model each hyperarc corresponds to a
reaction that can be catalyzed by an enzyme. It is worth
noticing that hypergraph models have already been used
to find minimal sets of metabolites sufficient to produce
a set of target metabolites [21]. Unfortunately, the algo-
rithms proposed in [21], do not enumerate pathways
and are therefore not directly applicable to our meta-
bolic engineering problem.

Definitions
Definition 1 (Hypergraphs and hyperarcs).

A directed hypergraph is a pair H = (V,E) where V =
{v1, va ..., v} is the set of vertices and E = {ey, es,..., €,,}
is the set of hyperarcs. A hyperarc e; is an ordered pair
e; = (X; Y2) of disjoint subsets of V.

The set X; is also called the tail of e; and the set Y; is
called the head, with reference to the graphical repre-
sentation of arcs (directed edges) and hyperarcs as
arrows.

We denote by X:E — P(V) the application that
given an hyperarc e; returns its tail X(e;) < V.
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Analogously we use Y : E — P(V) for the application
that given a hyperarc returns its head.

Definition 2 (Reactions and networks).

In a metabolic network each vertex corresponds to a
metabolite and each hyperarc corresponds to a reaction.
A metabolic network of m metabolites and n reactions
can be represented with a m x n stoichiometric matrix
S, where the rows correspond to the m metabolites and
the n columns to the reactions. A reaction j is repre-
sented by the column vector S; = (syj,..., smj)T where s;; is
the stoichiometric coefficient of metabolite i in reaction j.
Reactants have negative coefficients and products have
positive coefficients.

Examples of hypergraph, network, and stochiometric
matrix are given in Figure 2A. We notice that the stoi-
chiometric coefficients of the reactions are not taken
into account in the hypergraph representation. We also
notice that the pair (X, Y) is ordered so to make the dis-
tinction between reactants and products. In this repre-
sentation reactions are irreversible. Many biochemical
reactions can be considered as irreversible, since in
organisms the homeostatic equilibrium is often strongly
polarized. Nonetheless, metabolic network may comprise
reversible reactions, and we model these reactions by
introducing both hyperarcs: (X, Y), and (Y, X).

Hyperpaths, a generalization of simple paths in graphs
where cycle free paths going from one vertex to another,
are used to represent pathways. A hyperpath connects a
source set of vertices to a target set of nodes. Two
examples of hyperpaths are given in Figures 2A and 2C.
We remark that in a natural way a set E of hyperarcs
defines a hypergraph ¢ = (U,c gX(e) U U, Y (e), E). By
abuse of the terminology we denote by E the hypergraph
corresponding to the set E of hyperarcs and all the
heads and tails of the hyperarcs in E. The following defi-
nition for hyperpaths is borrowed from Nielsen et al.
[22].

Definition 3 (Hyperpaths).

A hyperpath P going from a source subset Sy, of V to
a target subset Tp of P in a hypergraph H = (V,E) is a
hypergraph Hp = (Vp, Ep) with VP S V, EP € E, such
that there is an ordering F of the hyperarcs EP with the
following properties.

« Vk € {0,..., [FI}, X(Fy) € S U (Ui Y(F))
3 Tp g S’H U (UeEEpY(e))

From the point of view of metabolism, the first condi-
tion corresponds to the requirement that reactants of
reactions participating in the hyperpath can be produced
without the presence of the reaction itself. Hyperpaths
defined in this manner represent a metabolic route from
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the source to the target. According to definition (3) the
hypergraph of Figure 2B with source a is not a hyper-
path because neither reaction R; nor R, can happen
until the other does not start. The definition (3), though
complex, is computationally tractable, meaning that the
time required to determine if a hypergraph is a hyper-
path is proportional to the number of reactions. A poly-
nomial time algorithm to determine if a hypergraph is a
hyperpath is given in [23], the algorithm FindAll pre-
sented below can also be used for that purpose. In fact,
as discussed below, if the set of reactions returned by
FindAll (Hp, Sy) contains all the reactions in Hp, then
Hp is a hyperpath.

The metabolic network described by a hypergraph has
to be as comprehensive as possible, containing every
known enzyme-catalyzed reaction occurring in organ-
isms. We say that a hyperpath produces a set of target
metabolites if it contains all those target elements. A set
of target compounds is said to be reachable from a
given source, or linked to the source, if there is at least
one hyperpath producing the targets.

We are interested in the enumeration of pathways
leading to the production of a desired compound.
Hyperpaths do not generally give the best representation
of pathways because hyperpaths can contain reactions
not necessarily linking the target to the source. Minimal
hyperpaths, cf. definition (4), are an appropriate repre-
sentation of pathways since they contain only the essen-
tial reactions linking the source to the target.

In the definition given below, we say that a hyperpath
P(V,E) is a subset of another hyperpath P'(V/,E') if V
€ V’and E € E’. For instance the hyperpath of Figure
2C is a subset of the one of Figure 2A.

Definition 4 (Minimal Hyperpaths).

A hyperpath (Vp, Ep) with target TP is said to be mini-
mal if it has no proper subsets with the same target.

The target is disconnected from the source if a reac-
tion is removed from a minimal hyperpath. In this sense
minimal hyperpaths cannot be reduced. From a meta-
bolic engineering perspective the concept of minimal
hyperpath is useful as it defines the minimum set of
reactions necessary to produce a target heterologous
compounds, and consequently the minimum set of
enzymes needed to be inserted into the chassis organism
where the compound is going to be produced.

In the following we define B(#, S#;) to be the set of
all molecules linked to the source for a given hyper-
graph #H and source set Sy, . The characterization of
B(H, S1) is the first task to be solved before the enu-
meration. Once this set is known all the minimal hyper-
paths can be enumerated for all the molecules
associated to the vertices in B(H, Sy).



Carbonell et al. BMC Systems Biology 2012, 6:10
http://www.biomedcentral.com/1752-0509/6/10

Page 6 of 18

Ri: v — v + vy

Rao: v9 + v5 — v3 + vg + Ug

Ra: vy — v1 + v3

il = == ==l
|
= O - HOFEO
|

OO =M= OOM

Vo, V3, Vg and Vg.

