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Abstract

Background: Cell-to-cell variability in protein expression can be large, and its propagation through signaling
networks affects biological outcomes. Here, we apply deterministic and probabilistic models and biochemical
measurements to study how network topologies and cell-to-cell protein abundance variations interact to shape
signaling responses.

Results: We observe bimodal distributions of extracellular signal-regulated kinase (ERK) responses to epidermal
growth factor (EGF) stimulation, which are generally thought to indicate bistable or ultrasensitive signaling behavior
in single cells. Surprisingly, we find that a simple MAPK/ERK-cascade model with negative feedback that displays
graded, analog ERK responses at a single cell level can explain the experimentally observed bimodality at the cell
population level. Model analysis suggests that a conversion of graded input–output responses in single cells to
digital responses at the population level is caused by a broad distribution of ERK pathway activation thresholds
brought about by cell-to-cell variability in protein expression.

Conclusions: Our results show that bimodal signaling response distributions do not necessarily imply digital
(ultrasensitive or bistable) single cell signaling, and the interplay between protein expression noise and network
topologies can bring about digital population responses from analog single cell dose responses. Thus, cells can
retain the benefits of robustness arising from negative feedback, while simultaneously generating population-level
on/off responses that are thought to be critical for regulating cell fate decisions.
Background
Development, growth and homeostasis of multi-cellular
organisms depend on the ability of individual cells to
convert noisy, analog signals into clear, yes-or-no cell
fate decisions, such as apoptosis, proliferation and differ-
entiation. One way that cells make such decisions is
through the use of signal transduction systems that sense
the strength of an analog input signal, and then convert it
into one of several distinct activity states, such as “on” or
“off” output states of highly ultrasensitive or bistable sys-
tems [1-3]. For example, various mitogen concentrations
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can cause bistable activation of cyclin-dependent kinases to
drive cell cycle transition decisions [4-6]. Theoretical stud-
ies have shown that signaling networks containing positive
or double negative feedback loops [3], opposing modifica-
tion enzymes exhibiting saturation kinetics [1] and multi-
site modification cycles [2,7] can exhibit digital (bistable or
ultrasensitive) behavior. However, not all networks that
contain such motifs will necessarily exhibit digital behavior;
such behavior arises from the cell’s precise tuning of quanti-
tative, spatiotemporal aspects of the network. Indeed, the
signal transduction network connecting epidermal growth
factor (EGF) to activation of extracellular signal-regulated
kinase 1/2 (ERK) contains many elements that potentially
can lead to switch-like behavior. However, previous single
cell studies in different mammalian cell lines have reported
both graded [8,9] and “all-or-nothing” [10] EGF-induced
ERK activation responses. One determinant of whether
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signaling is graded or switch-like is the spatial localization
of signal processing proteins [11].
Under idealized conditions of cell-to-cell homogeneity,

experimental techniques such as immunoblotting that
measure average population responses may be able to
detect all-or-none signaling responses, as long as the cell-
to-cell variability in response activation thresholds are
negligible [12]. However, it is becoming clear that the fun-
damental processes of transcription and translation are in-
herently stochastic, and give rise to significant cell-to-cell
variability in protein levels [13-20]. The primary stochastic
factors are (i) the rate of transcription, which is burst-like
due to the low number (two) of genes for a particular pro-
tein in a cell [21,22] and (ii) the number of proteins pro-
duced per mRNA, which is random due to competition
between ribosomes and RNase for the mRNA [13,23,24].
Protein degradation also contributes to expression noise,
but usually to a lesser extent, since protein copy numbers
are typically large enough to dampen the comparatively
small stochastic fluctuations in degradation rate. Thus,
even genetically identical cells show substantial variations
in protein and mRNA abundance, and as a result, may
also show differences in their signaling responses [25]. Be-
cause of such heterogeneity in protein abundance, po-
pulation average measurements are not sufficient for
investigating “all-or-nothing” responses; single-cell meas-
urement techniques capable of capturing the dynamics of
digital signal transduction are needed [12].
Here, we use flow cytometry to measure EGF-induced,

single-cell ERK activation responses in a HEK293 cell
population. We observe bimodal response distributions
in cell populations that are usually thought to indicate
switch-like behavior in single cells. Surprisingly, an ERK
cascade signaling model incorporating negative feedback
and a graded, analog single cell dose response is shown
to be consistent with the observed population responses.
Our model analysis suggests that such a conversion of
analog responses in single cells to digital responses at
the population level is due to protein abundance vari-
ability, which gives rise to a broad distribution of ERK
pathway activation thresholds and RasGTP levels. Thus,
bimodal response distributions do not necessarily imply
digital single cell signaling; such distributions can arise
from the interplay between protein expression noise and
negative feedback-mediated, analog single-cell responses.

