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Abstract

approximately as @ (N*9).

Greemlin 2.0 outperforms GraphAlignment.

for global alignment of networks.

Background: With increased experimental availability and accuracy of bio-molecular networks, tools for their
comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks.

Results: We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks.
The alignment incorporates information both from network vertices and network edges and is based on an explicit
evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the
performance of our algorithm to an alternative algorithm, Graemlin 2.0.

On simulated data, GraphAlignment outperforms Graemlin 2.0 in several benchmarks except for computational
complexity. When there is little or no noise in the data, GraphAlignment is slower than Greemlin 2.0. It is faster than
Greemlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows

On empirical bacterial protein-protein interaction networks (PIN) and gene co-expression networks, GraphAlignment
outperforms Graemlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN,

Conclusions: The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs,
and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction
similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice
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Background

The advent of high-throughput techniques has gener-
ated new types of large-scale molecular interaction data,
conveniently represented by graphs or networks. Exam-
ples include metabolic networks formed by enzymes and
metabolites [1], gene co-expression networks with edges
between pairs of genes indicating a certain correlation
between their expression levels [2], residue contact maps
as representations of protein structures [3,4], and protein-
protein interaction networks, where edges between ver-
tices indicate a physical interaction between proteins [5].
For an introduction, see reference [6].
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Cross-species analysis of bio-molecular networks
aims to identify sub-networks which are evolutionarily
conserved as well as network parts that have evolved
rapidly. Similarly to comparison of biological sequences
[7], alignment of biological networks is an important tool
for quantitative evolutionary studies [2,8-16]. However,
such alignment poses a challenging computational prob-
lem, which goes beyond the well-established concepts
and methods of sequence alignment and of subgraph
matching (isomorphism) [17]. It involves an evolution-
ary process in which a pair of networks derives from a
common ancestor (which accounts for a certain degree
of similarity), and each network has since evolved inde-
pendently (which results in edge changes, vertex changes,
and vertices losing their alignment partner).

Here, we define the alignment of two graphs as an injec-
tive one-to-one mapping from a subset of vertices of one
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graph to vertices of the other graph, see Figure la. An
alignment of vertices also induces the alignment of edges;
the edge in one network is said to be aligned to the
edge in the other network if the vertices they connect
are aligned to one another. The aim of a graph align-
ment is to align vertices that descend from a common
ancestor.

Several graph alignment methods have been proposed
towards this goal, based on three main ideas: The align-
ment can be based on the similarity of vertices, and
map vertices onto each other that, e.g., share a certain
sequence similarity (if vertices represent genes or pro-
teins) or if aligned enzymes catalyze the same reaction (if
vertices represent enzymes in a metabolic network). This
approach allows identification of ancestral networks [14],
network parts enriched in conserved edges [10,12,16], or
selection between paralogous genes [13].

A second and complementary approach focuses on the
topology of the graphs and disregards sequence informa-
tion or other properties of the vertices. It searches for sim-
ilar topological structures in two graphs, for instance by
maximizing the number of aligned edges. This approach
has been used, for example, to detect common regulatory
motives in gene regulatory networks [18,19] or to perform
global network alignment [20].

A third strategy relies both on information encoded in
vertices and in edges. This “hybrid” and more comprehen-
sive approach compares graphs based on the evolution of
both vertices and edges. The key problem is the relative
weight given to the similarity of vertices and to the sim-
ilarity of edges when constructing the alignment. Several
algorithms have been proposed [11,21-27], which gener-
ally use ad hoc scoring parameters. Two exceptions are
GraphAlignment [28)] and Greemlin 2.0 (hereafter Grem-
lin, [22]), which use parameters inferred from a training
set or from an initial alignment of high-fidelity vertices
(Greemlin, GraphAlignment), or in an iterative scheme
(GraphAlignment). Here we describe a software package
implementing the GraphAlignment algorithm.
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The scoring parameters may indeed be inferred from
a training dataset formed by a library of known orthol-
ogous genes and their interactions. This approach would
be conceptually similar to the inference of the BLOSUM
matrices [29] used for biological sequence comparison. As
bio-molecular networks differ in many aspects, including
experimental techniques and post-processing methods,
no such parametrisation is available for their compari-
son. The parameters, however, can be also inferred from
the actual data being aligned, similarly to the inference of
the optimal affine gap penalties from the sequences being
compared [30,31]. The ability to infer principled scoring
parameters directly from the data is essential.

