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Abstract

Background: MicroRNAs, post-transcriptional repressors of gene expression, play a pivotal role in gene regulatory
networks. They are involved in core cellular processes and their dysregulation is associated to a broad range of human
diseases. This paper focus on a minimal microRNA-mediated regulatory circuit, in which a protein-coding gene (host
gene) is targeted by a microRNA located inside one of its introns.

Results: Autoregulation via intronic microRNAs is widespread in the human regulatory network, as confirmed by our
bioinformatic analysis, and can perform several regulatory tasks despite its simple topology. Our analysis, based on
analytical calculations and simulations, indicates that this circuitry alters the dynamics of the host gene expression, can
induce complex responses implementing adaptation and Weber’s law, and efficiently filters fluctuations propagating
from the upstream network to the host gene. A fine-tuning of the circuit parameters can optimize each of these
functions. Interestingly, they are all related to gene expression homeostasis, in agreement with the increasing evidence
suggesting a role of microRNA regulation in conferring robustness to biological processes. In addition to model
analysis, we present a list of bioinformatically predicted candidate circuits in human for future experimental tests.

Conclusions: The results presented here suggest a potentially relevant functional role for negative self-regulation via
intronic microRNAs, in particular as a homeostatic control mechanism of gene expression. Moreover, the map of
circuit functions in terms of experimentally measurable parameters, resulting from our analysis, can be a useful
guideline for possible applications in synthetic biology.

Background
microRNAs (miRNAs) are small (about 22 nucleo-
tides) single-strand RNAs able to interfere post-
transcriptionally with the protein production of their
targets. Targeting a vast proportion of protein-coding
genes [1-3], miRNA-mediated regulation composes an
important layer in gene regulatory networks. The impli-
cation of miRNAs in several core cellular processes [4-7]
as well as in many human diseases [8,9] further confirms
their biological importance.
Approximately half of the miRNA genes can be found

in intergenic regions (between genes), whereas the intra-
genic miRNAs (inside genes) are predominantly located
inside introns and usually oriented on the same DNA
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strand of the host gene [10] (a trend further confirmed by
our bioinformatic analysis shown in a following section).
Intergenic miRNA genes present their own promoter
region [11,12] and their expression is expected to be reg-
ulated by the same molecular mechanisms that control
the expression of protein-coding genes. On the other
hand, experimental and computational results are con-
sistent with the idea that same-strand intronic miRNAs
are co-transcribed with their host gene [13-17], and then
processed to finally become mature functional miRNAs
[18,19] (although exceptions to this common scheme of
co-transcripton have been reported [20-22]).
The host-miRNA co-expression can have a specific

functional role. In fact, an intronic miRNA can support
the function of its host gene by silencing genes that are
functionally antagonistic to the host [23], or more gener-
ally act synergistically with the host by coordinating the
expression of genes with related functions [24].
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In addition to this “cooperative” miRNA-host rela-
tion, different studies showed that intronic miRNAs can
directly regulate the expression of their host gene, estab-
lishing a negative feedback regulation [10,25,26]. In par-
ticular, instances of negative autoregulatory feedbacks via
intronic miRNAs were firstly found by expression analysis
in human [25].More recently, two independent large-scale
bioinformatic analysis, based on different algorithms of
target prediction, claimed that the occurency of intronic
miRNA-mediated self-loops (iMSLs) in the human reg-
ulatory network is significantly higher than expected by
chance [10,26]. The over-representation of such regula-
tory module can be interpreted as a sign of evolutionary
positive selection that has led to an accumulation of a
specific topology able to perform useful elementary regu-
latory tasks [27]. In addition, two iMSL circuits have been
confirmed experimentally: regulation of EGFL7 by its
intronic miRNAmiR-126 [28,29] and regulation of ARPP-
21 by miR-128b [26]. Both regulations were associated
to relevant biological functions, the former playing a role
in cancer proliferation [28], while the latter in vertebrate
brain physiology [26].
The combination of all these pieces of evidence suggests

that iMSLs are an often exploited and presumably func-
tionally relevant regulatory circuitry. The open question
concerns the peculiar functions that an iMSL can accom-
plish and that could have thus driven their pervasive
spreading in the human regulatory network. Moreover, it
would be interesting to understand what specificities of
post-transcriptional autoregulation by miRNAs can make
them better suited to fullfil certain tasks with respect to
the trascriptional self-regulation, so widely used in bacte-
ria [30]. In this paper we address these questions by mod-
eling the dynamical and stochastic behaviour of the iMSL
circuit and comparing its properties to those of alternative
regulatory strategies such as constitutive expression and
transcriptional self repression.
Our results show that, despite of its minimal topol-

ogy, the iMSL circuitry can implement different biological
functions. It can speed-up the host gene protein produc-
tion in response to an activating signal, while delaying its
switching-off kinetics when the activation drops; it can
buffer fluctuations coming from the upstream network,
and generate complex behaviours like a host gene expres-
sion response obeying “Weber’s law” (i.e. themagnitude of
the response depends only on the fold change of the input
signal). While these different functions can be optimized
individually, by tuning parameters like molecular pro-
duction/degradation rates, it will be shown that they all
represent different ways of making the host gene expres-
sion robust to external fluctuations. Therefore, autoreg-
ulation via intronic miRNAs can generally represent an
efficient homeostatic control of the host gene expres-
sion, in agreement with the observation that miRNAs are

often involved in signaling networks to ensure homeosta-
sis and gene expression robustness [31-34]. In addition
to model analysis, we present our own bioinformatical
search for iMSLs in human to further assess their
statistical over-representation and to propose the best
predicted candidates for possible future experimental
tests.
Besides the understanding of the role of endogenous

iMSLs, our results can be useful for the growing field of
synthetic biology [35,36], which has succesfully started
to make use of RNA-based post-transcriptional regula-
tions [37,38]. The function-topology map presented in
this paper can contribute to draw up the manual of bio-
logical circuits that carry out specific functions for syn-
thetic engineering, adding a simple and efficient wiring
strategy that can increase systems’ robustness in differ-
ent conditions. A synthetic realization of an iMSL has
been indeed recently produced and proven to be effective
in reducing the expression dependency on gene dosage
[39]. Therefore, the potential additional functions we will
show associated to iMSLs could be tested in the near
future.