Figure 2 Reactions, hyperpath, and corresponding stoichiometric matrix. A) A set of reactions (top), the corresponding hypergraph, and
the corresponding stoichiometric matrix (bottom). The hypergraph here represented is a hyperpath from v, and v, (source nodes) to the target
vertex vg. The reactions can be ordered Rs, R,, Ry so that the conditions required by the hyperpath definition (3) are satisfied; B. A hypergraph
that is not a hyperpath: The hypergraph {Ry, R} is not a hyperpath with source g; C) A minimal hyperpath: This hyperpath is a subset of the
hyperpath in Figure 2A and is minimal (both Ry and Rs are necessary to link vg to the source); D) A hypergraph representing a toy metabolic
network: Given v; and v, as sources of the hypergraph above the reachable vertices are vs, v, vg, Vo, Vi3 in light green. v, and v are bootstrap
compounds: the presence of one of them permits its own production. In red the compounds v, and v;; are supplements for the production of

Supplements

Supplements for a target are molecules whose presence
in the source set increases the number of pathways for
target production. Finding supplements is an important
improvement when exploring ways to produce the tar-
get, since they make possible new pathways.

For each target of interest one can look for vertices
that once inserted in Sy, give place to pathways other-
wise impassable. In terms of metabolism we are looking
for the “supplement” molecules, i.e., molecules that once
introduced in the source set permit to find more path-
ways than those otherwise available. We introduce
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below FindSupp, an algorithm that returns the
supplements.

An analysis of pathways containing supplements
allows to find out pathways containing bootstrap mole-
cules, i.e. metabolites that are needed in reactions pro-
ducing compounds afterwards used for the production
of the bootstrap molecules. As a matter of fact, many
pathways can be made viable once bootstrap molecules
become available in the metabolic network (a concept
introduced in [20]). Loosely speaking bootstrap mole-
cules are molecules that cannot be produced by the
reactions belonging to a hyperpath unless they are
already present in the source. Cottret et al [21] stated
that given a source set the existence of a pathway mak-
ing use of bootstrap molecules can be tested in polyno-
mial time. We provide later in this section an algorithm
returning the bootstrap compounds, such algorithm can
be used to determine if a target molecule is connected
to the source through a pathway making use of
bootstraps.

Enumerating pathways using the steady state approach
In steady state, all possible pathways in a metabolic
network are by definition stoichiometrically balanced,
i.e. all metabolites produced from the source set must
be consumed except for those that are target products.
Extreme pathways and elementary modes are two
methods that compute the set of independent non-
decomposable pathways in the network that generate
all feasible steady state solutions in the flux space.
They do not directly enumerate all pathways linking a
source set to a target set of compounds. However, one
can construct stoichiometric matrices where input
fluxes are added to the set of source compounds and
outgoing fluxes are associated to the target and hetero-
logous co-products such that the extreme pathways
and elementary modes enumerated from these
matrices can be used to generate all pathways linking
the source set to the target.

Given a hyperpath Hp = (V,E) of a hypergraph
‘H = (V,E), we can define a set of flux vectors vp for
the hyperpath where components vp; corresponding to
those reactions in the pathway ¢j € Hp are activated:

oy = {gOejer (1)
gj S H\HP

A hyperpath Hp = (V,E) of a hypergraph H = (V,E)
with input source subset Sy; and the target subset Tp is
defined as stoichiometrically balanced if the rows corre-
sponding to each metabolite v; € V that are obtained
from the product of the stoichiometric matrix S and the
associated flux vector v, verify:
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<0 vi € Sy
>0 v; € Tp (2)

0 v; € V\{Sy, Tp}

SVp =

A way to introduce the constraint on input and out-
put metabolites in the previous equation is by adding to
the stoichiometric matrix S additional columns corre-
sponding to input reactions (reactions with no substrate
that produce the source set S ), and output reactions
(reactions with no product that consume the product
metabolites in the hypergraph 7). These auxiliary reac-
tions, even if non-properly balanced in terms of the law
of conservation of mass, are useful in order to define
completely the problem in a compact manner:

Sv=0
v>0veR

3)

Both extreme pathways and elementary modes make
use of this formulation in order to compute the set of
feasible solutions v. Since in our hypergraph definition
all reactions are irreversible, the set of pathways solving
Equation 3 computed by both extreme pathways and
elementary modes are identical (cf. [5]). Furthermore,
solutions in v must contain only positive or null fluxes.

In order to determine all stoichiometrically balanced
heterologous pathways #p that can be inserted into the
chassis organism to produce a target set 7, we need to
constrain the computation of elementary modes only to
those that have non-zero fluxes for heterologous reac-
tions. Efficient solutions to this problem have been con-
sidered in the divide-and-conquer approach [24,25] by
rearranging the constraints in an echelon form so that
the constraints containing only the desired reactions
appear at the bottom. To define the constraints in our
case, we consider first the hypergraph Rr that is
formed only by heterologous reactions. This hypergraph
Ry is the subset of the hypergraph R(V,E) formed by
those hyperedges where at least one vertex V does not
belong to the source set Sz, i.e. those metabolites
endogenous to the chassis organisms. By considering
Rr instead of the full hypergraph R , we are looking
only for biosynthetic pathways involving heterologous
reactions and therefore avoiding cycles internal to the
chassis organism. Therefore, to compute all feasible
steady state heterologous pathways, we reformulate
Equation 2 so that the stoichiometric matrix S is defined
by reactions in Rr; the input is given by all substrates
in the source set Sg NX(Er); and the output by all
products of the reactions in the hypergraph Y(Er).

Finally, from the computed set of solutions v for
Equation 3, we are interested in enumerating all mini-
mal hyperpaths from Sz to the target set 7 on the
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hypergraph given by Rr. According to Definition 4,
minimal hyperpaths for some target T are given by
those cycle-free solutions in v containing only reactions
linking the source to the target. Since any feasible flux
pattern v is a superposition of elementary modes with
non-negative coefficients [26], the set of minimal hyper-
paths for a given target T is a subset of the elementary
modes producing T that are solution of Equation 3.
Namely, any feasible solution generated from the ele-
mentary modes will contain at least as many reactions
as the ones that are in those elementary modes that
form its basis. Therefore no additional minimal hyper-
paths can be generated in this case by superposition of
elementary modes.

Enumerating pathways using the topological approach
The algorithm FindAll that allows to find B(#, S%), the
set of metabolites that can be linked to the source Sy
by a hyperpath. FindAll, by explicitly constructing the
ordered set F in definition (3), provides a proof of the
tractability of the problem of checking if a hypergraph is
a hyperpath. Moreover FindAIlIF permits to prune the
original hypergraph enabling a faster enumeration
algorithm.

As presented below the algorithm Minimize, when
called on the output of FindAll, returns, if exists, a mini-
mal hyperpath linking a given target to the source.
These algorithms are the main components of the algo-
rithm enumerating the pathways FindPath described
next. Then we present FindSupp an algorithm to enu-
merate supplements.

