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Gene regulation is governed by a core network in
hepatocellular carcinoma
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Abstract

Background: Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide, and the mechanisms
that lead to the disease are still relatively unclear. However, with the development of high-throughput technologies
it is possible to gain a systematic view of biological systems to enhance the understanding of the roles of genes
associated with HCC. Thus, analysis of the mechanism of molecule interactions in the context of gene regulatory
networks can reveal specific sub-networks that lead to the development of HCC.

Results: In this study, we aimed to identify the most important gene regulations that are dysfunctional in HCC
generation. Our method for constructing gene regulatory network is based on predicted target interactions,
experimentally-supported interactions, and co-expression model. Regulators in the network included both
transcription factors and microRNAs to provide a complete view of gene regulation. Analysis of gene regulatory
network revealed that gene regulation in HCC is highly modular, in which different sets of regulators take charge of
specific biological processes. We found that microRNAs mainly control biological functions related to mitochondria
and oxidative reduction, while transcription factors control immune responses, extracellular activity and the cell
cycle. On the higher level of gene regulation, there exists a core network that organizes regulations between
different modules and maintains the robustness of the whole network. There is direct experimental evidence for
most of the regulators in the core gene regulatory network relating to HCC. We infer it is the central controller of
gene regulation. Finally, we explored the influence of the core gene regulatory network on biological pathways.

Conclusions: Our analysis provides insights into the mechanism of transcriptional and post-transcriptional control in
HCC. In particular, we highlight the importance of the core gene regulatory network; we propose that it is highly
related to HCC and we believe further experimental validation is worthwhile.
Background
Hepatocellular carcinoma (HCC) is the major histological
subtype of liver cancer, and is among the most lethal can-
cers worldwide. The high cancer rates are especially found
in the East, South-East Asia and sub-Saharan Africa [1].
Infection with hepatitis B (HBV) or C (HCV) viruses was
found to be the main cause of the development of HCC in
developing countries [1,2]. However, the current know-
ledge regarding the mechanisms of molecule interactions
that lead to the disease pathogenesis is still quite limited
[2].
With the development of high-throughput technolo-

gies such as microarray and next-generation sequencing,
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it is possible to create a systematic view of biological sys-
tems to improve our understanding of the roles of genes
associated with diseases [3]. Since the abnormal state of
proteins involved in diseases results from the altered ex-
pression of genes, analysis of the mechanisms of mol-
ecule interactions in the context of gene regulatory
networks (GRNs) can reveal the specific sub-networks
that lead to the dysfunction of regular biological systems
[4].
GRNs are modelled as directed networks where inter-

actions are directed from regulators to targets. Gene
regulation is controlled by both transcription factors
(TFs) and microRNAs (miRNAs). Transcription factors
are proteins that bind to the promoter regions of target
genes, and function by activating or inhibiting the ex-
pression of targets. For example, P53 [5], c-Myc [6] and
E2F-1 [7] are frequently reported to be dysfunctional
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TFs in HCC. Moreover, miRNAs, a type of short non-
coding RNAs, are involved in the post-transcriptional
regulation of genes, either by degrading target mRNAs
or by inhibiting the translation procedure [8,9]. It is
known that miRNAs play a critical role in human cancer
generation by various mechanisms [10,11]. Two represen-
tative miRNAs, miR-122 and miR-21, are highly expressed
in liver tissue, where miR-122 is down-regulated and miR-
21 is up-regulated in HCC [12]. One of the experimentally
validated targets of miR-122 is Cyclin G1, thus, repression
of miR-122 expression would enhance the cell cycle
process and promote cell proliferation [13]. In turn, onco-
genic miR-21 blocks the expression of apoptosis-related
genes [14]. MiRNAs are transcribed from the genome con-
tained in the nucleus, and hence expression of miRNAs is
also regulated by TFs. As a result of mutual regulation by
both miRNAs and TFs, gene regulation is assembled
within the structure of a network.
Several studies have focused on the construction of