Results and discussion
Outline of the model
We are interested in a model of iMSLs that can capture
the fundamental properties of the circuit, but simpli-
fied enough to avoid the introduction of too many free
parameters that would make an exploration of the param-
eter space unfeasible. In this view, the essential steps of
transcription, translation, degradation and interactions
between genes are taken into account as summarized in
Figure 1A. The host gene is assumed to be under the con-
trol of an activating transcription factor (TF) with concen-
tration q, in order to study the dynamical and stochastic
properties of the circuit in presence of upstream input
signals. The activation is modeled, as usual in this type
of descriptions [30,40], representing the transcription rate
kr(q) of the target as a Michaelis-Menten function of TF
concentration q:

kr(q) = krq
hr + q

, (1)

where kr represents the maximum transcription rate in
the fully activated state, while hr is a dissociation constant
specifying the TF concentration at which the transcription
rate is half of its maximum value. However, the analysis
can be straightforwardly extended to the case of a Hill
function (substituting q with qn and hr with hnr ), if in
presence of cooperativity.
On the other hand, miRNAs can exert their action

repressing translation or inducing degradation of their tar-
get mRNAs [41]. We construct our model supposing an
action on target translation. While most of the results
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Figure 1 Representation of iMSL and the two circuits used for comparison. Schematic views of (A) an intronic miRNA-mediated self-loop
(iMSL); (B) a gene simply activated by a TF (sTF); (C) a transcriptional self-regulation (tSL). A more detailed representation of the three circuits is on
the right of the figure. Green rectangles are DNA-genes; s and r are the transcribed miRNAs and mRNAs (orange and red stars respectively) which
can eventually be degraded (broken grey stars). mRNAs can be translated into proteins p (blue circles) and proteins can be degraded (broken grey
circles). The reaction rates are reported along the corresponding black arrows: kr(q) and kr(q, p) for transcription; kp(s), kp2 and kp for translation; gs ,
gr and gp for degradation. Red arrows represent activations, while red lines ending in bars are repressions. For the iMSL and the sTF, the transcription
rates are functions of the amount of TFs q, while for the tSL the transcription rate is also a function of the target protein p. In the iMSL, miRNA
regulation makes the rate of translation a function of the amount of miRNAs s.

shown in this paper are independent of this choice, some
dynamical properties of the circuit can actually change if
miRNA action is mainly due to induction of mRNA degra-
dation. This issue is discussed in more detail in Additional
file 1.
A phenomenological description based on nonlinear

functions has been proven to be effective in modeling
RNA interference in mammals [42], and was previously
applied in computational analysis [43,44]. Along these

lines, we assume that miRNA regulation makes the target
translation rate kp(s) a repressive Michaelis-Menten-like
function of the number of miRNAs (s):

kp(s) = kp
1 + s

h
. (2)

The dissociation constant h establishes the miRNA level
at which the target translation rate is half of its maxi-
mum value kp. With the regulatory interactions defined in
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Equations 1 and 2, it is possible to represent the dynamics
of the circuit in Figure 1A by a set of differential equations:

dr
dt

= kr(q) − grr

ds
dt

= kr(q) − gss

dp
dt

= kp(s) r − gpp, (3)

where r and p are the levels of host gene mRNA and
protein products, s is the level of miRNAs, and gi repre-
sents the degradation rate of the molecular species i. As
discussed in the introduction, intronic miRNAs (same-
strand with the host) are expected to be co-transcribed
with their host gene, therefore their production rate kr(q)
has the same dependence on the input TF level.
A different representation was introduced in the context

of bacterial sRNA regulation [45-47] and subsequently
applied with slight modifications to eukaryotic miRNA
regulation [48]. In this representation, the degree of catal-
icity, i.e. the ability of a miRNA to affect multiple mRNAs
without being degraded, was parametrized explicitly [45].
The use of an effective phenomenological function (like
the one in Equation 2) implicitly assumes a catalytic
action, as commonly believed for miRNAs [42].
Moreover, miRNA biogenesis is a complex and highly

regulated multi-step process (see [5,18,49] for a review)
that finally leads to a mature miRNA loaded into the
RNA-induced silencing complex (RISC) which is actu-
ally the active form that can downregulate the target
mRNAs. Recent models of regulation by small RNAs have
tried to build a more detailed modeling framework taking
into account these processing steps [39,50], for example
including miRNA incorporation into the RISC complex
as a reversible binding reaction. Such detailed model-
ing approaches have succesfully explained results from
synthetic biology experiments. However, a more com-
prehensive mathematical representation of the biological
processes involved comes at the expense of an increased
number of free parameters, making more difficult an
extensive exploration of the parameter space.While in our
modeling strategy the dynamics of miRNA biogenesis is
not included, in the supporting information (Additional
file 1) we report the analysis of the possible effects of the
delay that the biogenesis process can introduce between
miRNA transcription and miRNA-mediated repression.
More generally, the relations between different possible
models of miRNA regulation are discussed in detail in
the supporting information (Additional file 1), where it is
shown that most of the results that will be presented in
the following are essentially independent on the modeling
strategy, provided that certain generic conditions on the
parameters are satisfied.

In an analogous manner, it is possible to model the
two circuits that we will use for comparison: a gene
simply activated by the TF (sTF) without any feed-
back regulation (scheme in Figure 1B) and a transcrip-
tional self-loop (tSL), in which the negative feedback
is realized through transcriptional repression (scheme
in Figure 1C). The properties of each circuit will be
compared using a so called mathematically controlled
comparison [30]: all the common parameters will be
kept to equivalent values, constraining the remainders
so as to achieve the same steady state of protein
concentration.
A deterministic description based on ordinary dif-

ferential equations can effectively describe the mean
kinetic behaviour of genetic circuits, thus its predictions
can be tested with experiments based on averages over
cell populations. In fact, equivalent mathematical treat-
ments have correctly predicted the dynamical features
of several endogenous and synthetics circuits [27,30].
However, since gene expression is inherently a stochastic
process [51-53], we will also make use of a stochastic
description based on a master equation approach, that
has Equations 3 as a “mean-field” limit (complete model
in Additional file 1). To compare the stochastic proper-
ties and the noise susceptibility of the three regulatory
strategies in Figure 1, we calculated analytically the rel-
ative fluctuations in protein level p at steady state and
confirmed our results with Gillespie simulations (see the
Methods section for details on simulations).
Autoregulation via intronic miRNAs has many of

the structural properties of miRNA-mediated incoherent
feedforward loops, that represent a diffused and function-
ally relevant motif in regulatory networks [25,44,54-56].
In fact, iMSLs can be thought as a mimimal feedfor-
wad topology with perfect co-expression of the target
gene and the miRNA buffering node, and thus, as previ-
ously observed [39], can be considered a special case of
post-transcriptional incoherent feedforward loops. As a
matter of fact, many of the functions that we will show
the iMSL can perform are consistent with the feedfor-
ward nature of this circuit, and the analysis presented in
this paper could be easily generalized tomiRNA-mediated
incoherent feedforward loops, adding new pieces to our
understanding of microRNA regulation in simple circuits.