Finding one minimal hyperpath

Let H = (V,E) be the hypergraph representing the set
of metabolic reactions, n = |V|, m = |E| and let Sy; be
the set of source vertices representing the source
metabolites.

The algorithm FindAll returns all the reactions that
can contribute to the production of any element in
B(H,S%), i.e., the set of all compounds that can be
connected to the source. FindAll is a linear algorithm in
the number of vertices, hyperarcs and in the total coor-
dination; the complexity is O(n + m +Z,c |X '(v) |+ |
Y 1(v)|) that is bounded by O(n + m + n - m). Therefore,
such algorithm can be applied to the hypergraph # of
all reactions in order to obtain a pruned sub-hypergraph
H' = (V',E') where the set of vertices V' :=Sy UB,
and the set of edges E’ is the set of reactions returned
by FindAll. In the context of metabolic engineering Fin-
dAll returns all the compounds that can be produced
from a given set of source compounds and reactions.
For instance, using FindAll with all know metabolic
reactions one can determine all the compounds that can
be produced from the metabolites of E. coli.
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Algorithm FindAll (Given a hypergraph 7{ and a
source Sy , returns all the hyperarcs that are part of at
least one hyperpath.)

input:H, Sy
.for all rin H
x(r) < X(r)

. end for

.V <« Sy

. D <« SH

. F <« {J}

. while V = {&}

let i be an element of V'

Ve Vi

10 D« DuUi

11. for all r € H such that i € x(r):

O 0N U W

12. x(r) < x(r) \ i
13. if x(r) = {J}
14. F« {F r}
15. for all j in Y (r) and not in D:
16. Ve VUuj
17. end for
18. end if
19. end for
20. end while
output:

F

Let D be the union of the source set and of the heads
of all the reactions output in F by FindAll. The correct-
ness of the algorithm above is given by the following
claims: every element in D is the target of some hyper-
path or is part of the source, and every vertex in H
that can be reached from the source is in D. For the
first claim we can give a constructive proof by using the
output vector F, the second claim is proved by contra-
diction.

+ The proof of the fact that every element in D is
reachable from the source is given constructively by
the ordered set F returned by the algorithm. In fact
at each step F is a hyperpath. This claim can be
proved by induction on the steps of the algorithm,
each time a hyperarc r is appended to F (line 14) the
tail X(r) is contained in D (hyperpath by inductive
hypothesis) and if a vertex j is added to D (line 10)
it means that it was previously added to V (line 16)
and thus it was in the head Y (E) of some hyperarc
already in the hyperpath.

« The second claim can be proved by contradiction:
if an element of B(#,Sy) were not in D there
would be a hyperpath linking it to the source. In
such hyperpath let consider the first (according to
the order given by the definition) reaction r whose X
(r) belongs to D and such that one of the elements
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of Y (r) does not. Consider among x(r) the last one
that has been inserted into the set V ; after its
removal from X(r) this set becomes empty and the
elements of Y (r) are inserted into V (line 16) and
then in D (line 10), which is a contradiction.

From the above statements follows that each vertex
appearing in a hyperpath having as source Sy, is an ele-
ment of D and every hyperarc is an element of F. Thus
the algorithm FindAll provides an effective pruning of
the original hypergraph: in 4 there is no minimal
hypergraph with source S3; containing hyperarcs not in
UF) or vertices not in B(H, S). The output hyperarcs
are the only ones that can belong to a minimal hyper-
path, and H' = (Sx U (UrY(Fi)), UpFr) is the pruned
hypergraph only containing reachable vertices and
hyperarcs.

Notice that FindAll algorithm as presented above
returns in polynomial time a hyperpath valid for each
target vertex in B(#, S#;). Even though there are more
efficient algorithms for finding a hyperpath for one sin-
gle target, for the sake of simplicity we avoid to intro-
duce here an additional algorithm and just remark that
since FindAll is polynomial, the use of it does not affect
the complexity analysis of the algorithms making use of
its output.

Remark that a minimal hyperpath going to a specific
target can be easily extracted from the hyperpath output
of FindAll. Namely, given a hyperpath P connecting S
to T, it is always possible to find a minimal hyperpath
P’ subset of P. Moreover it can be done in polynomial
time, for instance by using Minimize (P,{0},T,S), the
algorithm introduced below.

Minimize(P, Ry, T,S) is an algorithm that takes as
input a hypergraph P, a hyperpath Ry subset of P, a
target set of vertices T and a source S. If P does not
link 7 to S the empty set is returned, otherwise a
hyperpath contained in P, containing Ry and linking T
to S is returned. In particular, if Ry is empty, the out-
put of Minimize is the minimal hyperpath going from
S to T, provided it exists. Minimize returns a hyper-
path obtained by removing all inessential hyperarcs
except for the ones in Rs In the context of metabolic
engineering, pathways containing a small number of
heterologous reactions are generally preferred, since
they are easier to engineer in the host organism.
Therefore, given two pathways that produce the same
target, where one is subset of the other, the one
requiring the smaller number of heterologous reactions
has to be selected. This is the reason that makes rele-
vant to obtain minimal hyperpaths from generic
hyperpaths.
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Algorithm Minimize (Given a hypergraph P con-
taining Rj; returns either a hyperpath from S to T con-
taining Ry or an empty set if T is not linked to S by P.)

input: P, Ry, T, S

1. F « FindAll(P, S)

2.PP« P
3.if T € U Y (Fp)

4. P’ < {0}

5. else

6. for all rin P

7 if 7 not in Ry

8 F < FindAll(P’\r, S)
9 if TC U Y (F)

10. P« P\r

11. end if

12. end if

13. end for

14. end if

output:

73/

The proof of correctness of this algorithm is simple
and is based on the fact that P’ C P implies
FindAll(P’,S) C FindAll(P,S). If a reaction in P has
not been removed from P’, then any subset of P? not
containing r does not produce the target. The worst-
case time for this algorithm is
O(m-(n+m+)_ pIX(r)|+1Y(r)])). Since X(r) and Y
(r) have bounded values, the algorithm has a quadratic
complexity. Even though faster algorithms can be
designed, here we presented this one because of its con-
ceptual simplicity. Remark that, since Minimize(P, {J}
T, S) returns a minimal hyperpath P’ subset of P if it
exists, then the minimality of a hyperpath P can be
tested by checking whether P’ = P or not.

A related problem to Minimize is the minimal con-
strained hyperpath problem: the problem of finding if a
minimal hyperpath from a given source to a given target,
containing the hyperarcs in Ry exists. Notice that Minimize,
although linked to this problem does not solve it. In fact, if
the output of Minimize is an empty set then there are no
minimal hyperpaths satisfying the constraints; however if
the output is a minimal hyperpath then obviously a mini-
mal constrained hyperpath exists; and finally, if the output
is a non-minimal hyperpath then we do not know if a
minimal hyperpath satisfying the constraints exists or not.