Further methods are developed that incorporate addi-
tional information resources to perform network align-
ment. The global network alignment method PINALOG
[32] incorporates functional annotation of proteins
in addition to their sequence and network topology.
DOMAIN algorithm uses protein domains, rather than
proteins, to form the interaction network [33]. Sev-
eral above mentioned methods perform also multiple-
species alignment and either use or infer phylogeny (e.g.,
[20,22,34]). Methods for querying large networks for small
subgraphs, e.g, pathways or protein complexes, have been
also developed [35-37], reviewed in [38].

GraphAlignment differs from the above approaches
[11,21-27] by two key features: (a) An explicit model of
network evolution is used to infer alignment parameters
from the data. (b) Based on this evolutionary model, net-
works are aligned using a probabilistic scoring system. We
compare our software and Gremlin as the only algorithms
that can automatically score both sequence and network
information. To that end we perform the simplest task,
pairwise alignment.

For case studies applying our approach to mam-
malian gene co-expression networks and to herpesviral
protein-protein-interaction networks, see [28] and [31].
An overview of related methods for probabilistic network
analysis is given in ref. [39].
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Figure 1 Graph alignment. a) An alignment .A between two graphs is an injective one-to-one mapping (indicated by dashed lines) between the
vertices of two graphs (see text). b) The interpretation of vertices and edges depends on the type of biological networks in comparison.
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Implementation

The input of the algorithm are two networks, and mutual
similarities of their vertices. The algorithm treats the net-
works G and G’ symmetrically, thus comparison of G
with G’ will result in the same alignment as compari-
son of G’ with G. Each network G is represented by an
adjacency matrix A, whose entries A; specify the edge
between vertices i and j: The entries of the adjacency
matrix may be binary, with A;; = 1 indicating the pres-
ence of an edge between i and j, and A; = 0 its absence.
They may be continuous, e.g., to describe weighted edges
in gene co-expression networks. Adjacency matrices may
be symmetric, thus describing undirected networks (e.g.,
gene co-expression networks), or asymmetric for directed
networks (e.g., metabolic networks). The mutual similar-
ity between vertices in the two networks is specified by
matrix ©, whose entries 6;7 quantify, for example, the
overall sequence similarity between the gene represented
by vertex i in one network and the gene represented by
vertex i’ in the other. Any other measure of the vertex
similarity is possible and may be given in arbitrary units
(Figure 1b). The algorithm will infer appropriate scoring
automatically based on available data.

The alignment scoring is based on an explicit model
which incorporates evolutionary dynamics of both edges
and vertices. We first focus on the evolutionary dynamics
of the edges. Consider a pair of vertices , j in one network
and its orthologs 7/, in the second network. At specia-
tion, the edge states a = A;; and a = A:.,]., in the two
networks take on the same value. Subsequently, their cor-
relation will decay and the joint probability Q; (a,a’) will
tend to a product of independent probabilities P(a)P'(a’)
in the limit of large times 7. (See [28] for an explicit model
based on the Fokker-Planck equation.) The corresponding
log-likelihood score contribution from the pair of edges

Q:(a,a) ) (1)

Sedge (a,a’) = log (P((,Z)P/(ﬂ/)

tends to zero in the limit t — o0, as then the edge states
carry no information on their shared ancestry, and, hence,
the edges states a and 4’ carry no information on whether
i should be aligned with i’ and j with ;.

Analogous considerations for the evolutionary dynam-
ics of the similarity of vertices leads to a scoring function
for vertex similarity [28,31]: at speciation, vertex i in one
network and its ortholog /' in the second network do not
differ. With increasing time t since speciation, their ver-
tex similarity 6 will decrease and the distribution function
Q2 (0) will approach some background distribution P(6).
Likewise, with divergence of the two networks, the dis-
tribution function Q%(0) of the similarities 6;; between
unrelated vertices i and j/ will approach P(0). As T — o0,
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the corresponding log-likelihood scores
Q7 (Bir)
Saligned (0ii7) = log ( PT( eiil’l) , (2)

which reflects vertex similarity of the orthologs i and 7/,
and

Q?(@‘j’)) , 3)

Snot—aligned(ei/’) = 10g ( P6;)
ij’

with j/ # i/, which weighs the presence of vertex similar
pairs that are not orthologous, tend to zero, and the vertex
similarities 6;7 and 6;; convey no information on align-
ment of / and /. The background distribution P(6) may be
obtained as the distribution of vertex similarities between
vertices that emerged or disappeared in one of the net-
works after the speciation. The similarity of vertices itself
may be evaluated as sequence similarity for vertices repre-
senting genes or proteins (in gene co-expression networks
and protein-protein interaction networks, respectively)
or by the measure of functional similarity for vertices
representing enzymes (in metabolic networks).