Response times to external signals are altered by
autoregulation via intronic microRNAs
The response of a transcriptional unit to a stimulus, such
as a change in a TF concentration, is steered by the life-
time of its mRNA and protein products. A fast protein
turnover speeds up the kinetics, but with a consequent
high metabolic cost, while in the case of long-living pro-
teins the timescale of changes in concentration can be
comparable to the cell cycle time [30,57], which can be of
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several hours. However, the dynamics of a gene expres-
sion also depends strongly on the regulatory circuitry in
which the gene is embedded. For example, it has been
proven that negative transcriptional self regulation (like
the one in Figure 1C) and incoherent feedforward loops
speed up the expression rise-time after induction [57,58],
while coherent feedforwad loops introduce delays [59].
We address in this section the question of how the host

gene kinetics is changed by being a target of its intronic
miRNA. To this aim, we consider two opposite simplified
situations: (i) a sudden activating signal that fully saturates
the promoter, and (ii) the opposite case of an istantaneous
drop of the activating signal that completely switches off
transcription. Case (i) can be studied assuming that at
t = 0 the transcription rate kr(q) switches from zero to
its maximum value kr , and measuring the response time
TON defined as the time needed to reach half of the final
protein steady state. In other words, we integrate numer-
ically Equations 3 to calculate the time TON such that
p(TON )/pss = 0.5 (where pss is the final steady-state pro-
tein level), starting from the condition r(0) = s(0) =
p(0) = 0. In case (ii), in which we assume a drop of
the activating signal at t = 0, we can similarly define a
response time TOFF looking at the decrease of p(t) after
a switch of the transcription rate from kr to zero at time
t = 0. The same analysis is performed on a sTF (scheme
in Figure 1B) and a tSL (scheme in Figure 1C) for com-
parison. The response time T0 of the simple transcription
unit sTF is used as a normalization, since TON(OFF)/T0 is a
measure of howmuch a circuit can alter the response time
with respect to an unregulated gene.
Many previous analyses of genetic circuit dynamics have

assumed short-living mRNAs with respect to proteins
[57-59]. Within this assumption, the mRNA dynamics can
be neglected since the timescales are governed by the pro-
tein kinetics. While this is usually a safe approximation in
bacteria, in eukaryotes the phenomenology can be more
complex. In mammals, the mRNA half-life can range from
minutes to about 24 hours [60,61], with typical values in
the range of 5 − 10 hours [62,63]. Similarly, protein life-
times cover quite a wide range, from minutes to several
days [64]. MiRNAs are usually stable molecules with an
half-life that can span days [65,66], but there are cases
of short-living miRNAs, as many miRNAs expressed in
human brain [67]. Moreover, the miRNA turnover seems
widely regulated as it happens for mRNAs and proteins
[68]. In summary, while the situation in which proteins
are more stable than the corresponding transcripts could
still be frequent, a variety of specific cases is expected.
Therefore, we decided to take into account the mRNA
dynamics and explore different regimes of molecules’ half-
lives. Indeed, we will show that the dynamical response of
the iMSL circuit depends crucially on the ratio between
mRNA and miRNA half-lives (τr/τ s). In Figure 2A, the

normalized response time TON/T0 to activation is plotted
as a function of the repression level measured as pss/p0,
where pss is the final steady-state protein concentration,
while p0 is the steady-state protein concentration in
absence of negative regulation. The response time of the
iMSL (continuous lines) and the tSL (dashed lines) is
reported for different values of the half-life ratio τr/τs. As
a first result, the iMSL can speed up the response time
with a comparable efficiency with respect to its transcrip-
tional counterpart, especially when mRNAs are degraded
fastly enough. On the other hand, when miRNAs are
short-living with respect to mRNAs, they will reach their
final concentration faster than mRNAs, thus blocking
more quickly the initial rise in target protein concen-
tration. Therefore, the timescales of mRNA and miRNA
dynamics, determined by their half-lives, define the cir-
cuit performance in speeding up the response, as reported
in Figure 2A. In Figure 2C an example of the dynamics
is reported, showing an acceleration of the response for
both self-regulation strategies at an intermediate level of
repression.
As the repression increases, the response acceleration

to an activating signal relies more and more on an over-
shoot of protein concentration, well above the final steady
state, both for iMSLs and tSLs. If the input signal has to
drive the host gene to its functional steady state, a large
overshoot can be unwanted since it represents an unnec-
essary metabolic cost and a possible source of toxic effects
[57]. Thus, there is probably a limitation in the repres-
sion strength that can be applied to minimize the time
separation between two functional steady states. On the
other hand, a regime of strong repression makes the iMSL
a pulse generator, a dynamical feature that can eventu-
ally lead to adaptation as will be discussed in a following
section. The observation that the iMSL can function as a
pulse generator is fully consistent with the fact that this
circuit is a particular case of incoherent feedforwad loops
that were indeed previously associated to pulse generation
[30].
While the speeding up of activation is a property shared