Below we will discuss why we are interested in algo-
rithms for the minimal constrained hyperpath problem,
while in Appendix A.2 we show that in general the pro-
blem is NP-complete (reduction to 3-SAT).

Pathways Enumeration
The basic idea behind the enumeration algorithm pre-
sented below is to introduce an iterative refinement of
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partitions of the space of feasible solutions i.e. of the
space of hyperpaths and in each part to look for a solu-
tion. In our implementation, a part is defined by two
sets of reactions (Rrand R,,) of the original hypergraph.
These sets are used during the enumeration process, Ry
is a set of hyperarcs that must be present in the enum-
erated hyperpath and R, is the set of hyperarcs that
must not be part of the enumerated hyperpath. The
problem of finding a solution in one of the parts is
addressed at each iteration and if a solution is found the
part is divided in finer parts. This process is repeated
until all the minimal hyperpaths have been found.
Enumeration by means of the minimal constrained
hyperpath problem

First we describe informally the enumeration algorithm
through the toy example hypergraph in Figure 2D and
3A, then we outline in Figure 3B a typical run for a
more involved example: liquiritigenin (cf. Figure 1).

A minimal hyperpath P; connecting the node vg to
the source nodes vy, v4 on the hypergraph # of Figure
2D can be obtained by calling Minimize (P’, {&}, {vs},
{vi, v4}) on the hypergraph P’ obtained by
FindAll(H, {vi,va}). The hypergraph P’ is represented
in Figure 3A.

Once P; ={R4,R3} has been obtained, the search
space is divided into three parts:

« the hypergraphs which do not contain Ry,

« the hypergraphs which do contain R4 and do not
contain Rj,

« the hypergraphs which do contain R, and Rs.

The first set does not contain hyperpaths connecting
the target to the source: once the reaction R, is
removed, vg is disconnected from the source. The sec-
ond set contains a solution and thus has to be parti-
tioned. The third set contains only one minimal
pathway (the one consisting of hyperarcs R3, R, high-
lighted in Figure 3A).

The minimal hyperpath in the second set is found by
running FindAll on H\R3 and then Minimize with con-
straint Ry = {R,}. The minimal hyperpath so obtained is
the one only containing hyperarcs Ry, R;. The set of the
hypergraphs defined by (Rr = {R4}, R, = {R3}) is parti-
tioned in two parts defined by new sets of constraints.
The way the partition is done is explained in detail in
algorithm FindPath and gives two non overlapping sets:

« the hypergraphs which do contain R, and do not
contain Rz and R.
« the hypergraphs which do contain R4 and R, and
do not contain Rs.
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The first of these sets does not contain hyperpaths
going to vg: once R3 and R, are removed, node vg is dis-
connected from the source. The second one only con-
tains the second and last minimal hyperpath: the one
consisting of hyperarcs R;, R4. The algorithm here
sketched is based on the fact that all minimal hyper-
paths are found once the problem of finding a minimal
hyperpath has been solved for each part of the partition.
Relaxed hyperpath minimization
The enumeration procedure is performed by the algo-
rithm FindPath, which enumerates all the minimal path-
ways and does not output duplicate hyperpaths.
Precisely FindPath (H , Ry T, Sy ) returns a set of
hyperpaths containing all the minimal hyperpaths in H
connecting T to Sy and containing all the reactions in
Ry FindPath (H , {3}, T, Sy ) returns all the minimal
hyperpaths from the source Sy, to the target 7 in 7 .

A schematic representation of how FindPath works
for the enumeration of the pathways of liquiritigenin is
given in Figure 3B where we represent each call with a
box connected by an arrow to its parent process. For
each call of FindPath either a new hyperpath is found
and then FindPath is executed with new constraints, or
there are no new hyperpaths and the branching process
is stopped. The new constraints sets R’, R, for a new
call of FindPath are obtained by incrementing the sets
Rj R, of the father process. Given an order for the
hyperarcs of the hyperpath P found for the father pro-
cess, the set R, relative to the child process is con-
structed by incrementing R,, by one element r belonging
to P, the set R,’ is constructed by incrementing Ry by
all the hyperarcs coming before r. For each element in
‘P not belonging to R, a child process is called.

FindPath (H , {3}, T, Sy ) returns all the minimal
hyperpaths from the source Sy to the target T'in 7 .
In the context of metabolic engineering FindPath
returns all the metabolic pathways for the production of
the target compounds.

Algorithm FindPath (Enumerate all minimal hyper-
paths from Sy; to the target set T' with constrains Ry on
the hypergraph given by H )

input:

H,Rs T, Sy

1. F < FindAll(% ,Sy )

2. P « Minimize(UFx U Ry Ry T, Spy )

3. En«

4.if P #0

5 En<«P

6 F<FindAll(P, S)

7. for all k in |F|,..., 1}

8 r=Fy

9 if 7 not in Ry :
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{0}
{0}

RjRoR4Ry

Ry Ro R4 Ry
{0} R Ry Ro R R Ry
{@} {(ZJ} R1RgaR5Rg RiRaR4R10

R4Rs R4Rg Rz Rio

Ri1Ro 1R Rs RiRo R4
{@} {(’]} Ry RaR4R11
R7Ri0R11
R, RiRa R4

Ry {0}

D

Figure 3 The resolution of the enumeration problem. A) The process of enumeration: The hyperpath given by running findAll on the
hypergraph of Figure 2D. This hyperpath is not minimal as can be verified by running Minimize without constraints (i.e. Ry = {&}). Two minimal
hypergraphs connect vg to the source nodes v;, v4: the one containing hyperarcs Ry, R; and the one highlighted in the figure containing only
the hyperarcs Rs, Ry; B) Scheme of resolution of the enumeration problem for biosynthesis of liquiritigenin whose hypergraph is represented in
Figure 1. Each node in the scheme corresponds to a call to FindPath and contains the constraint sets Ry and R, (see left bottom box), and the
minimal hyperpath P corresponding to the given constraints. FindPath iteratively calls itself, the structure obtained is a rooted tree where each
node represents a call to FindPath, and each call is characterized by the sets Rs and R,. In particular there are no constraints on the pathway
searched at the root node, corresponding to the first call to FindPath, this fact is expressed by having empty Ry and R,. The hyperpath found is
Ry, Ry, R4, Ry. For each reaction in the hyperpath, a new call to FindPath is done, this time with the constraints induced by the hyperpath
solution of the parent node. Processes that do not return hyperpaths (P = {@#}) are not followed by calls to children processes, while the
processes that retumn one hyperpath PP have unconstrained reactions P\R¢ and are followed by as many children processes as unconstrained
reactions. The children processes have as set of reactions that cannot belong to the returned pathway R, the same as the father augmented by
one reaction from the unconstrained set of the hyperpath P returned by the father process, while the set of reactions required to belong to
the pathway R; " is given by the ones of the father augmented by all the reactions preceding the one added to R, to get R,. Consider for
instance the process giving as pathway P = {R1, Ry, Rs, Rg} it contains two reactions not in Rr: Rs and Ry so its two children processes have
R, given by R, U Rs and R4 U Ry and Ry is given by the one of the father: {R;, R,} union once with {&J} and once with Rs: the only unconstrained
reaction preceding Ry in the pathway P.
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10. En < {En, FindPath(H\r, Ry, T, S3;)}
11. Rf(— Rf Ur
12. end if
13. end for
14. end if
output:
En