GRNs. The first category of methods is the utilization of
interactions from target predictions [15]. In this category,
the relationships between TFs/miRNAs and their targets
are predicted through sequence alignment or thermody-
namics models. However, a major drawback of target
prediction methods is the high false-positive rate, and as
a result, GRNs constructed in this way contain a lot of
noise. Therefore, analysis of GRNs can only provide the
global attributes of the system, while the predictions for
local regulations may not be reliable. The second category
of methods is the integration of both target predictions and
gene expression data. It can be regarded as the intersection
of GRNs constructed by target predictions and GRNs
constructed by co-expression models. Target prediction
results only provide information regarding potential
physical interactions between regulators and targets. The
accuracy of the regulations can be validated by the correla-
tions between regulators and targets on the expression level.
However, utilizing expression data alone cannot fully cap-
ture the real regulations because correlations cannot eluci-
date whether the interactions are directly with the
regulators or indirect. The most used methods are Pearson
correlation [16] or multivariate linear regression model
[17,18]. Additionally, with the rapid increase in the last few
years in the validation of regulatory relationships using ex-
perimental approaches such as microarray, deep sequencing
and ChIP-seq [19-21], these high quality data will no doubt
contribute to the construction of networks.
In this study, we aimed to identify the most important

gene regulations that are dysfunctional in HCC generation.
Our model for GRN construction is based on predicted tar-
get interactions, experimentally-supported interactions and
co-expression modeling. The network includes both TFs
and miRNAs. We found the regulation strengths were quite
different from TFs to miRNAs, thus cutoffs of correlation
were set for TFs and miRNAs independently. A topological
criterion was applied to select proper cutoffs for correla-
tions in order to ensure that the final GRN made biological
sense.
Analysis of the GRN revealed that gene regulation in

HCC is highly modular, where different sets of regulators
take charge of specific biological processes. We found
that miRNAs mainly control biological functions related
to mitochondria and oxidative reduction, while TFs con-
trol immune responses, extracellular activity and the cell
cycle. On the higher level of gene regulation, there exists
a core GRN that regulates different modules. The core
GRN was critically important in maintaining the stability
and robustness of the network. We postulate that it is
the central controller of gene regulation in this context.
In the core GRN, most of the regulators have been previ-
ously reported to relate to HCC, thus validating our find-
ings. Finally, we explored the influence of the core GRN
on biological pathways.

Results and discussion
We focused on the dysfunction of gene regulation in HCC
in which HBV is endemic. Microarray data was downloaded
from the GEO database [GEO: GSE22058] [22], and
genome-wide expression profiles of both miRNAs and
mRNAs were examined.

Network construction model
First, a candidate network was established by combining
predicted target interactions and experimentally-supported
interactions involving both TFs and miRNAs. Since this
kind of network contains a lot of noise and does not relate
to specific tissue, we re-filtered interactions using a co-ex-
pression model based on microarray data.
Co-expression models are frequently used to establish

relationships between genes expressed in specific tissues
[23]. In these models, if two genes share similar expres-
sion profiles, as measured by significant Pearson correl-
ation coefficients, the two genes are connected in the
network. In this step, we only calculated correlation coef-
ficients between regulators and targets in the candidate
network. If a TF/miRNA has similar or reversed expres-
sion patterns to some genes, then there is high probabil-
ity that the TF/miRNA regulates these genes. Since the
co-expression model cannot tell whether the regulation
is direct or indirect, and interactions from the candidate
network can only provide potential physical interactions,
it is necessary for the integration of both data sources to
provide stronger evidence for the gene regulations. Thus,
the final GRN can be regarded as the intersection of the
candidate network and the GRN constructed by the co-
expression model. We first eliminated outliers in the ex-
pression profile data, and then calculated the correlation
coefficients between regulators and targets using the
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Pearson method. The final regulations between regulators
and targets must satisfy the following three conditions: 1)
there exists a predicted target interaction or experimentally-
supported interaction; 2) the correlation coefficient between
miRNA and its targets should be negative; 3) the absolute
value of the correlation coefficient is larger than the cutoff.