by incoherent feedforward loops (and specifically by
iMSLs) and tSLs, an interesting peculiarity of the miRNA-
mediated regulation in iMSLs emerges looking at the time
required for p concentration to reach zero, starting from
a constitutive level (Figure 2D reports an example of this
dynamics). The iMSL can delay the switch-off kinetics of
the host in the same repression regime where it can accel-
erate the activation and the extent of the introduced delay
is again dependent on the mRNA to miRNA lifetime ratio
(Figure 2B). This apparently counterintuitive behaviour
can be easily qualitatively explained. When a constitu-
tively expressed gene senses a transcription stop signal,
the velocity of protein concentration decrease is estab-
lished only by protein and mRNA degradation rates. For
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Figure 2 Autoregulation via intronic miRNAs speeds up the host gene activation and delays its deactivation. (A) Activation response time:
response time TON , normalized by sTF response time T0, plotted as a function of repression level pss/p0 (pss/p0 = 1 means no repression) for
different values of mRNA/miRNA lifetimes. Both iMSL and tSL (continuous and dashed lines) accelerate the response time with respect to sTF (blue
line). Colors correspond to values of mRNA and miRNA relative stability (τr/τs), achieved keeping mRNA and protein degradation rates (gr , gp) fixed
while varying miRNA degradation rate (gs). The half-life ratio τr/τs affects also the tSL dynamics, but the dependence is weak (the corresponding
curves tend to collapse). (B) Deactivation response times: response time TOFF , normalized by T0, is shown for different repression levels. The blue
line corresponds to the sTF. The response time for iMSL is plotted for different miRNA half-lives (same color code of A). The iMSL induces a delayed
host gene response in the same repression range that consents a TON reduction. (C) Example of target protein temporal evolution in activation for
the three circuitries. The parameter values correspond to stars in plot A. Time is in protein half-life units. (D) Example of iMSL target protein
dynamics in deactivation for different mRNA/miRNA half-lives (stars in plot B). The parameter setting for this panel is the following: protein half-life
τp = 8 hours, mRNA half-life τr = 30 minutes, h = 1000, kr = 0.212819 s−1, kp = 0.0048 s−1.

example, long living mRNAs are more persistent and can
be translated for a longer time after the stop of transcrip-
tion, and long living proteins are obviously more resilient.
The same is true for tSLs or transcriptional feedforward
loops: as the transcription is switched off, transcriptional
repressors cannot exert any regulation and the protein
level simply undergoes the exponential decrease dictated
by mRNA and protein degradation. On the other hand,
thanks to the post-transcriptional regulation in iMSLs,
for each single miRNA that is degraded the still present
mRNAs sense an increase in their translation rate. This
increase clearly depends on the repression strength that
miRNAs can exert (thus on the repression fold pss/p0) and
on the relative stability of mRNAs and miRNAs (τr/τs), as
a fast miRNA turnover leads to a higher translation rate of
the remaining mRNAs. Eventually, the general increase in
mRNA translation rate for eachmiRNA degradation event
can lead to a temporary boost in protein concentration
above the original steady state (see Figure 2D).

It is important to notice that the dynamics just described
can be altered if the miRNA acts mostly on mRNA degra-
dation and depends on the timescale of miRNA-mRNA
binding-unbinding. While the iMSL can always speed up
the host gene expression in activation, the delay in the
switch-off dynamics can vanish in case of fast miRNA-
mediated induction of mRNA degradation. This issue is
discussed in more details in the Additional file 1.

The circuit response dynamics can robustly keep the host
gene in a high-expression state
In the regime of comparable mRNA and miRNA life-
times (red curves in Figure 2) the iMSL circuit can both
accelerate the response to a switch-on signal and delay
the switch-off kinetics. This alteration of the dynamics
makes the host gene ON-state (expression at maximum
rate) robust with respect to a transient fading of the input
activating signal, as the one depicted in Figure 3A. In
fact, the response to an input fluctuation toward zero
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Figure 3miRNA-mediated self-loops can keep the host gene
expression robustly in a ON-state. (A) Schematic representation of
a transient drop of the input TF q of duration T∗ (time is in protein
half-life units τp) (B) Response of the three circuits to the temporary
absence of signal depicted in A. The iMSL response (red line) is a slow
protein concentration decrease, followed by a quick recovery of the
ON-steady-state when the fluctuation is over. For a tSL (orange line)
or a sTF (blue line) the switch-off dynamics is just due to mRNA and
protein degradation. Even if the transcriptional negative feedback can
accelerate the recovery, the distance d from the ON steady state that
is reached by the target protein level during the temporary absence
of the input activator is determined by the switch-off response.
(C) The distance d from the ON steady-state reached by the target
level is plotted as a function of the duration of the TF q absence
(d = 1 when the protein level reaches zero). The iMSL circuit (red line)
requires a more persistent absence of signal to show a significative
reduction of the host protein product level with respect to the tSL or
the sTF (blue line). The parameter values are the same of Figure 2,
with comparable mRNA and miRNA stability (τr/τs = 1).

is a slow protein concentration decrease, followed by a
quick recovery of the ON-steady-state when the fluctua-
tion is over (Figure 3B). Only a persistent absence of signal
would cause a complete disappearance of the host protein
product. In this way, the cell could prevent a drop in con-
centration of physiologically necessary proteins in merely
presence of activator fluctuations. A resilient ON-state
can be biologically important if it ensures the homeo-
static protein level that must be robustly kept to mantain
the correct phenotype or if the deactivation/reactivation

is a costy process that have to be engaged only when
undoubtedly necessary.
This property can be measured more quantitatively by

the distance d from the ON-steady-state that is reached by
the target protein level during a temporary absence of the
input activator lasting a time T∗. As shown in Figure 3C,
the iMSL regulation keeps the host gene protein product
close to its steady state in presence of input fluctuations
that would almost switch-off a gene transcriptionally self-
regulated or constitutively expressed.

Intronic microRNAs, targeting their host gene, can
implement adaptation andWeber’s law
Adaptation
Adaptation is defined as the ability of a system to respond
to a change in the input but subsequently return to the
original level, even if the stimulus persists. Adaptation is
ubiquitous in signaling systems. Examples of nearly per-
fect adaptation range from chemotaxis in bacteria [69] to
sensor cells in higher organisms [70]. In all these systems,
the benefit of adaptation can be summarized as the pos-
sibility of signal detection irrespective of the background
level, thus widening the range of accessible signals and
keeping the system robust in presence of perturbations.
Simple network topologies, as negative feedback loops

with a buffering node or incoherent feedforward loops,
can be at the basis of the cellular implementation of adap-
tation [71]. As a special case of incoherent feedforward
loops, also iMSLs are expected to be suitable to imple-
ment adaptation. In this section, we investigate whether
and in what conditions the minimal topology of a post-
transcriptional self-regulation through intronic miRNAs
can perform adaptation.
It is easy to show analytically (see Additional file 1)

that in the regime of strong repression (s/h � 1 in the
Michaelis-Menten function in Equation 2) the steady state
of p concentration is independent of the input level q,
which is clearly a hallmark of perfect adaptation [72]: after
an eventual dynamical response to a change in q, the sys-
tem always returns to its original equilibrium level. On
the other hand, it is impossible to achieve such an inde-
pendence on the input level at equilibrium using a tSL, as
confirmed by the fact that in general circuits with just two
molecular species are not adaptive [71].
More generally, we can evaluate the efficiency in per-

forming adaptation giving the circuit a step function as
input and calculating the two indexes of precision P and
sensitivity S [71,73] represented in Figure 4A and defined
by:

P =
∣
∣
∣
∣

(p1 − p0)/p0
(q1 − q0)/q0

∣
∣
∣
∣

−1

S =
∣
∣
∣
∣

pmax − p0
p0

∣
∣
∣
∣
. (4)
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Figure 4 Adaptation andWeber’s law implementation via intronic miRNA-mediated self-regulation. (A) Schematic view of adaptative
behaviour for a step-like input. S and P are the sensitivity and precision measures described in the main text. (B) Schematic view of Weber’s law
implementation for a two-step input function. E is the error in fold-change detection, as defined in the main text. (C) A summarizing heat-map of
the iMSL performances in implementing adaptation and Weber’s law, as a function of the effective activation q/hr and the repression strength 1/h.
The grey region is the adaptive region (P > 10 and S > 2CVp), while the region where the system implements also Weber’s law (E < 0.1) is depicted
with a color code representing the E value as reported in the legend. In the red zone the system is not sensitive enough to input variations
(S < 2CVp). On the right, the target protein-level response to a two-step input is reported for the parameters values identified by the corresponding
lower-case letters in the heat-map. The shaded regions correspond to the 2CVp sensitivity threshold, showing that for a too strong repression the
circuit response cannot produce a signal beyond the noise level (plots in the red rectangle). The parameter setting is the following: mRNA and
protein half-lifes as in Figure 2, miRNA half-life is τs = 8 hours, kr = 2.12819 s−1, kp = 0.048 s−1, the input function starts from an initial value of
q0 = 40 and makes two consecutive steps with fold-change F = 4.

P is a measure of the difference in the steady-state lev-
els before and after the stimulus, therefore it is actually an
estimate of the degree of adaptation. Following [71], we
define theminimal threshold P > 10 to select adaptive cir-
cuits. A high value of P is not enough to define adaptation
since it could merely be a consequence of complete insen-
sitivity to input changes. Thus, it is necessary to check if
the peak in p(t) concentration is an effective recognizable
signal. This condition can be formalized requiring a sensi-
tivity S above the noise level (CVp = σp/〈p〉) of p at steady
state, as can be calculated using the stochastic version of
the model (see Additional file 1). In particular, we choose
the threshold S > 2CVp (assuming a noise in the input
levelCVq = 10%) to define a circuit “sensitive” to the input
signal.
The general requirement of strong repression for an

effective implementation of an adaptive response is in

agreement with the results of an analogous theoreti-
cal analysis previously performed with detailed models
of different feedforward loop circuits, including iMSLs
[39]. In particular, the prediction that stronger repression
should lead to better adaptivity was tested experimentally
with a synthetic transcriptional feedforward loop, using
the number of DNA molecules coding for the circuit to
modulate the input signal [39].

Weber’s law
Certain adaptive systems, besides the ability to return to
their original value after a signal response, present also
a degree of response that is proportional to the relative
change in the input signal and not to its absolute value.
This feature is known as Weber’s law, originally intro-
duced in the context of human sensory response. Recently,
this dependence on input fold-change was demonstrated
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experimentally in eukaryotic signaling systems [74,75],
and theoretically the feedforward loop topology was
proposed as a candidate toWeber’s law implementation in
gene regulatory networks [76]. Once again, it is natural to
examine in what conditions also the minimal iMSL circuit
can satisfy Weber’s law.
It is possible to show analytically (see Additional file 1)

that iMSLs are responsive to input fold-change if three
conditions are satisfied:

• Strong repression: s/h � 1 ⇒ kp(s) ≈ kph/s
(condition for perfect adaptation),

• Almost linear promoter activation kr(q) ≈ qkr/hr ,
• Fast mRNA dynamics (short mRNA half-life with

respect to miRNA and protein ones): r(t) → rss.

As for the case of adaptation, we can quantify the effi-
ciency in Weber’s law implementation for a generic set
of biochemical parameters. To this aim, a two step input
function is provided such that each step has the same fold-
change but different background levels (see Figure 4B).
As previously proposed [76], the error E in recognition of
fold changes can be quantified using the difference in the
response peaks:

E =
∣
∣
∣
∣

pmax2 − pmax1
pmax1

∣
∣
∣
∣
. (5)

Parameter space of adaptation andWeber’s law
Using the observables defined in Equations 4 and 5, it
is possible to explore the conditions in which adaptation
and Weber’s law are successfully performed by iMSLs.
An illustrative example is depicted in Figure 4C, where
two effective parameters are varied: the effective promoter
activation q/hr , and 1/h which measures the repression
strength since h is the number of miRNAs necessary to
reduce to one half the target translation rate. The grey
region depicts the parameter space where precise adap-
tation is performed (P > 10), while in the excluded red
region the dynamical response of the circuit is not able
to go beyond the noise level (S < 2CVp). The E value is
reported with the color code in the legend when the min-
imal condition E < 0.1 is satisfied, i.e the two steps of the
input produce the same response within 10%. Adaptation
and Weber’s law can be encoded by iMSLs in a param-
eter region that span several orders of magnitude of the
effective parameters. Therefore, the only constraint is that
the effective parameters have to approach the appropriate
limits, without the need of fine-tuning.
It should be noticed that the general condition of strong

repression required for both functions is limited by the
circuit sensitivity. This is partially due to the fact that a
too strong repression can rise the noise level of the cir-
cuit (see next section) making the achievement of a signal
significantly above fluctuations harder.