Results
Analyses of ERK responses to EGF in individual cells and
populations
We used a flow cytometry-based phosphorylation assay
(FCPA) [26] to determine the kinetics and dose response
of ERK activation by EGF in HEK293 cells. We show that
population averages obtained from FCPA results corres-
pond well to traditional Western blot measurements of
activated (dually phosphorylated) ppERK levels in cell
populations (Additional file 1: Figure S1). However, the
FCPA also reveals how individual cells contribute to this
collective population response (Figure 1A-D; Additional
file 1: Figure S2). The increase in mean values of ppERK
was dose-dependent after two minutes of EGF stimulation,
suggesting that analog signaling has occurred in individual
cells. However, a fraction of cells contain ppERK levels
similar to those of the basal state. We refer to this feature
of the distribution as a shoulder. Although the height of
this shoulder decreases with increasing EGF dose, its pos-
ition remains unchanged, indicating a dose-dependent
fraction of cells failing to activate ERK. At five minutes
after EGF stimulation, the ppERK distribution is unam-
biguously bimodal, implying digital “on-off” behavior.
Higher EGF doses increase the fraction of cells with high
ppERK (”ERK-on”) at the expense of the “ERK-off” popula-
tion. Thus, in a dose-dependent manner, EGF increases
the probability that a cell will have ERK turned on. At later
time points, a bimodal distribution persists at some EGF
doses, while data from other doses show “shouldering”
patterns similar to the behavior at 2 minutes. Thus, the
EGF-induced ERK response on the population level is
complex consisting of both analog and digital elements.
Next, we investigated how cell-to-cell variability in total

ERK abundance affects the ppERK responses. Measure-
ments of the total ERK distribution by flow cytometry, as
expected, revealed substantial cell-to-cell variability in
total ERK levels (Figure 1E). The data are well-
approximated by a gamma distribution, which has been
postulated by others to be a good representation of cell-
to-cell variability in protein levels (Figure 1E-green line)
[22,27-31]. We then stimulated cells with 0.1 and 1 nM
EGF for 5 minutes and measured both ppERK and ERK
levels simultaneously (Figures 1F-I). Normalizing the
ppERK levels by the amount of total ERK in each individ-
ual cell does not change the variance of “ERK-off” popula-
tion (Figures 1F-G—compare green to black lines). This is
most likely because measurement variability is dominant
at these low ppERK levels, and normalizing by total ERK
levels does not correct for measurement variability. Nor-
malizing the ppERK levels by total ERK levels does reduce
the variability of the “ERK-on” population, but does not
change the fraction of cells in the “ERK-on” and “ERK-off”
populations (Figures 1F-G). This assertion is reinforced by
the fact that ppERK levels in both the “ERK-off” and
“ERK-on” populations span the entire spectrum of total
ERK levels (Figures 1H-I). Moreover, there is significant
positive correlation between total ERK and ppERK levels in
both the ERK-off and ERK-on populations (Figures 1H-I).
Thus, although cell-to-cell variability in ERK abundance
contributes to ppERK response variability, it does not con-
trol bimodality, raising the question of what other factors
contribute to the observed bimodality.



Figure 1 Cell population dose and dynamic response of ppERK to EGF. A-D. Each panel corresponds to a fixed time after EGF stimulations:
2 min (A), 5 min (B), 10 min (C) and 30 min (D). In each panel, the different colors correspond to different EGF doses as indicated by the visual
legend. Each distribution is compiled from 10,000 individual HEK293 cell responses as measured by flow cytometry, and is representative of
between three and six independent experiments. Events were gated based on forward and side scatter to exclude debris, dead cells, and cell
clusters. The x-axis is the magnitude of activated ERK (ppERK) in arbitrary fluorescence units, and the y-axis is the frequency of observing a
particular level of fluorescence in a cell. E. Total ERK abundance data. The best-fit gamma distribution curve is depicted by the green line, while
the black line shows experimental data. Data are representative of five independent experiments, and were fit to a gamma distribution. Mean
and standard deviation of the fit parameters are k= 5.4; θ = 2.7 × 105 [AU]. F-I. Cells were stimulated with either 0.1 nM (F,H) or 1 nM (G,I) EGF for
five minutes, and then analyzed by flow cytometry to measure ppERK and total ERK levels simultaneously. In F-G, black curves correspond to
ppERK distributions, and green curves correspond to normalized distributions where ppERK levels in each cell were divided by the total ERK
signal intensity in the same cell. To compare the green and black curves on the same axis, intensities for each distribution are divided by their
respective mean. In the H-I dot plots, ppERK levels are on the x-axis, whereas total ERK levels are on the y-axis.
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Stochastic, dynamic modeling explanation of the data
EGF activates the small GTPase Ras, which activates
ERK downstream of the Raf and MEK kinases. Although
we were not able to measure GTP-bound active Ras
(RasGTP) by flow cytometry, the population average
dose and dynamic responses were assayed via pull-down
and Western blotting, and then quantified (Figure 2A).
These population average data show a rapid rise and