The loop at line 7 of FindPath is done according to
the order given by line 6 where the hyperarcs are
ordered so that at least one of the head vertices of each
hyperarc is a tail vertex of some previous reaction. Such
an ordering is always possible since P is a hyperpath.
As said above and illustrated in Figure 3B, FindPath is
an algorithm that iteratively calls itself, see line 10. Note
that even if R, is not explicitly defined in FindPath, it is
constructed implicitly when at line 10 of FindPath is
called on the smaller graph H\r.

Let us note that the output of the enumeration is not
always composed of minimal hyperpaths. This is due to
the fact that the algorithm Minimize while running in
polynomial time can return a non-minimal hyperpath.
An algorithm always returning minimal hyperpaths can-
not be polynomial since the problem of finding a mini-
mal hyperpath containing a set Ry of hyperarcs is an
NP-complete problem as showed in Appendix A.2.
However, in many practical instances (for instance when
hyperarcs only have one head node), the algorithm
Minimize returns a minimal constrained hyperpath. As
a matter of fact, for all the enumeration studies we have
so far carried out, we observed that the output obtained
by Minimize when called by the algorithm FindPath
introduced above was always a minimal hyperpath.
Nonetheless, a characterization of hard instances of the
minimal constrained hyperpath problem is given in
Appendix.

Supplements Enumeration

Provided a given metabolic network and a set of source
compounds (e.g. a set of compounds in the growth
media, a set of endogenous metabolites of a species) it
may not be possible to link all the metabolites of the
network to the source set. When a target compound is
not accessible from the source set, one can consider the
possibility of inserting into the metabolism of the organ-
ism some precursors so that the target becomes reach-
able. In practice such a task can be carried out through
the enrichment of the growth media. More generally,
the insertion of supplements can be used even when the
target compound is reachable in order to access to new
pathways for the production of the target.

Let a supplement for a target 7' be any compound
i ¢ B(#H,Sy) that is involved as reactant in at least one
minimal hyperpath going from a superset of Sy Ui to
the target 7. Below we give the algorithm FindSupp
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finding the supplements for the production of a given
target. In Figure 2D supplements are highlighted in red.
Therefore, the process of finding supplements is use-ful
as a general strategy in metabolic engineering in order
to determine which metabolites might be part of the
metabolism that produces a given target. Algorithm
FindSupp (Find supplements for the production of the
compounds in 7, from the source Sy of hypergraph
H)

input:

H, Sy, T (list of compounds to produce)

1. WishList <~ T

2. D « {J}

3. while WishList \ D = {J}
let i be an element of WishList \ D
D« Dui
Aux < {J}
for all reactions r with i € Y (r)

Aux < Aux U (X(r)\(Sy U D))
end for

10. WishList < WishList U Aux

11. end while

12. F < FindAll(#H, Sy)

13. D < D\Sy U (UyY(Fr))

output:

D
Bootstraps
Bootstrap molecules relative to a source Sy are the
molecules that cannot be produced by a hyperpath with
source Sy; unless they are already present in the media.
An example of bootstrap nodes are nodes v,, v3 of Fig-
ure 2D. In this section we give an algorithm finding in
polynomial time all the bootstraps of a hypergraph H
with source vertices Sy . Bootstraps are special kind of
supplement, if at any step of a pathway, a heterologous
metabolite is needed as a substrate but has not yet been
produced from the source set, then this metabolite is a
bootstrap and must be added in the growth media for
the reaction to take place, and for the pathway to be a
valid pathway. The algorithm given below enables one
to detect bootstraps prior enumerating pathways run-
ning the FindPath algorithm.

Algorithm FindBootstraps (Given a hypergraph #
and a source Sy, returns the set B of bootstrap nodes)

input: H, Sy

1. F<FindAll(H, Sy)

2. D « Sy U (U Y(Fr))

3. H' < {4}

4. for all r in H

5. 7« X \D,Y () \D)
6. ifY ()= {T):
7
8

0 ® N oG

H <~ H UTr
end if
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9. end for

10. while exists v in U,epy Y (1)\Urer X(r)
11. for all 7 containing v:

12. 7 <« (X(r), Y(r) \ v)

13. if (Y(r) =1{<}) or (ve X()):

14. H <~ H\T
15. end if
16. end for

17. end while

18. B = Uren Y()

output:

B

The FindBootstraps algorithm is linear in the number
of vertices, hyperarcs and in the total coordination.
Remark that the set U,c3Y(r") obtained in line 18 is
equal to UrepX(r'). In fact the bootstrap vertices
b(H,S%) constitute the largest set of vertices not
reachable from the source and such that each element
of the set belongs to the head of at least one reaction
whose tail only contains vertices in B(H,S%) or in
b(H,S2). Notice that the set of bootstrap vertices in a
hypergraph # only depends on the source vertices and
does not depend on the target.