Given an alignment A, the total alignment score S(A) =
Se(A) + S, (A) is formed by contributions from all aligned
vertices and edges. The edge score S.(A) sums contribu-
tion of aligned edges:

Se(A) = Zsedge (AijrA/A(,')_A(j)> . (4)
@)
The vertex score S,(A) sums contributions from the
aligned vertices and the contributions from the pairs of
vertices that are not aligned [28,31]:

SV(A) = Zsaligned (ei.A(i)) + Z Snot-aligned (Qij’)'
i ij' #A(D)

(5)

The parameters of the scoring function, i.e, sedge Saligned
and spot-aligned, depend on the evolutionary dynamics
of both edges and vertices since speciation. To infer
these parameters from the data, we use a simple iter-
ative approach [28]: Starting with an initial alignment,
parameters are estimated so that the likelihood of the
alignment is maximised. The algorithm then iterates
the steps of (i) aligning the graphs using the estimated
parameters and (ii) estimating the maximum likelihood
parameters until convergence. Upon convergence, the
algorithm returns both the optimal scoring parameters
and the corresponding best alignment of the networks.
The package GraphAlignment features built-in functions
that establish the maximum-likelihood scoring param-
eters according to this scheme. The ability to find the
appropriate scoring parameters from the studied graphs
is unique to GraphAlignment, with a notable exception of
Greemlin [22].
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To find high-scoring graph alignments in step (i), we use
an iterative heuristic described in [28]. This procedure is
based on mapping to the quadratic assignment problem,
solved iteratively by calls to a linear assignment solver,
with added noise to help the alignment to escape from
local score maxima, as in simulated annealing [40].

Results and discussion

In Berg and Lissig [28] and Koldr et al. [31], our algo-
rithm has been applied to gene co-expression networks
and small protein-protein interaction networks. Here, we
concentrate on evaluation of the computational complex-
ity of the algorithm and comparison of its accuracy to the
Greemlin algorithm [22], which is the only other algorithm
able to infer principled scoring parameters automatically.
We use both simulated and empirical bio-molecular data.

Alignment of simulated networks

While experimental data provide the ultimate test set for
the algorithms, and we will use them in the following
section, we do not know the true evolutionary history of
the networks and thus, we cannot assess the accuracy of
the aligners fully. To that end we use simulated data. In
the numerical experiment, pairs of orthologous vertices
(orthologs) are assigned from the outset and, depend-
ing on the level of divergence, may have retained their
vertex similarity (vertex homologs), interaction similarity
(topological homologs or analogs) or both.

GraphAlignment and Greemlin are able to infer the scor-
ing parameters either from a training set of known orthol-
ogous genes and their interactions or from some valid
initial alignment of the actual network data being aligned.
Here, we concentrate on the latter option. Both algorithms
are given the same initial alignment of the networks that is
formed by vertices with high vertex and topological sim-
ilarity, and the parameters are inferred from this initial
alignment.

We assess the computational cost and accuracy in three
different scenarios which test three different aspects of
the algorithms. In all the scenarios, we construct pairs of
networks which contain 80% of orthologous vertices and
50% of all possible edges present. In scenario (i) we com-
pare two networks with a substantial proportion of vertex
homologs and a smaller set of analogous vertices, i.e., ver-
tices that do not have any vertex similarity, yet they are, by
their interactions, well anchored to the subnetworks con-
sisting of vertex-orthologous vertices. Thus this scenario
tests the ability of the algorithm to identify analogous
vertices by properly evaluating the edge (interaction) sim-
ilarity. We implement the scenario (i) by networks with
60%-interaction similarity between the orthologous pairs
and with 62.5% of the orthologous pairs (50% of all ver-
tices) having also a high vertex similarity. The interaction
terms are randomly chosen from a uniform distribution
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and may be interpreted as edge weights or probabilities
of the edge existence. We also assessed the scenario (i)
with interaction terms selected from a normal distribution
and obtain similar results (Additional file 1). An example
of the corresponding ©(i, /') matrix of vertex similarities
and correlation matrix of interaction similarities is given
in Additional file 1: Figure S3(i, ia).
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cor(i, i’)