Figure 2 RasGTP Dynamics. A. HEK293 cells were stimulated with 0.1 nM (low, L), 1 nM (medium, M) or 10 nM (high, H) EGF for the indicated
times and then cell lysates were assayed for RasGTP as described in “Materials and Methods” section. IP denotes the pull-down fraction, TCL
denotes total cell lysate, and IB denotes immunoblot. Each data point corresponds to the average of three independent experiments, and error
bars correspond to 90% confidence intervals. Data were normalized by dividing by basal (no EGF) RasGTP levels. B. A bimodal RasGTP distribution
as would be obtained from a bistable RasGTP model for low, medium and high levels of EGF, and how it would map onto a dose–response
relationship between RasGTP and ppERK.
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dose-dependent peak in RasGTP levels after EGF stimu-
lation, followed by a fast decline. Although the most dir-
ect interpretation of these RasGTP responses (where the
population mean changes as a function of time and EGF
dose, Figure 2A) is a unimodal RasGTP distribution, a
recent study suggested that in T lymphocytes, a positive
feedback between RasGTP and its activator guanine ex-
change factor Son of Sevenless (SOS) leads to bistability
and hysteresis in Ras activation [32-34]. If Ras activation
was also bistable in HEK293 cells, then two distinct
RasGTP populations would exist with high mean and
low mean RasGTP levels (Figure 2B). Stimulation by
EGF would only affect the relative fraction of cells in the
two populations, but not their means. Since under basal
conditions ppERK levels are negligible (Additional file 1:
Figure S1A), the low mean RasGTP population would
not contribute to ERK activation, implying that there is
a threshold above which RasGTP levels cause ERK acti-
vation (Figure 2B). If we assume a simple sigmoidal
dose–response relationship between RasGTP and ppERK
levels (typical in MAPK cascades—reviewed in [35]),
then a defined high mean RasGTP population would in-
duce a defined high mean ppERK population with
boundaries Eon-low and Eon-high (Figure 2B). However, the
flow cytometry data in Figure 1A-D show that when
clear bimodality is present, Eon-low and Eon-high are differ-
ent for various high mean ppERK populations. Thus in
HEK293 cells, our single cell ppERK signaling data seem
to be inconsistent with a bistable RasGTP model.
If the RasGTP response to EGF is unimodal, then how

might these mixed analog-digital responses emerge from
salient features of the MAPK/ERK cascade? At the single
cell level, dynamic responses are encoded by the pathway
topology and reaction kinetics. Therefore, we examined
different configurations of the MAPK/ERK cascade for
their ability to reproduce the experimentally observed be-
havior. Specifically, we sought topologies where simula-
tions showed that (i) distributions of active ERK display
bimodal/shouldering behavior with increasing EGF dose,
and (ii) the “ERK-on” population mean increases with in-
creasing EGF dose at early time points, but decreases with
time at constant EGF dose. To explore this, we used a pre-
viously developed mechanistic model that relates active
Ras to ppERK [36], and investigated in silico the ability of
different network topologies to reproduce our experimen-
tal observations (Figure 3A). By changing the feedback
strength parameter (Fa) in this model, we created three
different topologies: positive feedback (PF; Fa= 5), ultra-
sensitive (US; Fa=1), and negative feedback (NF; Fa=0.5),
all of which have been experimentally observed for MAPK
cascades under various circumstances (reviewed in [35]).
Steady-state analysis
First, we characterized the steady-state input–output be-
havior of these three models by changing the input
(RasGTP) from zero to 100 nM at 1 nM increments and
allowing the system reach a steady-state between each step
change. Then, we reversed the stimulation, this time chan-
ging the input from 100 to zero nM. The PF model exhibits
bistability/hysteresis, whereas the US and NF models do
not (Figure 3B-D). In fact, due to the inherent properties of
a negative feedback loop coupled with a kinase amplifier
module, the NF model exhibits a smooth, analog input–
output relationship [37-40]. However, the NF model also
exhibits a threshold of ERK activation at low RasGTP levels



Figure 3 Modeling and analysis of single cell characteristics of the ppERK dynamics and dose response. A. Schematic of a mechanistic
model of ERK activation and its steady-state response properties. The positive feedback (PF), no-feedback, ultrasensitive (US), and negative
feedback (NF) models have the feedback strength Fa set to different values (5, 1 and 0.5, respectively). The input is RasGTP, and the output is
ppERK. B-D. Steady-state, deterministic input/output response curves for the PF, US and NF models. E-G. Steady-state, cell population input/
output response curves for the PF, US and NF models. In B-G, red denotes increasing input from low levels, while blue denotes decreasing input
from high levels. When only one color is shown, there is no difference between the increasing and decreasing input curves. Dashed lines indicate
the 95th percentile of all simulations, and dotted lines indicate the 5th percentile.
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as a result of the multi-tier, multi-site phosphorylation
structure of the MAPK/ERK cascade [2].
These deterministic simulations correspond to input–

output curves for an average cell. To incorporate stochas-
tic fluctuations in reaction rates, we applied the Gillespie
algorithm to integrate the differential equation. However,
these solutions did not appreciably change the steady-state
dose responses (data not shown), indicating that under
these conditions and model parameters, reaction rate fluc-
tuations do not constitute a significant source of signaling
variability. This is most likely due to the relatively high
abundance of the MAPK/ERK cascade components.
We therefore explicitly included protein expression vari-

ability in the models. We first investigated whether the
gamma distribution provides a generally valid model for the
distribution of protein levels, as others have suggested
[22,27-31]. We found that there is good agreement between
gamma distribution fits and both experimental and stochas-
tic simulation data from the literature (Additional file 1:
Figure S3A-E) [22]. Next, we performed our own stochastic
simulations using a simple protein expression model where
a gene can be active or inactive, an active gene can produce
mRNA, mRNA can produce protein, and both mRNA and
protein can degrade, all with first order kinetics. We
then analyzed the resulting distribution of steady-state
protein abundance obtained from multiple independent
simulations under 6400 different parameter conditions
(see Additional file 1: Figure S3 legend). For most condi-
tions, the steady-state protein abundance distribution is
well represented by a gamma distribution (Additional file 1:
Figure S3F-G). Therefore, for the steady-state analysis we
sampled total levels of Raf, MEK and ERK from a gamma
distribution, and computed the dose response curves for
1000 cells, each cell having different, sampled levels of Raf,
MEK and ERK (Figures 3E-G). The means of these stochas-
tic, steady-state response curves (solid lines) have the same
qualitative features as the deterministic curves, and the PF
model remains bistable. However, there is substantial cell-
to-cell variability in the dose responses. The RasGTP levels
eliciting half-maximal ppERK responses vary significantly,
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as do the maximum ppERK levels. According to these
results, stochastic variability in protein expression is a
major contributor to steady-state, cell-to-cell signaling vari-
ability, inducing a wide distribution of ERK activation
thresholds.