Results and Discussion

To evaluate the performance of our topological
approach (e.g. algorithm FindPath), we have compared
running times of this approach with the running times
of the steady state approach presented in the Methods
section. All our tests were run on a Mac Pro server 2 x
2.66 Ghz Quad-Core Intel Xeon, 16 GB. All the algo-
rithms of the topological approach were implemented in
Python. For the steady state approach we used two soft-
ware products, one computing elementary modes and
the other extreme pathways. Elementary modes were
computed by using the MATLAB interface to the Java
implementation of efmtool Version 4.7.1 [7]. Extreme
pathways were computed by using the Mac OSX version
of the ExPA program [6]. The running time comparison
test was performed for different random samples of the
hypergraph # constructed from the KEGG database
[27]. E. coli was chosen as source organism. The hyper-
graph 7 was composed of 6542 metabolites connected
by 8392 reactions including 971 metabolites endogenous
to E. coli and 5571 heterologous compounds. Each
sampled hypergraph #; was built by randomly sampling
a given fraction of the total reactions in the hypergraph
H . Tests for each sampling fraction were repeated 10
times. In the case of elementary modes, we were able to
run the test only up to 50% sampling of the full meta-
bolic network, due to memory constraints in MATLAB.
For extreme pathways, the test was run up to 85% due
again to memory constraints as well. Prior to
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enumerating pathways with elementary modes, extreme
pathways or the direct algorithm, bootstraps were iden-
tified by using the algorithm FindBootstraps defined in
Methods and added to the growth media.

The observed trend is consistent in the three cases, as
it is shown in Figure 4. For the network composed of all
6542 metabolites and 8392 reactions, there are 23564
pathways connecting 2338 out of 5571 heterologous
metabolites to the source. This relative low number of
pathways producing heterologous compounds is related
to the fact that heterologous maps usually show a
degree of hierarchy higher than the one observed in
native metabolic networks such as central metabolism (a
comparison is provided in supplementary Additional file
1, Figure S1). It is indeed not surprising to find the
same number of extreme pathways and elementary
modes as all reactions in our networks are irreversible.
In the case of FindPath, the fact that the topological
approach does not take stoichiometry into account
might produce some inconsistent pathways. Checking
that a given pathway is stoichiometrically balanced can
be done using linear programming [28]. In the context
of metabolic engineering (i.e. enumerating pathways
between native metabolites and heterologous targets) we
found only few inconsistent pathways (less than 1% of
the 23564 enumerated pathways). These pathways are
eliminated after enumeration by our ranking function as
one of the criteria to rank pathways is to solve the
steady state equations [1]. Once unbalanced pathways
were removed from the list of enumerated pathways, we
obtained the same pathways as through the calculation
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o efmtool
0 FindPath
o No. of pathways )
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Figure 4 Run times per output by using FindPath,
elementary modes (efmtool), and extreme pathways (ExPA).
The average total number of pathways for each fraction of the
network is shown in gray.
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of elementary modes. These results are consistent with
the given definitions of the algorithms. In a forthcoming
paper, we plan to generalize them into a formal proof.

We also find that FindPath has the fastest execution
time, the algorithm required less than 5 min to compute
the full network. Elementary modes has an execution
time approximately 10-fold slower than FindPath. The
computation of extreme pathways, in turn, is the slowest
one, being between 10? ~ 10%-fold slower than FindPath.
The execution times are on average of 0.0136 + 0.0051 s
per output with the FindPath algorithm, of 0.218 +
0.042 s with elementary modes, and of 2.84 + 1.24 s
with extreme pathways. The observed execution times
mean that for the compound with the highest number
of pathways in our tests, the anti-diabetic drug acarbose
containing 1513 pathways, enumerating the pathways
with elementary modes takes more than 329.83 seconds,
while it can be computed in 20.58 seconds with Find-
Path. We have measured running times per output and
memory usage as function of input size and output size
(see Table 1 and Additional file 2, Figure S2). In all
cases we found linear growth O(n) for both input size
and output size. In the case of running times, FindPath
and efmtool have running times per output approxi-
mately constant in function of the size of the input stoi-
chiometric matrix S of 3.1 x 10> and 1.6 x 107"
seconds, respectively, being ExPA the less efficient code
with a constant time of 4.2 x 10" seconds and a linear
growth of 1.6 x 10”7 seconds per input. Similar values
were obtained depending on the size of the output,
although the scaling in this case for ExPA was of 5.7 x
103 seconds per output. Regarding memory usage,
ExPA and FindPath are less demanding, especially for
output size, with linear growths of 3.9 and 54 kB per
output, respectively, while efmtool required significantly
more memory allocation, 3.3 x 10* kB per output.

To the best of our knowledge, the computational
complexity of enumerating elementary modes on net-
works comprising irreversible reactions is up-to-date
unknown [28]. In Appendix A.2 we prove that enumer-
ating minimal pathway is an NP-complete problem
(reduction to 3-SAT) but as examplified in Appendix B

Table 1 Performance comparisons

Page 14 of 18

the hard instances are rather rare and obviously none of
these hard instances were found in our running tests as
all pathways returned by FindPath were indeed minimal
pathways.

To further probe the computational complexity of
FindPath we computed distribution of the run time for
each of the 2338 heterologous targets that are linked
to E. coli. As shown in Figure 5, the distribution is
exponentially distributed, the average run time is thus
finite. Examples of pathway enumeration for heterolo-
gous compounds with therapeutical applications were
provided in our previous methodology study about
pathway ranking [1] for penicillin N and taxol (see also
Additional file 4, Figure S5 and S6). These two exam-
ples contained a relative low level of combinatorial
complexity, with a maximum number of 14 different
pathways producing penicillin N. The combinatorial
complexity of enumerating all putative biosynthetic
routes producing a target compound, however, might
become considerably higher than in these two previous
examples (cf. Figure 2 in [1] where more than 10000
pathways can be found between tyrosine and choris-
mate). Further examples are those involved in the bio-
synthetic pathways for plant steroids leading to
brassinolide, where 8 pathways can be used to produce
campesterol, one of the initial precursors. The number
of pathways grows as we proceed downstream going
up to 40 for teasterone, and to 224 for typhasterol.
Finally, the number of pathways for the end products,
castasterone and brassinolide is of 328. This example
illustrates how the complexity of pathways enumera-
tion can grow with the number of intermediates
involved in the synthesis of the final product. Since
FindPath algorithm has been designed with the aim to
enumerate pathways in metabolic engineering applica-
tions, it does not directly address other general meta-
bolic network analysis problems like finding shortest
paths between two compounds of endogenous path-
ways in central metabolisms. Indeed, FindPath does
not enumerate pathways comprising compounds (boot-
straps) that are consumed before being produced
unless they were added as supplement in the growth

Code Run time per output [s] Memory use [kB]
Size of input S [n x m] FindPath 31 % 107 - 1.1 x 10% 42107 + 15 x 10
efmtool 16X 10" + 6.7 x 10% 20 % 10" + 96 x 102
ExPA 42 %107 + 16 x 107x 33 %107 + 1.1 x 10
Size of output [no. of pathways] FindPath 32 % 107 - 40 x 10°x 416 x 107" + 54 x 10"'x
efmtool 15 %107 + 23 x 10% 10 x 107 + 33 x 10"
ExPA 25 % 107 + 57 x 103 32 %107 + 39 x 10"%

Performance of the codes FindPath, efmtool and Expa in terms of run time per output and memory use in function of size of input stoichiometric matrix S

and size of output (number of pathways).
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Figure 5 Cumulative probability distribution function of the

run time per pathway. The probability that a randomly selected

target requires a solution time t > T is represented and its

asymptotic behavior for large T appears to be exponential.

medium (cf. in Additional file 3 an example of pathway
enumeration with FindPath using bootstrap
compounds).