Selection of cutoffs for correlation coefficients
There are two types of regulators in the GRN, TFs and
miRNAs, and we found that the regulation strength differs
between the two. If the GRN is separated into a network
where only TFs behave as regulators, and a network where
only miRNAs are the regulator, under the same cutoff of
correlation, the number of miRNAs is much less than that
of TFs (Figure 1). For example, when the cutoff for the
absolute value of correlation between the regulators and
targets is set to 0.6, the number of TFs is 101, while only
ten miRNAs are retained in the GRN. If we take the same
cutoff for both TFs and miRNAs, there would be a high
difference between the number of the two kinds of regula-
tors, and the final GRN is highly biased in favor of TFs.
The difference in the mechanism of TFs and miRNAs to
regulate transcription is probably the reason for the differ-
ent regulation strength. As a result, the cutoff for correla-
tions of interactions where TFs are regulators and the
cutoff for correlations of interactions where miRNAs are
regulators were chosen independently.
The selection of cutoffs was processed through a topo-

logical criterion [24], which means the final GRN must be
approximately scale-free. The scale-free network is common
in biological networks where a very small amount of nodes
connect to many neighbor nodes, while the remaining
Figure 1 Number of regulators in the GRN, where only TFs or
miRNAs are taken as regulators.
majority of nodes have extremely small connections [25].
The nodes with high numbers of connections are called
hub nodes, and they are important within the network. It is
known that some important TFs and miRNAs regulate
many targets that result in cancer generation, and they are
the hub regulators in GRNs.
The characteristics of scale-free network are assessed

from node degree distribution. The degree for a node is
the number of neighbor nodes to which the node directly
connects. In a scale-free network, the degree distribution
is always represented as a power-law distribution [26] or
exponential truncated power-law distribution [27]. We
fitted the degree distribution of the GRN constructed
from different cutoffs of correlation coefficients to
power-law distribution and exponential truncated power-
law distribution. The R2 value was used to measure the
goodness-of-fit for these two distributions. Since the
GRN is a directed network, the degree distribution is
divided into in-degree distribution and out-degree distri-
bution. Figure 2 illustrates how the cutoff for the abso-
lute value of correlations affects R2 and the size of the
GRN. For GRNs where only TFs are regulators, if no ex-
pression data are integrated (cutoff = 0), both of the in-
degree distribution and out-degree distribution are com-
pletely not power-law (R2� 0). In other words, GRNs
constructed only from candidate networks are not scale-
free, and thus may not make biological sense. The same
condition also occurs for the out-degree distribution of
GRNs where only miRNAs are regulators. It highlights
the importance for the use of expression data. In most
circumstances, as the cutoff of the absolute correlation
increases, R2 increases while the size of the GRN
decreases, thus a trade-off between high R2 values and
the correct size of the GRN is made. We chose cutoffs
with the criterion that the R2 value first reaches a steady
state for both in-degree distribution and out-degree dis-
tribution. In this study, the cutoff for the absolute value
of correlation for interactions where TFs are regulators
was set to 0.6, and that for miRNAs was set to 0.45.

Network overview
After integrating predicted target interactions, experimen-
tally-supported interactions and the co-expression model,
the network was constructed with 1844 nodes. The biggest
connected component contained 1691 nodes (91.7 % of all
nodes) and was used for downstream analysis (Figure 3).
The GRN constructed from the biggest connected compo-
nent contained 80 miRNAs, 64 TFs, and 4199 interactions,
which were composed of 1111 regulations from miRNAs to
genes, 74 regulations from TFs to miRNAs and 3014 regu-
lations from TFs to genes. Among the GRN, there were 484
interactions that were supported by experimental data. The
complete adjacency list of the GRN can be found at
Additional File 1.



Figure 2 Selection of cutoffs for correlations between regulators and targets by topological criterion. The first row represents the GRN
where only TFs are regulators, and the second row represents GRN where only miRNAs are regulators. The cutoff refers to the absolute value of
correlation coefficient.
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Network modules
Genes in biological networks always have a structure in
which genes are more closely connected [28]. This kind
of sub-network is termed as a network module or com-
munity. We used walktrap algorithms [29] to find
densely connected sub-networks where the absolute
values of correlations were taken as the weight of edges.
The six largest modules (covered 79.7 % of all nodes in
GRN) are illustrated in Figure 3, and a summary of the
six modules is listed in Table 1. Heatmaps of expression
profile of regulators and targets in the six modules are
illustrated in Figure 4.
For HBV-induced HCC, the immune response of the

host to clear abnormal pathogens is inhibited. Target genes
in Module 1 are highly related to the immune response,
and most of genes are down-regulated. There are seven
main regulators in Module 1, in which RUNX3,
POU2AF1, POU2F2, FLI1 and PRDM1 were significantly
down-regulated (p-value< 1e-6). RUNX3 has been sug-
gested to be a tumor suppressor, and its gene is frequently
transcriptional silenced in cancer [30]. POU2F2, with its
factor POU2AF1, acts as a cell survival factor in immune
cells, and plays a central role in lymphoid-specific tran-
scription of immunoglobulin genes [31]. FLI1 can affect
apoptosis in tumor cells [32], and PRDM1 is a candidate
tumor suppressor gene related to immune systems [33].
Cell adhesion is generally suppressed in cancers.