Analysis of transient responses
To simulate the dynamic behavior of ppERK, we first speci-
fied the RasGTP input kinetics, according to the unimodal
RasGTP distribution hypothesis discussed above. Experi-
mental data show that in EGF-stimulated HEK293 cells,
RasGTP levels peak between 1–5 minutes after EGF stimu-
lation and then, approximately 10 minutes later, decay to a
steady-state value that is slightly higher than basal RasGTP
levels (Figure 2A and [41]). Moreover, increasing the EGF
dose increases the peak magnitude of RasGTP levels, and
shortens the rise time. We incorporated these experimen-
tally observed trends into a simple mathematical model
(see Methods), and obtained simulated RasGTP dynamics.
Figure 4 Simulations of ppERK dynamics in cell populations. A. Simula
as described in the “Materials and Methods” section. B-D. Simulated dose a
models. To facilitate comparison of these simulations with the experimenta
10 nM was added to the raw simulation data. (E-G) Dynamics and dose res
(G) models. Simulated population responses were parsed into ERK-on and
We then used these simulated dynamics as input to the
MAPK/ERK cascade model for determining the ppERK dy-
namic and dose responses (Figure 4A). To incorporate cell-
to-cell variability in Ras levels, we sampled the peak
RasGTP values from a gamma distribution whose mean
increases with increasing input magnitude (with fixed shape
parameter k—see Methods).
Using these RasGTP dynamics, we then investigated

which models (NF, PF or US) reproduce the experimental
observations described above. As expected, the PF and US
models show bimodal population behavior because of their
switch-like input–output responses (Figure 4B-C). But sur-
prisingly, so too does the NF model, despite exhibiting an
analog input–output relationship (Figure 4D). This bimod-
ality in the NF model is due to the wide range of ERK acti-
vation thresholds introduced by protein expression
variability (Figure 3G), combined with variability in EGF-
induced RasGTP levels. Thus, all three topologies exhibit
time and dose-dependent bimodality or “shouldering”.
ted RasGTP dynamics for different EGF doses. Simulations were done
nd dynamic ppERK responses for the PF (B), US (C) and NF (D)
l data, normally distributed noise with mean and standard deviation of
ponse of the ERK-on population mean for the PF (E), US (F), and NF
ERK-off populations based on a cutoff of 100 nM.



Birtwistle et al. BMC Systems Biology 2012, 6:109 Page 7 of 12
http://www.biomedcentral.com/1752-0509/6/109
However, only the NF model simulations, and not those of
the US or PF models, reproduce proper behavior of the
ERK-on population mean, namely that the mean increases
as a function of dose at short times (Figure 4E-G; Figure 1),
and decreases as a function of time at a particular EGF
dose (Figure 4E-G; Additional file 1: Figure S2).
We conclude that for the realistic parameter values used

here, the NF model with protein expression variability is
most consistent with experimental data. To examine if this
conclusion holds over a wide range of parameter values,
we employed parameter sensitivity analysis (see Methods
and Additional file 1: Figure S4). This analysis showed
that models with negative feedback preferentially
demonstrated the experimentally observed signaling
characteristics over the examined parameter ranges
(Additional file 1: Figure S4). Yet, we cannot rule out
the possibility that positive feedback and ultrasensitive
systems may also exhibit the experimentally observed
behavior. Indeed, sensitivity analysis also showed that
under some rare parameter conditions, the mean ppERK
levels in the ERK-on population increase as a function of
dose at short times for the PF and US models (Additional
file 1: Figure S4A,C). One mechanism that may lead to
this PF and US model behavior is if the ppERK activation
kinetics were slow, such that the behavior at 2 and 5 min
post EGF stimulation were due to transient effects, rather
than a pseudo-steady state phenomenon. Yet, for PF
models, simulated ppERK signaling remains high over the
30-minute time course (Additional file 1: Figure S4B,D),
rather than returning closer to basal levels as the experi-
mental data show (Additional file 1: Figure S2). Thus, the
ERK cascade model with negative feedback seems to be
the most consistent with our experimental observations
over a wide range of parameter values.
Test of the negative feedback prediction
Although the preceding analysis suggests that in our
HEK293 cell system the most likely net feedback strength
from ERK is negative, parameter sensitivity analysis
showed that ultrasensitive or positive feedback systems
Figure 5 Confirming the presence of negative feedback. HEK293 cells
prior to stimulation with 0.1 nM, 1 nM or 10 nM of EGF (A) or TGFα (B) for
lysates were assayed for activated RasGTP as described in “Materials and M
cell lysate, and IB denotes immunoblot.
might also account for such data, albeit in rare circum-
stances. If the feedback were negative, blocking ERK activ-
ity should increase the activation of upstream elements,
such as RasGTP. Therefore, we measured the dynamic
and dose response of RasGTP with and without the MEK
inhibitor U0126, and found that blocking ERK activation
increased RasGTP levels, confirming the presence of
strong negative feedback (Figure 5A). Although positive
feedback and ultrasensitivity have been observed in vari-
ous MAPK cascades (reviewed in [35]), in HEK293 cells
the major feedback regulation is negative, confirming the
predictions of the modeling. Notably, this feedback is less
significant at five minutes after EGF stimulation, when the
RasGTP response is saturated and ppERK levels are at
their peak, implying that either this feedback is slow
(which may introduce instability and oscillations under
certain conditions [42]), or perhaps that there are alterna-
tive negative feedback mechanisms.
To investigate whether alternative negative feedback