0.2

r 0.0

r-0.2

(iii)
Figure 2 Matrix of vertex similarities © (i, i’) (top) and matrix of
correlations between the edge weights of vertices i in Gand i’ in
G’ (correlation of ith column of A and i’’th column of A,
cor (i, i’'), bottom) for the scenario (iii) and network size N = 200.
The optimal alignment of the two networks aligns the n-th vertex of G
to the n-th vertex of G'. Half of the diagonal terms represents truly
orthologous vertices with both vertex and topological similarity
(highlighted in green). The other 10% of vertices i in G (highlighted in
blue) have two possible vertex similar partners in network G, one of
them with a strong topological match (the true ortholog) and the
other with no match (the spurious ortholog). Next, there are 20% of
vertices with no vertex similarity but strong topological similarity
(analogs, highlighted in red). Scattered off-diagonal terms in 8 model
spurious weak vertex similarities in the data.
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In scenario (ii), we test whether the algorithm is able to
decide on an ortholog between two paralogous vertices.
Specifically, we ask whether the algorithm is able to decide
between two vertices in G’ with equal vertex similarity to
i in G, one of which has also interaction similarity with
i (the true ortholog) and the other shares no interactions
(the spurious ortholog). We implement this scenario sim-
ilarly to scenario (i) with 12.5% of the orthologs (10% of
all vertices) having a paralog with no topological similar-
ity. An example of the corresponding similarity structures
is given in Additional file 1: Figure S3(ii).

Scenario (iii) derives from scenario (ii) but adds spu-
rious weak vertex similarity between randomly chosen
pairs of vertices. Thus, this scenario tests the robustness
of the algorithms to intrinsic noise in the biological data.
An example of the corresponding similarity structures is
given in Figure 2.

Computational complexity

To evaluate the typical computational costs of Graph-
Alignment and Gremlin, we generate pairs of symmet-
ric random networks of the same size, N €[50,10%],
and the corresponding similarity structures. Then, we
test the two algorithms on the same dataset and mea-
sure the total CPU time used to fit the scoring parameters
and to find the optimal graph alignment. Both algorithms
are run on a Linux box with Intel Xeon at 3GHz with
standard parameters (GraphAlignment: Scoring parame-
ters are estimated by built-in functions from the initial
alignment of the orthologs with high vertex similarity
and the algorithm is run with standard settings. Grem-
lin 2.0: Scoring parameters are estimated according to
the README file using the same set of vertices as in
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GraphAlignment. The algorithm is run with standard set-
tings. For the code used, see Additional file 1: Figures S1
and S2). The results are summarised in Figure 3. In scenar-
ios (i) and (ii) Greemlin’s computational costs scale roughly
quadratically (O(N!97%%02)) with the network size N,
while GraphAlignment’s costs grow as O(N2>4°%005)) and
O(N%61£004) ' respectively. The algorithms finish the cal-
culations of networks with the size N = 500 within the
same time period, with Gremlin being faster on larger
networks and GraphAlignment on smaller ones. However,
addition of the spurious weak vertex similarities in sce-
nario (iii) severely compromises Gremlin’s performance
by changing its typical-case complexity to O(N%*63+007),
so that a calculation for networks of size N = 10%
has not been concluded in two weeks. The performance
of GraphAlignment remains good, with all calculations
finished within a week of CPU time.

The typical-case computational cost of GraphAlign-
ment is smaller than its theoretical worst-case complexity,
which is dominated by the computational costs of the
linear assignment solver [41] and by conversion of the
edge score to an instance of the linear assignment prob-
lem. The overall worst-case complexity of the algorithm
is O(N?).

Accuracy

Both algorithms studied here rely on the initial alignment
of high-fidelity vertices, which in our numerical experi-
ment are represented by the orthologs with high vertex
and topological similarity, and on inference of the scor-
ing parameters from this initial alignment. Thus, it is not
surprising that both algorithms correctly identified these
orthologs in virtually all cases (corresponding to green
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Figure 3 Computational complexity of the GraphAlignment and Graemlin algorithms. The scaling parameters estimated from the best power
law fit of the data are given in the panels for the scenarios (i-iii). While the computational cost of GraphAlignment remains constant in all the
scenarios, Greemlin's performance deteriorates with addition of spurious weak vertex similarities in scenario (iii).
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diagonals in Figure 2). The algorithms differ, however, in
their ability to align analogs (orthologs with no vertex sim-
ilarity and high topological similarity in scenarios (i-iii))
and to decide on the true ortholog between two paralogs
in scenarios (ii) and (iii).