It is interesting to consider what are the functional
advantages that these two functions can provide to the
host gene. Both adaptation and Weber’s law can bestow
robustness to the expression program of the host gene.
An expression state that is not influenced by constant
inputs thanks to adaptation is robust with respect to the
ubiquitous cell-to-cell variability in TF concentrations,
but it is still responsive to signals that induce dynam-
ical variations of TF levels. When additionally Weber’s
law is implemented, also the dynamical response can be
kept homogeneous in a cell population. In fact, in this
case the response profile is only due to the input fold-
change and not on its absolute value that is affected by
the potentially variable background level [76]. Moreover,
Weber’s law naturally encodes a noise filter. In fact, since
the noise level is expected to scale with the background TF
concentration, a dependence on fold-change can rescale
appropriately the threshold at which the response is trig-
gered, thus allowing a better signal/noise discrimination
in different background conditions [76].

Autoregulation via intronic microRNAs reduces the host
gene expression fluctuations
All the functions of iMSLs discussed so far contribute to
enhance the robustness of the host gene expression. It is
therefore natural to analyze a stochastic model of iMSLs
to test directly their ability to filter out fluctuations. The
stochastic analysis of the system is reported in detail in
Additional file 1. The results in terms of noise-buffering
properties at the steady state for the iMSL are similar to
those obtained for the incoherent miRNA-mediated feed-
forward loops (see [44]). By filtering fluctuations prop-
agating from the upstream TF, the steady-state target
protein level achieved with an iMSL is less noisy than the
same target amount obtained with a simple sTF or a tSL
(Figure 5A,B). In particular, the target noise CVp for the
iMSL shows a U-shaped profile with a well defined min-
imum, thus allowing us to identify the parameter values
that optimize the noise reduction properties (Figure 5B).
This prediction could in principle be tested tuning the
repression strength, as shown in [77] for a tSL. Also a
tSL can in fact optimally filter noise for well defined val-
ues of repression strength [77-79], as shown in Figure 5B
(orange dots and line). For this circuit the mechanism is
well understood: an excessive increase of the repression
strength (while potentially improving the noise reduction
of the circuit) reduces the copy number of mRNAs and
proteins with a consequent rise in intrinsic fluctuations
(which can overcome attenuation). Thus, there is just a
well defined range of repression strength for which the
noise reduction is optimal, as shown in experiments [77].
It is interesting to notice that, even if iMSLs and tSLs

show similar noise reduction properties, the miRNA-
mediated self-regulation actually performs better than
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Figure 5 Intronic miRNAs can buffer noise in host gene expression. (A) An example of the target protein distributions for the three circuits
(repression level 〈p〉/〈p0〉 = 0.2). Lines are gamma distributions with first two moments calculated analytically, while histograms are the result of
Gillespie simulations. The distribution for the iMSL circuit (red line and histogram) is the narrowest, showing that, even if also a tSL (orange line and
histogram) can reduce noise with respect to a sTF (blue line and histogram), the iMSL is outperforming. (B) Target noise CVp as a function of the
repression level 〈p〉/〈p0〉 for the three circuits. Lines are analytical predictions, while dots are the result of Gillespie simulations. Given a noise level
CVq 	 0.2 in the upstream transcription factor, both the iMSL (red lines and dots) and the tSL (orange line and dots) shows a minimum of noise
reduction with respect to the sTF (blue line and dots), but the level of fluctuations in the iMSL case is clearly lower. (C,D) Noise reduction on the
target protein level achieved by the iMSL and the tSL respectively. The noise reduction CVp/CVsTFp (where CVsTFp measures the fluctuations around
the same mean level for a sTF) is evaluated at different degrees of transcriptional activation 〈q〉/hr and repression 〈p〉/〈p0〉. The same color gradient
is used in both heat maps, showing that the iMSL reduces fluctuations on a larger parameter region and to a greater extent. In the white regions
CVp > CVsTFp . The parameter values are the following: mRNA half-life τr = τw = 30 minutes, protein half-life τp = τq = 1.5 hours, kw = 3.4 10−3s−1,

kq = 8.7 10−3s−1, kr = 0.155 s−1, kp = 4.8 10−3s−1 (see Additional file 1 for the definition of kw and kq).

the transcriptional self-regulation. As it is possible to
see in Figure 5A (where histograms and continuous
lines are respectively the result of Gillespie simulations
with full nonlinear dynamics and gamma distributions
with analytically calculated moments), the probabil-
ity distributions of the target protein level for the
three circuits are different. Both autoregulatory cir-
cuits lead to a target distribution less sparse than
a sTF, showing that they effectively reduce fluctua-
tions, but the iMSL distribution is clearly more peaked
than the tSL one. Similarly, both self-regulation strate-
gies show an optimal noise buffering for an interme-
diate repression strength, but again the attenuation is
larger in the miRNA-mediated case (see Figure 5B).

This is more clearly shown in Figure 5C,D, where the
noise reduction CVp/CVsTF

p (with CVsTF
p representing

the target noise in the case of a simple transcription unit
producing the same mean amount of proteins) is reported
for the two autoregulatory circuits. Noise reduction is
explored for different levels of transcriptional activation
(〈q〉/hr) and target repression (〈p〉/〈p0〉, where 〈p0〉 is
the target mean value in absence of repression) to shed
light into noise control and target suppression interde-
pendence. Averages are here intended at steady state, thus
the repression level measure 〈p〉/〈p0〉 for the stochas-
tic model is perfectly equivalent to the one used in the
response time analysis (see Figure 2). In the regime where
the target is more sensitive to TF fluctuations, i.e. q is
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far from saturating the promoter, the iMSL can reduce
the fluctuations up to a factor 0.5 (Figure 5C), while the
tSL (Figure 5D) is much less effective. Moreover, the heat
maps in Figures 5C,D indicate that the iMSL can buffer
fluctuations over a wider range of conditions as well as to
a greater extent.
As pointed out in [44], an optimal miRNA-mediated

noise buffering does not necessarily require a strong
repression. Indeed, Figure 5C shows that a reduction of
the mean protein expression to 50% of its constitutive
level is sufficient to reduce the noise by approximately
40%. This means that the intronic miRNA can keep the
expression of its host gene in its homeostatic regime,
while filtering out fluctuations, without exerting a strong
reduction of its concentration. This result agrees well with
the observation that miRNAs act often to fine-tune their
targets rather than to switch them off completely [80].