mechanisms may explain the weak feedback effects at 5
minutes post-stimulation, we repeated the U0126 experi-
ment with the EGF receptor ligand TGFα. Although
both EGF and TGFα activate the EGF receptor and in-
duce receptor endocytosis, EGF preferentially targets the
receptor to multi-vesicular bodies and lysosomal degrad-
ation, while TGFα enhances receptor recycling and sur-
face availability [43,44]. Thus, it is possible that EGF-
induced receptor degradation or sequestration may be
influencing our results. We found that the TGFα-
induced RasGTP levels do not differ from those induced
by EGF in the presence or absence of the MEK inhibitor
U0126 over a 30-minute time course (Figure 5B). There-
fore we conclude that negative feedback from ERK
seems to dominate trafficking-mediated effects.
Discussion
We have studied EGF-induced signal transduction to
ERK in single HEK293 cells, finding that the conversion
of an analog signal at the single cell level to an apparent
digital response at the population level can be mediated
were pretreated with 5 μM U0126 or vehicle alone (DMSO) for 30 min
5 or 30 minutes. Control cells were left unstimulated (−). Total cell
ethods” section. IP denotes the pull-down fraction, TCL denotes total
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by a combination of cell-to-cell variability in protein ex-
pression and a pathway design that incorporates negative
feedback (Figure 6). A uniform step increase in EGF
concentration causes a wide distribution of RasGTP
levels due to cell-to-cell heterogeneity in protein expres-
sion. Cell-to-cell heterogeneity in protein expression also
causes significant variability in the sigmoidal dose re-
sponse relationship between RasGTP and ppERK, and in
particular, in the ppERK activation threshold (Figure 3G
and Figure 6). Because cell-to-cell variability in RasGTP
levels can span the range of ERK pathway activation
thresholds, the pathway is activated to various degrees in
individual cells. A distribution of ppERK levels ensues
across the cell population. The mean of the ppERK dis-
tribution depends on EGF dosage and agrees with results
obtained from Western blots. Despite the fact that the
negative feedback smooths the RasGTP/ppERK dose–re-
sponse relationship, a threshold for ppERK activation
persists. This threshold element further enhances cell-
to-cell variability in ppERK levels, and results in bimodal
responses at the population level. Thus, the resulting bi-
modal distribution relies on a combination of a threshold
behavior and a linear ppERK increase followed by satur-
ation behavior with increasing EGF dose (Figure 3G).
Surprisingly and counterintuitively, bimodality does not
require switch-like behavior at the single-cell level, but
can arise from cell-to-cell variability in protein expression
and a pathway activation threshold. Thus, cells can retain
the robustness benefits offered by negative feedback
Figure 6 Conversion of Analog Inputs Into Bimodal Responses
by a Negative Feedback System Combined with Protein
Expression Noise. An analog EGF stimulus (blue, green, and red
correspond respectively to small, medium, and large stimulation
magnitudes) induces variable but dose-dependent RasGTP responses
in the cell population due to expression variability in the EGF
pathway proteins. RasGTP responses are converted into ppERK
responses in single cells according to a threshold-linear response
governed by negative feedback (NF model). However, variability in
RasGTP levels coupled with variability in ERK activation thresholds
creates bimodal active ERK distributions at the population level
despite the analog input and linear dose response at the single cell
level.
[37-40], while generating on/off responses at the cell
population level that are thought to be critical for cell fate
decisions.
Our observations are unlikely to be caused by a frac-

tion of cells simply not binding ligand. First, under our
experimental conditions (~106 cells/mL), at the lowest
ligand dose (0.01 nM), the ratio of EGF molecules to
cells is approximately 1000, making it very unlikely that
a cell does not encounter a ligand molecule. Second, for
nearly all EGF doses, a significant fraction of cells is in
the “ERK-on” population at some point in time, indicat-
ing that most cells have been activated and therefore
had bound ligand.
How might cells still generate reliable signals despite

protein expression noise? One possibility is that cells have
a reliable fold-change response of ppERK from basal levels,
and that downstream of ppERK cells employ systems that
sense fold-changes rather than absolute levels. In fact this
fold-change scenario has recently been shown to be the
case. In cells stably expressing ERK2-YFP from the en-
dogenous promoter, EGF stimulation led to widely varying
maximum nuclear ERK2-YFP accumulation, with a coeffi-
cient of variation (CV) of approximately 0.3 [15]. However,
normalizing the maximum nuclear ERK2-YFP signal by the
basal levels of ERK2-YFP in the same cell, which yields
fold-change responses, lowers the CV by approximately
3-fold [15]. This is consistent with our observed effects of
total ERK abundance variability on the total variance of
ppERK in the ERK-on population (Figure 1F-G). To sense
these fold-changes, rather than absolute levels, a cell may
use a type-1 incoherent feedforward loop (I1-FFL), where
an input X activates both an intermediate Y and the output
Z, but Y represses Z [45]. Such a network structure may in
principle be downstream of ppERK (X), which causes the
immediate-early expression of multiple genes including c-
fos, which can mediate general transcriptional repression
perhaps even of itself [46,47].
Although protein expression noise is certainly a hin-