While GraphAlignment performs pairwise alignment of
the networks and its results are straightforwardly inter-
pretable, Greemlin groups the vertices from both networks
into equivalence classes which may contain several ver-
tices from each network. When interpreting Greemlin’s
results, there are two options to consider the vertices
correctly aligned. We can consider the matching ver-
tices of the two networks to be correctly aligned when
they are in the same equivalence class and there is no
other vertex in the class (the strict rule), or we can con-
sider them correctly aligned whenever they are in the
same equivalence class (the relaxed rule). It is worth not-
ing that in scenarios (ii) and (iii) the relaxed rule will
consider the vertex correctly aligned even if the equiv-
alence class contains both its homologous paralogs and
the alignment actually does not decide on the correct
partner. A vertex is considered misaligned when it is
in an equivalence class (of size greater than 1) where
its matching vertex is not present. If the class con-
tains vertices from a single graph only, these are not
considered misaligned.

In scenario (i), there are only three types of vertex pairs:
pairs with strong vertex and topological similarity, pairs
with topological similarity only and pairs with no sim-
ilarity between the networks. The first two groups, the
orthologs, can be aligned thanks to the information stored
in the similarity matrix ® and the correlations of the adja-
cency matrices A and A’, see Additional file 1: Figure S3.
Thus we call them alignable vertices. It is not possible to
align the other vertices as there is no information avail-
able on those vertices. Figure 4 shows the accuracy of
the algorithms in scenario (i): Gremlin, according to both
strict and relaxed rules, aligns only orthologs with both
vertex and topological similarity and no other vertices.
GraphAlignment aligns a large proportion of the analo-
gous vertices and in the case of networks of size greater
than 500, all of them. None of the algorithms misaligns
any vertices.

Paralogous vertices in scenario (i) can be considered
an easier task to resolve, as among N possible align-
ment partners, there are only two partners with some
vertex similarity and, of them, just one also shares
topological similarity with its ortholog. GraphAlign-
ment aligns the matching vertices in virtually all tested
instances of the problem. On the other hand, Grem-
lin correctly forms equivalence classes for the three
vertex-similar vertices, as revealed by perfect perfor-
mance according to the relaxed rule; however, it does
not decide between the paralogous vertices as in the
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Figure 4 Accuracy of GraphAlignment and Graemlin in scenario
(i). While GraphAlignment aligns a large proportion or all analogous
vertices, Graemlin aligns only the pairs of orthologous vertices with
both vertex and topological similarity and no other vertices. The
proportion of 62.5% corresponds to the fraction of those orthologs
(50% of all vertices) among all orthologous vertices (80% of all
vertices).

equivalence classes all three vertices are always present,
Figure 5(ii). Also in the second scenario GraphAlign-
ment does not misalign any vertex, Figure 6(ii), while
Greemlin misaligns 5% of the vertices due to unresolved
paralogous vertices.

Addition of the spurious terms into the vertex similarity
matrix O in scenario (iii) does not influence the accuracy
of GraphAlignment but decreases accuracy of the Greem-
lin algorithm, which is not able to form the equivalence
classes correctly anymore and misaligns many vertices,
see Figures 5(iii) and 6(iii).
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Figure 5 Accuracy of GraphAlignment and Graemlin in scenarios (ii) and (iii). While GraphAlignment correctly decides between paralogous
genes, Graemlin creates equivalence classes that include both paralogs and their respective partner in the other network. The introduction of spurious
weak vertex similarities does not influence GraphAlignment performance, yet it prevents Graemlin from forming the appropriate equivalence classes.

Alignment of empirical bio-molecular networks

To compare the performance of GraphAlignment and
Greemlin on diverse bio-molecular networks, we have
downloaded publicly available datasets of bacterial and
eukaryotic protein-protein interaction networks (PIN)
and gene co-expression networks. We let the algo-
rithms compare PIN of proteobacteria Escherichia
coli, Caulobacter crescentus and Campylobacter jejuni,
and of yeast Saccharomyces cerevisiae, mouse and
human. Next, we employ the algorithms to compare
gene co-expression networks of gamma-proteobacteria
Escherichia coli, Salmonella enterica and Shewanella onei-
densis and a firmicute, Bacillus subtilis. The specificity
and coverage of the resultant alignments are tested
against the orthologous groups defined in the eggNOG
database v3.0 [42].

Protein sequences of all species have been downloaded
from the eggNOG database. PIN of the bacterial species
have been downloaded from the STRING database v9.0
[43]. Human and murine PIN have been obtained from the
IntAct database v3.1 ([44], accessed on August 6, 2012).
Only high-confidence experimental interactions are kept
(STRING: score > 0.7, IntAct: miscore > 0.35, no spoke-
expanded interactions). To diversify the entering data, the
PIN and protein sequences of human have been down-
loaded from the Additional file of the reference [45], and
the yeast PIN and protein sequences from the Additional
file of the reference [46] and the Saccharomyces genome
database (www.yeastgenome.org, accessed on August 8,
2012) [47], respectively.