Another aspect of pathway design is the definition of a
cost function that estimates limiting effects on produc-
tion efficiency by multiple factors associated with
genetic and metabolic engineering of the pathway, such
as gene heterogeneity, metabolite toxicity, or steady-
state fluxes. In order to facilitate the designer in the
selection of the best synthetic pathways to be implemen-
ted each hyperpath enumerated by our FindPath algo-
rithm is ranked depending on this cost estimation. Once
a cost function to minimize is introduced, the search for
an optimal pathway can be formulated as a shortest
path problem. The shortest path problem for weighted
graphs consists of finding a path going from a given
source vertex to a given target vertex while minimizing
a cost function given by the sum of the costs of the arcs
involved in the path. In order to define a shortest-hyper-
path problem we need a definition of cost for hyper-
paths in a weighted hypergraph (i.e. a hypergraph whose
hyperarcs have associated a non-negative real number
representing their cost). A natural generalization of the
cost function for paths in graphs to hypergraphs is the
sum of the costs of the hyperarcs contained in the
hyperpath. If on the one hand this generalization seems
to be natural, on the other hand the two problems have,
however, not the same complexity. In fact the shortest-
hyperpath problem with this cost function is known to
be an NP-hard problem (see Appendix A.1).

The reason why the algorithms commonly used for
graphs cannot be easily adapted for hypergraphs is that
given the costs W(P,a;) for the hyperpaths A; C P
leading to the vertices 4, tails of a hyperarc e; whose
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cost is w;, then the cost of the hyperpath containing all
the hyperarcs in U;A; and e; is not equal to
wj + Y ; W(P, a;) if the overlap of the hyperpaths A; is
non trivial.

Provided an additive cost function as defined in [23],
finding the shortest hyperpath can be done in polyno-
mial time by an algorithm of complexity O(m - (n + In
m)) given in [23], which finds the shortest hyperpath in
B-hyperpaths. In fact, this algorithm does apply to mini-
mal hyperpaths given in definition (4).

Generally speaking, the strategy we used in the enu-
meration algorithm (iterative partition of the space of
feasible solutions) is often used to solve the problem of
finding the first k solutions of a combinatorial problem,
but it cannot be extended to the k-shortest problem on
hypergraphs not even with an additive cost function (cf.
definition in Appendix A.1l), since when splitting the
problem into a constrained part and a free one (by
using the sets R, and Ry ) we get a problem that is
known to be NP-hard (see the proof in [29] where an
algorithm is given for the k-shortest hyperpath on
hypergraphs whose hyperarcs have only one head
vertex).

Therefore, the k-shortest path problem might be sol-
vable efficiently if one is able to develop a specific cost
function making the problem tractable. However such
an artifact cost function may not be necessarily appro-
priate to practical problems, such as the production of
heterologous targets using metabolic engineering. As an
alternative we have proposed in this paper an enumera-
tion algorithm, which systematically enumerates all
pathways linking source compounds to target com-
pounds. In all the cases that we have so far processed
for metabolic networks, our algorithm runs in polyno-
mial time per output, and therefore pathways can be
ranked by the designer based on their own user-defined
cost functions.

Conclusions

In summary, the methods presented in this paper pro-
vide metabolic engineers with powerful tools that extend
the toolbox for heterologous biosynthetic pathway
design. Besides pathway enumeration of biosynthetic
routes for a given target product, our methods have sev-
eral other possible applications. For instance, they can
be used in combination with gene deletion strategies in
order to determine pathway manipulations leading to
overproduction of the target compound. Another appli-
cation is in biodegradation and bioremediation, where
our algorithms would need to be slightly modified in
order to reverse the pathway search so that it can iden-
tify degradation routes for a given compound, while the
underlying structure of the algorithms remains still
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valid. Finally beyond metabolism, our algorithms could
also be utilized in the context of chemical synthesis to
enumerate all the possible routes linking a target mole-
cule to a source set of starting reactants, enabling the
search for the best routes in terms of production costs.

Availability and requirements
A web server is available: http://bioretrosynth.issb.geno-
pole.fr/tools/metahype See details in Additional file 4.

Appendix A Reduction proofs for the shortest
hyperpath problem and the minimal constrained
hyperpath problem

A.1 Shortest hyperpath Problem

In [30] a reduction of the shortest-hyperpath problem to
Minimum Set Cover (MC) is given. We have to adapt
the proof to our case for two reasons: the definition of
directed hypergraph that was used is more restrictive
(they only admit hyperarcs e; such that |Y (e;)| = 1) and
the hyperpath was ill-defined. In fact the given definition
by these authors does not permit to say if some hyper-
graphs (as the one in Figure 2C) are also hyperpaths or
not. In other words their definition is ambiguous: does
not permit to determine the nature of all the directed
hypergraphs and thus can be completed in several ways.

Nonetheless the proof of NP-hardness they gave is
valid for our more general hypergraphs and minimal
hyperpaths because the set of directed hypergraphs
employed in the reduction proof in [S1] is a sub-ensem-
ble of the directed hypergraphs we defined above in the
Definitions section and all the hypergraphs employed
for the reduction are well defined as hyperpaths, inde-
pendently of the way the incomplete definition they
gave is completed. Since our definition is a way to com-
plete the definition in [S1], then the two definitions
agree on the set of hypergraphs employed for the
reduction.

From these facts follows that the shortest hyperpath
problem is an NP-hard problem. And, in particular, if
the weights on hyperarc are non-negative, since hyper-
paths always contain at least one minimal hyperpath,
the shortest minimal hyperpath problem is NP-hard too.
Additive cost functions
The reason why the algorithms commonly used for the
shortest path problem on graphs cannot be easily
adapted for hypergraphs is that given the costs
W(P, a;) for the hyperpaths A; C P leading to the ver-
tices a;, tails of a hyperarc e; whose cost is w;, then the
cost of the hyperpath containing all the hyperarcs in
UiA; and e; is not equal to wj+ ) ; W(P, a;) if the
overlap of the hyperpaths A4; is non trivial.