drance to some biological functions, and evolution has
selected for mechanisms such as the I1-FFL that allow a
cell to deal with this noise, there are potential benefits of
and perhaps even essential functions for such noise. Tissue
homeostasis may in fact require protein expression vari-
ability. Consider that there is no protein expression vari-
ability, and all cells that are involved with, for instance,
hematopoiesis, respond identically to the various prolifera-
tion and differentiation cues. The body needs to produce,
from the hematopoietic stem cells, a balance between the
lymphoid and myeloid progenitors. If all the hematopoietic
stem cells responded identically, then it would be nearly
impossible for the body to maintain a finely tuned balance
between the production of these two lineages. The same
logic applies to the further differentiation of lymphoid and
myeloid progenitors into various other downstream cell
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types, such as megakaryocytes, erythrocytes, B cells, T cells,
and natural killer cells, where finely tuned control of differ-
ential cell-fate decisions is even more critical. Thus, it is
likely that without protein expression noise-induced
phenotypic variability, homeostasis of hematopoiesis, and
probably other tissues, would not be possible. This logic
argues for a conceptual model whereby growth factor con-
centration, in tissues, controls the probability a cell will
choose a particular fate.

Conclusions
It is commonly thought that the existence of bimodal sig-
naling behavior on the population level is indicative of so-
called digital behavior (such as all-or-none switches) of the
underlying signaling network in single cells. Our work
demonstrates that this is not necessarily the case; protein
expression noise coupled with nonlinear network dynamics
can bring about digital population responses from analog
single cell dose responses. In particular, we show that a
network combining an activation threshold and strong
negative feedback also robustly displays such bimodal
population behavior due to cell-to-cell variability in protein
expression levels. This system retains the benefits of robust-
ness arising from negative feedback, while simultaneously
generating population-level on/off responses thought to be
critical for cell fate decisions. Overall, the results extend our
understanding of the amazing behavioral complexity that
can be displayed by even small molecular networks [48].

Methods
Cell culture
Human Embryonic Kidney 293 (HEK293) cells were
obtained from the American Type Culture Collection
(Manassas, VA). Cells were maintained in a humidified 5%
CO2 incubator at 37°C and cultured in Dulbecco's modi-
fied Eagle's medium/F-12 supplemented with 10% fetal
bovine serum (Life Technologies-Invitrogen, Carlsbad, CA)
and penicillin-streptomycin solution (100 μg/ml, Thermo
Fisher Scientific).

Flow cytometry
HEK293 cells were serum starved for 16 hours before the
experiment. The cells were then lifted (by scraping or tryp-
sinization), washed twice with serum-free medium (con-
taining soybean trypsin inhibitor in the case of tryptic
lifting), allowed to equilibrate for 30 minutes, and stimu-
lated with EGF (Sigma-Aldrich, St. Louis, MO). We veri-
fied that the bimodal ppERK behavior was not affected by
cell detachment (Additional file 1: Figure S5). After EGF
stimulation for the desired time interval, cells were fixed
with 2% paraformaldehyde (Sigma-Aldrich) for 10 minutes
at 37°C, and then cooled on ice. After centrifugation, the
cells were permeabilized in ice-cold 90% methanol (Sigma-
Aldrich) for 30 minutes. The cells were then washed by
centrifugation and 5x105 cells were resuspended in 90 μL
incubation/blocking buffer (0.5% BSA in PBS) for 10 min-
utes. The cells were then incubated for 60 minutes in the
dark at room temperature with phospho-ERK1/2 (T202/
Y204) mouse mAb (E10) Alexa 488 Conjugate for active
ERK and ERK1/2 rabbit mAb (4695) detected by secondary
staining with an anti-rabbit Alexa 647-conjugate (Cell Sig-
naling Technologies, Beverley, MA). The cells were washed
by centrifugation with PBS and resuspended in 0.5 mL of
PBS. The samples were then analyzed with a Becton-
Dickinson FACSCalibur or on an Accuri C6. For each sam-
ple, 10,000 events (cells) were analyzed. Data were processed
using FlowJo™ software (Tree Star, Inc.) and MATLAB™ (The
Mathworks). Post-gating by forward and side scatter was
performed to remove events corresponding to dead cells,
debris, and cell clusters (i.e. doublets). As controls we
stained cells with non-specific, isotype-matched control anti-
bodies (also obtained from Cell Signaling). We verified the
specificity of the antibodies (Additional file 1: Figure S1).

Western blotting
The above procedure for cell preparation was followed,
but instead of fixing cells in paraformaldhyde, cells were
lysed and processed for Western blotting analysis as
described previously [49,50]. RasGTP pull-downs were
performed as described previously [49,50].