To create the gene co-expression networks, we
have downloaded large gene expression compendia of
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Figure 6 Accuracy of Greemlin decreases upon introduction of spuriously similar vertex pairs in scenario (iii). GraphAlignment is not sensitive
to the introduced noise. Greemlin, in addition to a decreased number of correctly aligned vertices (Figure 5), falsely aligns a substantial fraction of the
vertices. The constant level of 5% misaligned vertices in (i) corresponds to the paralogous vertices that are aligned in the correct equivalence class
but are not the true matching vertices (the upper blue diagonal in Figure 2).

Escherichia coli, Salmonella enterica and Bacillus subtilis
from the Colombos database ([48], accessed on August
31, 2012). The database contains 2369, 925, and 397 care-
fully normalised expression profiles, respectively. Further,
we use gene expression compendia of Escherichia coli
and Shewanella oneidensis downloaded from the Many
Microbe Microarrays Database (M3P, [49], accessed on
September 6, 2012), which contain 907 and 245 expression
profiles, respectively. Gene—gene co-expression levels are
estimated by absolute Spearman rank correlation. Values
lower than 0.5 are hard-thresholded to 0, except for the
datasets from M>2, which are thresholded at 0.8 and 0.85,
respectively. All final correlation coefficients are statis-
tically significant (Storey’s ¢ < 0.001). Only the genes
detected in at least 75% of the profiles are evaluated.

The sequence similarity is estimated for each com-
parison by a pairwise local sequence alignment of

Table 1 Bio-molecular networks used in the analyses

Protein-protein interaction networks

Source StringDB

Species ecoli ccres cjeju

Vertices 822 477 369

Edges 1777 601 687
Gene co-expression networks

Source Colombos

Species ecoli sente bsubt

Vertices 1219 1104 2212

Edges 5589 4731 11181

protein sequences using BLAST [50]. All hits with
e-value lower than 10710 are considered. The BLAST
scores are used as the measure of vertex similarity ©
provided to GraphAlignment and Greemlin. The orphan
proteins/genes that both have no BLAST hit in the other
species and are not connected in the bio-molecular net-
work are not considered in the analysis. Table 1 summa-
rizes the resultant networks.

Computational complexity

We evaluate the overall CPU time used by the algorithms
to fit the scoring parameters and to perform the actual
alignment. To define the training set for the parame-
ter estimation, we find the eggNOG orthologous groups
present in both aligned species. From these groups we
randomly select one half. The proteins belonging to the
selected orthologous groups and the interactions between

IntAct Ref. [46] Ref. [45]
mmusc hsapi scere hsapi
7977 8984 2384 9141
1594 26818 16070 41456
M3D
ecoli sonei
2162 2358
4379 3823

bsubt: Bacillus subitilis, ccres: Caulobacter crescentus, cjeju: Campylobacter jejuni, ecoli: Escherichia coli, hsapi: human, mmusc: mouse, scere: Saccharomyces

cerevisiae, sente: Salmonella enterica, sonei: Shewanella oneidensis.
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Figure 7 Computational complexity of the GraphAlignment and
Graemlin algorithms on empirical bio-molecular networks. The
scaling parameters estimated from the best power law fit of the data
are given. Below the data points, the respective comparisons are

indicated. For explanation of the abbreviations, see Table 1.

them are then used as the training set. Both algorithms
are allotted the same set and the scoring parameters
are estimated by standard routines, as in case of the
simulated networks. To align the networks, the algo-
rithms run with standard settings, see Additional file 1:
Figures S1 and S2. Figure 7 summarizes the computational
complexity of the computations: As in the case of the sim-
ulated networks (scenarios (i) and (ii)), Greemlin’s com-
putational costs scale roughly quadratically (O(N18+92)),
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while GraphAlignment’s costs grow rather cubically as
O(N30£02)) The algorithms finish the calculations on
small bacterial networks within comparable intervals;
Greemlin is significantly faster on larger eukaryotic net-
works.