In order to define a shortest path problem that can be
solved polynomially by a variant of Dijkstra algorithm,
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the additive cost functions have been introduced in [23]
for the B-hyperpaths. We adapt below the notion of
“additive” cost function for hyperpaths. A cost function
W(P,x) returning the cost for reaching the vertex x
with the hyperpath P starting from a source S whose
elements s € S have W(s):= 0 is additive if W (x) is the
minimum over all the arcs e, € P whose head contains
x of e, + fIW,;) where W;:= W(P,i) are the costs for
reaching the tail vertices i of e, in P, fis an increasing
monotone function of its argument and AW;) = W; Vi.
Remark that the cost of a hyperpath determined with an
additive cost function in general is not given by the sum
of the costs of the hyperarcs.

A.2 Minimal Constrained Hyperpath Problem

Consider a 3-SAT instance concerning n variables o;
and m clauses X; consisting of the problem of deciding
if there exists an assignment of Boolean values to the o;
such that all the clauses are satisfied. For each boolean
variable o; contained in at least one clause introduce
one hyperarc ¢; with the head of each ¢; having two ver-
tices Y(g;) = {v;,, v.}. For each clause X; consider a ver-
tex v; and seven hyperarcs (each one corresponding to
boolean assignment of the three variables satisfying the
clause Xj). A boolean assignment is a triple a;, a,, as of
boolean values. Let these hyperarcs be y;1,..., ¢477 and let
the head Y(u;x) of a hyperarc uj; corresponding to the
combination a,, a,, az of the boolean variables oj;, 0},
0j3 be Y(uj) = Vj1a1, Vj2a2s Vjzas, v} Now let the tails of
each hyperarc introduced be connected to the source
nodes. And let consider a node T being the product of
the reaction R having as substrates the vertices v; and
the heads {v;,, v;.} of the hyperarcs ¢;.

Given the hypergraph described above (whose size is
linear in the size of the underlying 3-SAT problem) con-
sider the minimal constrained hyperpath problem where
all the hyperarcs ¢; are mandatory, and the target is 7.

A solution of this problem gives in linear time a solu-
tion for the underlying SAT problem, which makes the
problem of minimal constrained hyperpath an NP-com-
plete problem. In fact, given a minimal hyperpath M,
solution of this problem, for each i consider v} the only
one of the two head vertices {v;,, v,.} belonging to the
head of one or more of the y arc in M (only one of
the two vertices can belong to the head of a y hyperarc
in M because otherwise the hyperarc ¢; would be
superfluous). The boolean assignments o; = V] are a
solution of the 3-SAT problem and, inversely if a solu-
tion of the 3-SAT problem exists then a minimal path-
way satisfying the constraints exists and is the one
obtained using only one of the hyperarcs for each X;
among the ones whose head only contains v; and ver-
tices ;.
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In Additional file 5, Figure S8 for simplicity we con-
sider the reduction of a single-clause satisfaction pro-
blem to finding if a minimal hyperpath satisfying the
constraints exists. There exist seven minimal hyperpaths
connecting the target vertices to the source and satisfy-
ing the constraint that ¢;, &5, €3 are parts of the hyper-
path. Each solution corresponds to a valid boolean
assignment of the variables o3, 0y, 03.

Appendix B Hard instances of minimal
constrained hyperpath problem

On many hypergraphs the algorithm enumerating the
pathways only returns minimal hyperpaths, this is the
case for the metabolic networks that we analyzed in the
main sections of this paper. In this section we give a
characterization of the hypergraphs where the algorithm
Minimize solves the minimal constrained hyperpath pro-
blem, characterizing these instances helps to individuate
which hypergraphs are expected to give an output only
containing minimal hyperpaths.

Let Y(Ry) be the set of all the metabolites produced by
reactions in R; the mandatory reactions:
Y(Rf) := Urer, Y(r). Given a hypergraph 7 and the sets
R; R, we say that the well-separation condition holds if
for every reaction 7 € H\(Rf UR;) the set Y(r) of pro-
ducts of r either is a subset of Y(Ry) or does not contain
elements of Y(Ry). If the well-separation condition holds
for a hypergraph 7{ with constrained reactions Rj the
algorithm Minimize returns a minimal hyperpath solving
the minimal constrained hyperpath problem if a solution
exists.

The well-separation condition holds for every choice
of Ry in a hypergraph whose reactions have one only
product, as the hypergraphs defined in [29]. If on the
one hand, this condition can appear too constraining,
on the other hand it can be generalized to larger sets of
hypergraphs. For instance, the algorithm Minimize
returns a minimal hyperpath solving the minimal con-
strained hyperpath problem even if the well-separation
condition holds on the pruned graphs obtained by keep-
ing from the original hypergraph only the reactions
belonging at least to one hyperpath linking the target to
the source and only the nodes being tail of such
reactions.

Examples of hard instances can be found among the
ones used for the proof of NP-completeness. In general,
hard instances 7 of the enumeration problem have to
violate the condition of well-separation for same choice
of Rf CH, in order that the corresponding minimal
constrained hyperpath problem becomes hard. This hap-
pens if several compounds are products of more than
one reaction producing more than one compound.
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This is the case for nested networks as the one in
Additional file 6, Figure S9. While the given network is
small enough to be solvable by hand, it contains never-
theless the principal ingredients of complexity that
would asymptotically make harder the problem as the
size of the instances grows.

Finding one minimal hyperpaths leading to the pro-
duction of vg is a simple problem, but finding new ones
gets more and more involved. This is a consequence of
the fact that the nodes vy, v,, v3, 4, V5 can be produced
by different choices of the reactions R;, Ry, R3, Ry, Rs
and each of these reaction has more of one product sus-
ceptible to participate to the production of the target.

Additional material

Additional file 1: Figure S1. Distribution of graph hierarchies (Butts, C J
Stat Soft, 24:1-50, 2008) in heterologous metabolic networks (0.169 +
0.11) in comparison with the graph hierarchy of central (0.032),
nucleotide (0.027), lipid (0.051), and amino acid (0.030) metabolic
networks in E. coli.

Additional file 2: Figure S2. Performance comparisons for FindPath,
ExPA and efmtools for run time per output and memory use in
function of size of input and size of output.

Additional file 3: An example of pathway enumeration with
bootstraps. An example of pathways enumeration with Findpath
using bootstraps.

Additional file 4: Availability and requirements. Description of the
available MetaHype web server for running the algorithms for KEGG
compounds.

Additional file 5: Figure S8. Minimal constrained hyperpath problem
reduction of a 3-SAT formula.

Additional file 6: Figure S9. Instance of minimal constrained hyperpath
problem.
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