Mechanistic model simulations
MATLAB and the function ode15s was used to simulate
a previously developed, ordinary differential equation-
based ERK cascade model [36], which is described in de-
tail in Tables 1 and 2. The function gamrnd was used to
generate realizations of peak RasGTP, Raf, MEK, and
ERK levels for individual “cells” in the stochastic simula-
tions according to the gamma distribution

f Nð Þ ¼ N k�1ð Þe�
N
θ

θkΓ kð Þ ð1Þ

where N specifies a protein level, k is the shape param-
eter, and θ is the scale parameter. We specified the k
(shape) parameter of each gamma distribution as 5.4, as
was measured for total ERK (see Figure 1E), assuming
roughly similar expression regulation. Since the mean of
a gamma distribution is equal to kθ, the θ parameter of
each gamma distribution was changed as needed to at-
tain the desired distribution mean (see Table 1 for values
of mean protein levels).
To estimate the parameters for the RasGTP dynamics,

which are described by a simple exponential rise and decay
model (see Table 2 for differential equations), we used least
squares optimization to ensure that desired initial magni-
tude (Io), peak magnitude (Imax), time-to-peak (τmax), time-
to-inflection (τinfl), time-to-steady-state (τss), and steady-state



Table 1 Kinetic description of the ERK signaling cascade

N Reaction Rate Kinetic

constant*

1 MAP3K!pMAP3K v1 ¼ kcat1 � Ras�GTP½ �� MAP3K½ �=Km1

1þ MAP3K½ �=Km1ð Þ � g Fað Þ kcat1 ¼ 0:2; Km1 ¼ 50

2 pMAP3K!MAP3K v2 ¼ Vmax2 � pMAP3K½ �=Km2

1þ pMAP3K½ �=Km2ð Þ Vmax2 ¼ 5; Km2 ¼ 50

3 MAP2K!pMAP2K v3 ¼ kcat3 � pMAP3K½ �� MAP2K½ �=Km3

1þ MAP2K½ �=Km3þ pMAP2K½ �=Km4ð Þ Kcat3 ¼ 1; Km3 ¼ 130

4 pMAP2K!ppMAP2K v4 ¼ kcat4 � pMAP3K½ �� pMAP2K½ �=Km4

1þ MAP2K½ �=Km3þ pMAP2K½ �=Km4ð Þ kcat4 ¼ 5; Km4 ¼ 50

5 ppMAP2K! pMAP2K v5 ¼ Vmax5 � ppMAP2K½ �=Km5

1þ ppMAP2K½ �=Km5þ pMAP2K½ �=Km6þ MAP2K½ �=Ki1ð Þ Vmax5 ¼ 250; Km5 ¼ 100

6 pMAP2K!MAP2K v6 ¼ Vmax6 � pMAP2K½ �=Km6

1þ ppMAP2K½ �=Km5þ pMAP2K½ �=Km6þ MAP2K½ �=Ki1ð Þ Vmax6 ¼ 250; Km6 ¼ 100; Ki1 ¼ 80

7 MAPK!pMAPK v7 ¼ kcat7 � ppMAP2K½ �� MAPK½ �=Km7

1þ MAPK½ �=Km7þ pMAPK½ �=Km8ð Þ kcat7 ¼ 1; Km7 ¼ 50

8 pMAPK!ppMAPK v8 ¼ kcat8 � ppMAP2K½ �� pMAPK½ �=Km8

1þ MAPK½ �=Km7þ pMAPK½ �=Km8ð Þ kcat8 ¼ 20; Km8 ¼ 50

9 ppMAPK!pMAPK v9 ¼ Vmax9 � ppMAPK½ �=Km9

1þ ppMAPK½ �=Km9þ pMAPK½ �=Km10þ MAPK½ �=Ki2ð Þ Vmax9 ¼ 380; Km9 ¼ 10

10 pMAPK!MAPK v10 ¼ Vmax10� pMAPK½ �=Km10

1þ ppMAPK½ �=Km9þ pMAPK½ �=Km10þ MAPK½ �=Ki2ð Þ Vmax10 ¼ 50; Km10 ¼ 18 Ki2 ¼ 100

11 Feedback g Fað Þ ¼ 1þFa �ð ppMAPK½ �=KaÞ2ð Þ
1þð ppMAPK½ �=KaÞ2ð Þ Ka ¼ 100; Fa ¼ 5; 1; 0:5 PF;US;NFð Þ

* Maximal rates, Michaelis and catalytic constants are expressed in [nM/s], [nM], and [s-1], respectively. Total protein concentrations are [MAPK3]total = 200nM,
[MAPK2]total = 200nM, and [MAPK]total = 360nM.
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magnitude (Iss) of the RasGTP dynamics matches well to
that which the model prescribes. Additional file 1: Figure S6
describes these RasGTP dynamics metrics graphically. As
there are four unknown parameters in the RasGTP dynam-
ics model (Table 2-K1, K2, τ1, τ2), we need four equations,
which we take as the following (their origin is described im-
mediately below):