Accuracy

To determine the quality of the resultant alignments, we
estimate their sensitivity and coverage. As there is no gold
standard with which to compare the results, we define sen-
sitivity as the fraction of the aligned pairs, or Gremlin
equivalence classes, which share the eggNOG orthologous
group among all aligned pairs or classes. This measure of
sensitivity is intrinsically biased, as the eggNOG orthol-
ogous groups are based on sequence comparison. Thus,
the vertices which are orthologous, yet their sequences
have diverged beyond recognition by the methods used
to construct the eggNOG orthologous groups, do not
contribute to this measure. We define coverage as the
fraction of the eggNOG orthologous groups shared by
the two species and correctly identified by the network
alignment. Specifically, for GraphAlignment, let NA be the
number of aligned pairs and NC be the number of the
correctly aligned pairs in which the vertices (proteins or
genes) belong to the same orthologous group as defined
by eggNOG. Let NO be the total number of ortholo-
gous groups shared by the vertices of the networks being
compared. Then, we define the sensitivity as NC/NA
and coverage as NC/NO. For Gremlin, we define NA as

Table 2 GraphAlignment and Graemlin performance on empirical bio-molecular networks

Comparison Escherichia colivs. Caulobacter crescentus Escherichia colivs. Campylobacter jejuni
Algorithm GraphAlignment Graemlin Blast BBH GraphAlignment Graemlin Blast BBH
NA 445 467 462 354 363 357
NC 319 309 (333) 333 247 241 (253) 253
NO 331 331 331 255 255 255
NC/NA [%] 71.7 66.2 (71.3) 72.1 69.8 66.3 (69.7) 70.9
NC/NO [%] 96.4 93.4(101) 101 96.9 94.5(99.2) 99.2
Edge / vertex score 2505/ 2774 - - 2592/2253 - -

Comparison

Algorithm GraphAlignment Graemlin
NA 7919 7907
NC 5743 6327
NO 6402 6402
NC/NA [%] 72.5 80.0 (80.0)
NC/NO [%] 89.7 98.8 (98.8)
Edge / vertex score 2034/ 64661 -

Homo sapiens vs. Mus musculus

Homo sapiens vs. Saccharomyces cerevisiae

Blast BBH GraphAlignment Graemlin Blast BBH
7862 2369 1213 988
6375 581 869 (882) 808
6402 965 965 965
81.1 245 71.6(72.7) 81.8
99.6 60.2 90.1 (91.4) 83.7

- 20025/ 3963 - -

Protein-protein interaction networks. For Graemlin, the values are calculated using the strict rule. Values obtained following the relaxed rule are given in parentheses.
For GraphAlignment, the relative contributions of the edge and node score are also given. Results obtained using BLAST bidirectional best hit are provided

for comparison.
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the number of equivalence classes in which both species
are represented. As in case of the simulated networks,
we consider two rules for counting the number of cor-
rectly aligned equivalence classes NC: an equivalence class
is correctly aligned either when all vertices are in the
same eggNOG orthologous group and there is no vertex
belonging to a different orthologous group in the class
(the strict rule), or we consider the class correctly aligned
whenever any two vertices belong to the same orthologous
group (the relaxed rule). As the relaxed rule cannot decide
between protein families, we will concentrate on the strict
rule. Definition of the sensitivity and coverage remain
the same.

We summarize the results on PIN in Table 2: On
the bacterial networks GraphAlignment slightly outper-
forms Greemlin both in sensitivity and coverage, con-
sidering the strict rule. Both algorithms reach sensitiv-
ity of more than 65% and coverage of more than 90%.
While comparing the eukaryotic PIN, Gremlin outper-
forms GraphAlignment on the IntAct-derived human and
murine networks. Further, GraphAlignment significantly
lags behind Greemlin comparing the human and yeast
literature-based networks. Considering the contributions
of the edge and node score, see Table 2, we see that
the alignment provided by GraphAlignment is in that
case dominantly driven by the edge score. This contrasts
with the situation in comparing the other PIN networks,
where the contributions are either even or dominated
by the node score. The algorithm clearly overestimates
the edge conservation rate between vertices with low
sequence homology, which is inferred from the edge con-
servation rate between the orthologous vertices in the
training set. That may have two reasons: Either the pro-
tein interaction data are biased in a way that is not
compatible with the GraphAlignment Bayesian model, or
different rates of interaction divergence occur between
high-confidence orthologs (the training set) and proteins
with low sequence similarity. Different rates of protein-
protein interaction conservation depending on sequence
similarity have indeed been documented recently [51].
The situation does not appear in the alignment produced
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by Greemlin, which places more weight on vertex similar-
ity, as we saw in the previous section.

When considering the gene co-expression networks, we
observe very similar performance of GraphAlignment and
Greemlin. The former algorithm provides better coverage
(by at least 5%), while the latter shows slightly better sensi-
tivity, with the exception of the comparison of Escherichia
coli and Salmonella enterica, in which GraphAlignment
has both better coverage and sensitivity. See Table 3 and
Additional file 1: Table S1 for the summary of the results.