Sketch of the one-to-many topology-functionmap
This section summarizes the functions found to be asso-
ciated to intronic miRNA-mediated self-loops into a qual-
itative “map of functions”, showing the different, although
overlapping, ranges of biochemical parameters in which
each specific function is optimized. The emerging map
between parameter values and functions can be useful to
understand the presence of the iMSL architecture in dif-
ferent biological contexts and gives general guidelines for
the design of synthetic circuits with a desired behaviour,
well beyond the simple suggestion of a network topology.
As Figure 6A shows, strong repression (〈p〉/〈p0〉 
 1)

is a general requirement for the implementation of adap-
tation and Weber’s law, the latter additionally requiring
an almost linear activation of transcription (〈q〉/hr 
 1).
A sufficiently strong repression is also required to confer
robustness to the high-expression state (induced by strong
activation 〈q〉/hr � 1) of the host gene in presence of
input temporary drops. On the other hand, for intermedi-
ate host activation, where the host gene promoter is highly
sensitive to changes in the TF concentration, the iMSL can
efficiently buffer fluctuations at steady state without the
need of strong repression.
Looking at a finer scale the strong repression regime

(〈p〉/〈p0〉 < 1/2), a smooth transition in the dynamical
behaviour of the circuit can be observed (see Figure 6B).
At first, the host gene is able to fastly transit between
two well distinct steady states after induction. When the
repression is further increased, this fast ON-activation
relies increasingly on an overshoot well above the final
equilibrium at which the dynamics asympotically relaxes.
Therefore, the concentration profile resembles a pulse.
Finally, for high enough repression the system returns
to the initial steady state after the pulse, a necessary
condition for the implementation of adaptation and
Weber’s law.

The relative half-life of the molecules involved, in par-
ticular of miRNAs and mRNAs, is another ingredient
that can strongly influence the dynamical behaviour (see
Figure 6C). For example, a miRNA half-life comparable
to the mRNA one allows a trade-off between accelera-
tion of the ON-dynamics and delay of the OFF-dynamics,
making the state of high expression of the host gene
robust to fluctuations. On the other hand, mRNA life-
time must be short with respect to the other molecules
lifetimes for a dynamical response following Weber’s
law.
The present analysis of the iMSL functions considers the

circuit as isolated, while realistically a single microRNA
can target hundreds of genes. As recently pointed out,
the degree of repression of a target depends on the level
of expression of all possible target genes [45,81], since
their mRNAs can dilute the pool of available miRNAs.
Therefore, the expression profile of alternative miRNA
targets is a variable that can potentially alter the dynam-
ics of iMSLs (as shown for incoherent feedforward loops
[44]), and thus have to be carefully taken into account in
experimental tests on endogenous iMSLs.

Identification of intronic miRNA-mediated self-loops in
human
In this section, we briefly describe our bioinformatic
search of iMSLs. Our main goal is to provide an updated
list of candidates to eventually test our theoretical pre-
dictions. We performed a genome wide search of intronic
miRNA-mediated self-loops along the lines of two papers
which recently addressed the same issue [10,26]. The dif-
ferences between our results and those quoted in [10,26]
are mainly due to a different choice of the algorithms used
to predict miRNA targets and in some cases to the use
of updated versions of the corresponding databases. We
identified the same strand intronic miRNAs using as ref-
erence the Ensembl (release 57) database. A summary of
our results is reported in Table S1 of Additional file 1 and
in Figure 7A, where the percentage of intergenic versus
intragenic miRNAs is plotted and, for the intragenic ones,
the relative ratio of exonic versus intronic miRNAs and
of same-strand versus opposite strand is also reported.
Target identification was performed using 8 different algo-
rithms: TargetScan human v. 5.0 [3,82], miRanda - release
2008 [83,84], RNA22 [85], PITA-4way [86], MirTarget2
[87], PicTar [88], Diana microT v.3 [89] and TargetMiner
v.1 [90]. In this respects, our analysis could be considered
as a combination and extension of the one reported in ref-
erence [10] (where only the first 6 algorithms were used)
and the study of [26] (where the authors used their own
prediction algorithm). We were able in this way to find
a total of 77 iMSLs confirmed by at least one algorithm
(details are reported in Table S2 of Additional file 1). Since
these algorithms are very different, we did not try to give
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Figure 6Map of functions for an intronic miRNA-mediated self-loop. (A) An ON-state of host gene expression is defined by full promoter
induction (〈q〉/hr � 1), and a sufficiently strong miRNA repression (〈p〉/〈p0〉 < 0.5) can keep it robust in presence of temporary drops in the
activator concentration. In the strong repression regime (〈p〉/〈p0〉 
 1) adaptation can be observed, and for almost linear transcriptional activation
(〈q〉/hr 
 1) the host gene response can show an adaptive dynamics following Weber’s law. Fluctuations can propagate from the upstream TF
more efficiently if the target promoter is highly sensitive to changes in TF level (〈q〉/hr ≈ 1), thus in this parameter region noise buffering is more
relevant, with a maximum in efficiency for intermediate repression (〈p〉/〈p0〉 ≈ 0.3). (B) A zoom on the strong repression region shows a transition
between different dynamics. A step input can induce a fast transition of the host gene expression between two distinct steady states, but increasing
further the repression the two steady states become progressively closer, up to their overlap when adaptation and Weber’s law are implemented.
(C) The dynamics is strongly influenced by the relative stability of miRNAs and mRNAs. A short mRNA lifetime is a condition for Weber’s law
implementation and contributes to the fast switch-on of the host gene expression. On the other hand, the delay in the switch-off dynamics is larger
for short-living miRNAs. In the intermediate region, where the two half-lives are comparable, the trade-off between the two dynamical properties
makes the highly-expressed state of the host gene robust with respect to fluctuations in the activator.