0 ¼ Io þ K1 þ K2ð Þ � Issð Þw1 ð2Þ

0 ¼ K1

τ1
exp � τmax

τ1

� �
þ K2

τ2
exp � τmax

τ2

� �� �
w2 ð3Þ
Table 2 Ordinary differential equations for the ERK
signaling cascade model
d MAP3K½ �

dt v2 � v1
d pMAP3K½ �

dt v1 � v2
d MAP2K½ �

dt v6 � v3
d pMAP2K½ �

dt v3 þ v5 � v4 þ v6ð Þ
d ppMAP2K½ �

dt v4 � v5
d MAPK½ �

dt v10 � v7
d pMAPK½ �

dt v7 þ v9 � v8 þ v10ð Þ
d ppMAPK½ �

dt v8 � v9
d RasGTP½ �

dt
K1
τ1
exp � t

τ1

� �
þ K2

τ2
exp � t

τ2

� �
; RasGTP tð Þ

¼ K1 1� e�t=τ1
� �þ K2 1� e�t=τ2

� �
K’s and τ’s are determined as described in Methods.
0 ¼
�
Io þ K1 1� exp � τss

τ1

� �� �

þK2 1� exp � τss
τ2

� �� �
� 1:01 � Iss

�
w3 ð4Þ

ð4Þ
0 ¼

�
Io þ K1 1� exp � τmax

τ1

� �� �

þK2 1� exp � τmax

τ2

� �� �
� Imax

�
w4 ð5Þ

ð5Þ
where wi corresponds to a weight for optimization purposes
(all w’s are 1 except for w2 which is 100). Eq. 2 specifies the
proper steady-state magnitude; Eq. 3 specifies that the 1st

derivative at the time-to-peak is zero; Eq. 4 specifies the
proper magnitude at the time-to-steady state (defined as 1%
of the true steady-state value—see Additional file 1:
Figure S6); and Eq. 5 specifies the proper peak magnitude.
The following constraints are placed on this optimization
problem:

0 > � K1

τ12
exp � τmax

τ1

� �
� K2

τ22
exp � τmax

τ2

� �
ð6Þ

0 >
K1

τ1
exp � τinfl

τ1

� �
þ K2

τ2
exp � τinfl

τ2

� �
ð7Þ

Eq.6 specifies that there is a maximum at the time-to-
peak (2nd derivative less than zero) and Eq. 7 specifies
that the 1st derivative is negative at the inflection point
(RasGTP is decreasing towards the steady-state value).
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Mean peak RasGTP levels (Imax) were increased to simu-
late increasing input, and were linearly spaced between
10 nM and 200 nM using 6 points (10, 48, 86, 124, 162,
and 200 nM), which correspond to EGF doses (in nM)
of 0.01, 0.1, 0.5, 1, 5, and 10. Following the trends of the
experimental data in Additional file 1: Figure 2A and
[41], peak times for RasGTP (τmax) were sampled
linearly between 7 min and 2 min (7, 6, 5, 4, 3, 2), with 7
min corresponding to the lowest peak RasGTP level
(EGF dose). Also, we took τss as 10 min, Iss as 15% of
Imax realizations, Io as 0, and τinfl as (τmax+ τss)/2.
All code is available upon request.

Parameter sensitivity analysis
Five hundred different parameter sets were generated via
latin hypercube sampling (MATLAB function lhsdesign)
from a 23-dimensional uniform distribution that spans +/− 1
order of magnitude around each nominal parameter value
(taken from Table 1 with the exception of Fa—the feedback
strength). For each of these parameter sets stochastic simu-
lations were performed as described above. Briefly, total
protein and RasGTP levels were sampled from a gamma
distribution and 500 individual cell responses were simu-
lated for each parameter set and feedback condition (nega-
tive, ultrasensitive with no feedback, positive). The results
of these simulations were then analyzed for three features:
the “analogicity” of the ERK-on population, the “transience”
of the ERK-on population, and bimodality. The analogicity
of a particular feedback/parameter set combination was cal-
culated as follows, and is illustrated in Additional file 1:
Figure S4A. First, the ERK-on population was defined by
those cells having ppERK levels over 200 nM. Then, the
mean ppERK levels in the ERK-on populations were calcu-
lated for those that contained greater than 10 cells. The
analogicity of a given time point is defined as the maximum
ERK-on population mean minus the minimum (as com-
pared across EGF doses). The analogicity of a feedback/par-
ameter set combination is the sum of the 2 and 5 minute
time point analogicities. The 10 and 30 minute time points
are left out because these show very little analogicity in
the experimental data (Figure 1 and Additional file 1:
Figure S2). Parameter sets showing zero analogicity
were discarded as inconsistent with experimental data.
The transience of a particular feedback/parameter set
combination is defined for a particular EGF dose as
follows, and is pictorially illustrated in Additional file
1: Figure S4B. First, the ERK-on population was
defined as described above for analogicity, and any
EGF dose where the ERK-on population did not exist
for all time points was not used for further transience
calculations. The transience of an individual EGF dose
is the mean of the ERK-on population at 2 and 5
minutes minus that at 10 and 30 min. The transience of a
feedback/parameter set combination is the sum over those
from the individual EGF doses. Bimodality was evaluated
via Hartigan’s Dip Test [51,52]. MATLAB code for this test
was downloaded from http://www.nicprice.net/diptest/.
The result is a p-value associated with the hypothesis test
that the empirical distribution of interest is unimodal as
opposed to the alternative that it is not. We rejected the
null hypothesis at the 0.05 level of significance. The bi-
modal fraction for a particular feedback/parameter set com-
bination is defined as the number of non-unimodal
distributions divided by the total number of dose/time
point combinations. Parameter sets showing no bimodality
were discarded as inconsistent with experimental data.

Additional file

Additional file 1: This additional file contains all the supplementary
figures along with their legends.
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