Reduced cell adhesion allows cancer cells to disrupt the
histological structure, resulting in the morphological fea-
tures of malignant tumors [34]. Target genes in Module
2 related to extracellular activities are down-regulated.
There are six main regulators in Module 2, in which
HAND2, TCF4, FOXF1 and ARID5B (p-value< 1e-3)
were significantly down-regulated, and FOXF2 was
significantly up-regulated (p-value< 1e-4). HAND2 is
reported to regulate extracellular matrix remodeling [35].
TCF4 is a key factor in the Wnt pathway and is involved
in HCC cell proliferation [36]. FOXF1 deficiency was
reported to decrease cell adhesion [37], and FOXF2 is
important for extracellular matrix production [38].
The mitochondrion is a key organelle in cell metabolism.

It is not only a power factory, but also regulates cell death
pathways. In cancer cells, as a result of rapid proliferation,
oxidative phosphorylation is suppressed in order that
mitochondria consume less oxygen [39]. In our results,
targets in Modules 3–5 are mostly related to the functions
of mitochondria, such as oxidative reduction and metabol-
ism. Among the regulators, miR-150, miR-146a, miR-199a,
miR-214, together with NR1I3, AR, NR1I2 and ESR1 were
significantly down-regulated (p-value< 1e-6) and miR-221
was significantly up-regulated (p-value< 1e-12). MiR-150
has been reported to inhibit liver cancer by negative regu-
lation of c-Myb [40]. A polymorphism in miR-146a is
associated with risk of HCC [41], while miR-199a induces
apoptosis and inhibits the ERK pathway [42]. MiR-214
induces cell survival by targeting the PTEN/Akt pathway



Figure 3 The gene regulatory network in HCC. Different colors represent nodes in different network modules. Size of nodes is proportional to
the out-degree of nodes. Black edges represent regulations in the core GRN, and the width of the edges in the core GRN are proportional to the
edge-betweenness values calculated from the global GRN.
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to suppress apoptosis [43], and mir-221 overexpression
contributes to liver tumorigenesis [44]. Androgen is
related to HCC, and thus its receptor, AR, also plays an
important role [45]. NR1I2 and NR1I3 are related to lipid
metabolism and HCC generation [46]. Finally, ESR1 is
associated with susceptibility to HCC in HBV carriers [47].
Table 1 Summary of GRN modules

Index Size Main regulators

1 419 RUNX3, RUNX2, POU2AF1, POU2F2, FLI1, BHLHB3, PR

2 328 HAND2, TCF4, FOXF1, FOXF2, ARID5B, FOXL1

3 270 miR-150, miR-142, miR-155, miR-181a, miR-342, miR-2
miR-214, HNF4A

4 152 AR, miR-127, miR-377, miR-323, miR-299, miR-221, mi
miR-18a, miR-296, miR-154, miR-431, miR-382, miR-36

5 103 NR1I3, NR1I2, ESR1

6 75 E2F1, E2F7

3, 4, 5 525 NR1I3,miR-150, miR-142, miR-155, miR-181a, AR, NR1I
146a, HNF4A, miR-199a, miR-218, miR-214, miR-127, m
SOX4, miR-323, miR-299, miR-221, miR-23a

Regulators are sorted by the number of targets. Regulators that regulate more than
applied by DAVID to find common functions of genes. Size of each module corresp
Additional File 2.
It is a common characteristic that cell proliferation is acti-
vated in cancer tissues, thus it would be expected that genes
related to the cell cycle are all up-regulated (Module 6).
Two regulators, E2F1 and E2F7, were significantly up-
regulated (p-value< 1e-16), and are well-known TFs in
E2F family that controls the cell cycle [48].
Target gene functions

DM1 Immune response,Plasma membrane,Cell
activation

Extracellular region,Cell adhension

7a, miR-146a, miR-199a, Mitochondrion,Oxidation reduction,
Mitochondrial envelope