an absolute score to our results, but ordered them start-
ing from those which were assessed by the largest number
of target prediction methods (Figure 7B and Table S2 of
Additional file 1). Following a standard recipe (see [10]
for a similar choice) we consider the number of differ-
ent algorithms that agree on a certain target prediction as
a measure of the confidence of such prediction. Interest-
ingly, 28 of our iMSL agree with previous predictions of
iMSLs [26] and for two of them an experimental valida-
tion of the miRNA-host gene regulation exist [26,28,29].
Moreover, a recent study [17] provides evidence support-
ing a feedback mechanism between miR-438 and IGF2,

in agreement with our list of iMSLs predicted by only
one method. In order to test if these iMSLs are over-
represented we performed two independent enrichment
tests. First we performed a reshuffling of the host genes
while keeping miRNA target predictions unchanged. Sec-
ond, we randomized the union of the datasets of miRNA
target predictions obtained with the eight algorithms dis-
cussed above, keeping the host genes unchanged. In both
cases we evaluated the Z score which turned out to be
Z = 4.63 for the first test and Z = 5.52 for the sec-
ond one (see the Methods section for more details). The
results of the tests are plotted in Figure 7C. They suggest,
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Figure 7 Classification of miRNAs and randomization results. (A) Classification of human miRNAs based on the percentage of intergenic and
intragenic miRNAs. Intragenic miRNAs are divided in exonic and intronic miRNAs and each group can be further classified as same strand or opposite
strand. All UTR miRNAs were included in the group of the exonic miRNAs. Data are reported in Table S1 of Additional file 1. (B) Number of intronic
miRNA-mediated self-loops as a function of the number of target predictionmethods in agreement: we found a total of 77 iMSLs predicted by at least
one prediction methods, 25 of them are predicted by at least two different methods and only three of them are predicted by 5 different methods.
(C) Results of the permutation test: the number of iMSLs in the human network is plotted as a dashed line alongside the distributions (normalized
histograms) of the number of iMSLs found using the two randomization strategies (described in the main text) over 1000 experiment repetitions.

in agreement with what already observed in [20,26], that
this particular class of network motifs is under positive
selection.

Conclusions
This study presents a fairly comprehensive survey of the
possibile functions associated to a miRNA-mediated cir-
cuit composed of one protein-coding gene (host gene)
negatively regulated by a miRNA located in one of its
introns. In particular, we have shown that, thanks to the
miRNA-mediated self-regulation, the host gene expres-
sion responds to input changes with an altered timing,
its response can be adaptative and follow Weber’s law,
and fluctuations propagating from the upstream network
are buffered at steady state. Each of these functions can
confer robustness to the expression program of the host
gene, suggesting that miRNA-mediated self-loops repre-
sents a simple homeostatic control. For example, adapta-
tion makes the host gene expression level at equilibrium
independent of the cell-to-cell variability of transcription
factor expression without compromising its sensitivity to
input changes. Similarly, the host expression dynamics, as
modified by miRNA autorepression, can mantain the host

gene in a high-expression state in the face of downwards
fluctuations in activators’ concentration. The association
of miRNA-mediated self-loops with functions with dif-
ferent specificities, but apparently the same final aim,
suggests that, depending on the desired level of the host
gene expression and on the type of fluctuations that have
to bemore frequently filtered out, the details of the regula-
tory interactions and the characteristics of the molecules
involved could have been fine-tuned over evolutionary
timescales accordingly. Such a fine-tuning of expression
parameters has been shown to be possible even over short
timescales in in vitro evolutionary experiments [91].
The comparison with an unregulated transcriptional

unit and with a transcriptional negative feedback indi-
cates that the specificities of miRNA regulation makes the
post-transcriptional circuit better suited to implement a
homeostatic control. This result is in line with the accu-
mulating clues that miRNAs can help the cell to function
reliably in presence of perturbations [31-34].
Finally, our systematic analysis of the constraints on

biochemical parameters necessary to optimize each func-
tion can guide the realization of synthetic versions of
miRNA-mediated self-loops, as well as contribute to the
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understanding of the role of their many occurrences in
endogenous networks. In this perspective, we also pro-
vide a list of bioinformatically predictedmiRNA-mediated
self-loops in human for future experimental tests.

Methods
Stochastic simulations
Simulations were implemented by using Gillespie’s first
reaction algorithm [92]. The reactions simulated are
those presented in Figure 1 with additional transcrip-
tion, translation and degradations for the input transcrip-
tion factor q. Reactions that depend on a regulator were
allowed to have as rates the corresponding full nonlin-
ear functions. Results in Figure 5 are at steady state,
which is assumed to be reached when the determinis-
tic evolution of the system in analysis is at a distance
from the steady state (its asymptotic value) smaller than
its 0.05% (more than 10 times the protein half-life).
Each data point or histogram is the result of 100000
trials.

Bioinformatic methods
In order to identify human intragenic miRNAs, and asso-
ciate them to their host genes, we used Ensembl-release
57 database. We collected the data for all human known
protein coding genes (consisting in a total of 22.257
entries with a stable Ensembl Gene Identifier (ENSG)).
For each gene we then retained for further analysis only
the longest Transcript Identifier (ENST). The data on
human miRNAs were extracted from Ensembl v.57, that
includes miRBase v.13 (Table S1). To identify the iMSLs,
we used eight tools for miRNA/target gene interaction
predictions: TargetScan human v. 5.0 [3,82], miRanda -
release 2008 [83,84], RNA22 [85], PITA-4way [86], Mir-
Target2 [87], PicTar [88], Diana microT v.3 [89] and
TargetMiner v.1 [90]. To test the over-representation of
the putative iMSLs, we performed two different types
of randomization strategies. Specifically, we randomly
permuted 1000 times the intronic miRNA/host-gene link
and the union of miRNA/target gene interactions datasets
predicted by the different algorithms. In both cases we
created, according to the two reshuffling strategies, 1000
independent reshuffled copies of the original network.
Then for each of them we evaluated the number of iMSLs
confirmed by at least one algorithm and obtained in this
way the two histograms plotted in Figure 7C. Then for
both reshuffling strategies a Z score can be defined as :
Z = x−<x>r

σr
, where x is the actual number of iMSLs in

the network (i.e. 77), while < x >r and σr are the mean
value and the standard deviation of the distribution of
iMSLs in the reshuffled samples. These Z scores turned
out to be rather large: Z = 4.63 for the first test and
Z = 5.52 for the second one (see Figure 7C). These values

show that the number of iMSLs in the network is defi-
nitely larger than random and thus suggest, in agreement
with what already observed in [20,26], that this particular
class of network motifs is most probably under positive
selection.

Additional file

Additional file 1: Supplementary information. Single pdf file containing
the details of our modeling strategy, a comparison with alternative models
of microRNA regulation, and the results of our bioinformatic analysis.
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