Conclusions
Here we describe a software package for alignment of
biomolecular networks based on a hybrid method devel-
oped in [28], GraphAlignment, and compare it to the algo-
rithm Gremlin 2.0. We find advantages on both sides: the
standalone Greemlin is able to perform multiple network
comparisons and provides additional functionalities, e.g.,
clustering. As revealed on simulated data, GraphAlign-
ment outperforms Greemlin in the use of interaction infor-
mation for network alignment. We attribute the observed
differences to the full use of interaction information: when
an edge between a pair of aligned nodes is absent in both
networks, GraphAlignment will typically reward the align-
ment of the nodes by a small score; Greemlin does not
consider this piece of information. Consequently, Greem-
lin tends to align dense conserved clusters. This behaviour
is advantageous for detection of such clusters, but may not
be optimal in global alignment of sparse networks.
Comparison of empirical bacterial protein-protein
interaction networks shows that GraphAlignment per-
forms slightly better than Gremlin considering both sen-
sitivity and coverage. Comparing the interaction networks
of human and mouse based on the IntAct database, the
situation is reversed. Moreover, we have observed limi-
tations of the GraphAlignment algorithm in comparison
of yeast and human protein-protein interaction networks,
where the performance of the algorithm is decreased,
most probably because the Bayesian scheme cannot deal
with biased data or with the heterogenous rate of edge
dynamics. On bacterial gene co-expression networks,

Table 3 GraphAlignment and Graemlin performance on empirical bio-molecular networks

Comparison Escherichia coli vs. Salmonella enterica Escherichia coli vs. Bacillus subtilis
Algorithm GraphAlignment Graemlin Blast BBH GraphAlignment Graemlin Blast BBH
NA 624 687 662 585 459 401
NC 539 492 (562) 557 259 237 (296) 274
NO 543 543 543 284 284 284
NC/NA [%] 86.4 71.6(81.8) 84.1 443 51.6 (64.5) 68.3
NC/NO [%] 99.3 90.6 (104) 103 91.2 83.5(104) 96.5

Edge / vertex score 1453 /4789 -

Gene co-expression networks. See Table 2 for details.

- 1979/ 2550 - -
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GraphAlignment provides better coverage than Gremlin,
while the sensitivity of both algorithms is similar. Consid-
ering the computational complexity, GraphAlignment is as
efficient as Greemlin on small bacterial networks, while it
lags significantly on large eukaryotic networks.

The simplicity and generality of GraphAlignment edge
scoring makes this algorithm an appropriate choice for
global alignment of networks. The underlying model is
independent of the interpretation of edge weights, i.e.,
whether these weights represent probabilities of inter-
action between adjacent vertices or measure interaction
strength. Since the algorithm is based on a well-defined
evolutionary model, its parameters can be optimized by
Bayesian methods. The GraphAlignment procedure of
data input, estimation of scoring parameters and align-
ment of the networks is thoroughly documented in the
package vignette, which also contains example sessions.
Furthermore, we have shown that GraphAlignment is
more robust to noise, an intrinsic factor of biological data,
which is represented in our simulated data by spurious
vertex similarities.

Availability and requirements

The GraphAlignment algorithm is provided as an R pack-
age available from Bioconductor [www.bioconductor.org]
and runs on all major platforms. Computationally inten-
sive routines are coded in C. The software package can be
used freely and with no restrictions for non-commercial
purposes. It contains a code implementing the Jonker-
Volgenant algorithm [41] to solve linear assignment prob-
lems. The code was written by Roy Jonker, MagicLogic
Optimization Inc. and is copyrighted, 2003 MagicLogic
Systems Inc., Canada. The code may be used freely for
non-commercial purposes. For full details see the package
vignette, the web page [http://www.thp.uni-koeln.de/~
berg/GraphAlignment] and the case studies [28,31].

Additional file

Additional file 1: The Additional file 1 contains the codes used to
generate the network instances and to find the optimal alignment by
GraphAlignment and Graemlin 2.0, Figures S1 and S2. Further, it
contains Figure S3 with the matrix of vertex similarities © (i, /") and the
matrix of correlations between the edge weights of vertices i in Gand /' in
G for the scenarios (i) and (ii). Figures S4 and S5 give the computational
complexity and accuracy of the GraphAlignment and Gaemlin algorithms in
scenario (ia) with the edge weights drawn from the normal distribution.
Finally, Table S1 compares the GraphAlignment and Graemlin performance
on empirical gene co-expression networks.
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