R-433, miR-376a, miR-136,
9, miR-200b

Oxidation reduction,Cofactor metabolic
process,Steroid metabolic process

Oxidation reduction,Microsome,Fatty acid
metabolic process

Cell cycle,Mitosis,Chromosome,Nuclear
lumen

2, miR-342, miR-27a, miR-
iR-132, ESR1, miR-377,

Mitochondrion,Oxidation reduction,Cofactor
binding,

80 % of genes in each module are listed. Gene Ontology enrichment was
onds to the number of nodes. The detailed enrichment results can be found in



Figure 4 Heatmap of expression values of genes in the six modules. Heatmap of expression values of genes in the six modules identified in
the network shown in Figure 3. For each figure, rows correspond to genes and columns correspond to samples in heatmaps. Expression values
are logarithm of ratio value using base 2. The first column in front of each heat map is the t-value for each gene, and the color of the t-value
represents whether the gene is up-regulated (red) or down-regulated (green). For each heatmap, the expression profile for targets and regulators
are illustrated separately. Only expression for regulators listed in Table 1 is illustrated.

Table 2 Enriched miRNA-associated functions in the GRN

Term p-value FDR

Human embryonic stem cell (hESC) regulation 8.46e-14 3.64e-12

Inflammation 1.00e-08 2.15e-07

Hematopoiesis 8.00e-08 1.15e-06

Apoptosis 2.70e-07 2.90e-06

Cell cycle-related 4.90e-07 3.81e-06

Hormones regulation 5.60e-07 3.81e-06

Onco-miRNAs 6.20e-07 3.81e-06

Immune response 1.60e-06 8.60e-06

MiRNA tumor suppressors 2.21e-06 1.06e-05

Cell death 4.70e-06 2.02e-05

Cell differentiation 2.40e-05 9.39e-05

Angiogenesis 3.06e-05 1.10e-04

Cell motility 2.34e-04 7.48e-04

Epithelial-mesenchymal transition 2.60e-04 7.48e-04

HIV latency 2.61e-04 7.48e-04

Brain development 2.97e-04 7.99e-04

Chromatin remodeling 3.36e-04 8.31e-04

Immune system 3.48e-04 8.31e-04

Carbohydrate metabolism 1.04e-03 2.35e-03

Akt pathway 1.29e-03 2.78e-03

Bone regeneration 1.72e-03 3.53e-03

Cardiogenesis 3.13e-03 6.12e-03

Cell proliferation 3.95e-03 7.39e-03
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To summarize, gene regulation is modular in that each
set of regulators regulate specific biological processes.
Additionally, the two types of regulators have a clear
division of control. We showed that miRNAs control
biological functions related to mitochondria and oxida-
tive reduction, while TFs control the immune response,
extracellular activities and the cell cycle.

MiRNA-associated functions in the GRN
To gain a full insight into the functions of miRNAs in the
GRN, we performed TAM analysis [49]. The TAM tool
takes a list of miRNAs, and returns the enriched functions
compared to the whole human miRNAs. Our results for the
enriched miRNA-associated functions are listed in Table 2
(FDR< 0.01). As expected, most of the functions are highly
related to cancer, such as onco-miRNAs and cell prolifera-
tion. Also, we found that functions related to the immune
response are enriched for miRNAs. However, according to
our analysis of network modules, TFs are mainly respon-
sible for the immune response. From this we inferred that
there may be a mechanism by which miRNAs regulate
these TFs and further regulate such TF-associated functions
indirectly. This concept will be discussed in the following
sections in detail. Additionally, we found miRNAs in the
GRN are highly enriched in HCC (p-value=5.75e-12, using
HMDD [50] as the miRNA category).

Core gene regulatory network
Although each network module can provide specific
control of biological functions, to maintain the integ-
rity of the biology system, dependency exists among
modules. Beyond the modularity of gene regulation,
there should be a central mechanism to regulate the
expression pattern of each module at a higher level.
Thus, we introduced the concept of the core GRN
that contains the most important regulations among
regulators and behaviors as a control center for the
global GRN.
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The core GRN is the sub-network extracted from the glo-
bal GRN, where the nodes in the core GRN are only TFs
and miRNAs. Edges in core GRN have the highest edge-
betweenness (larger than 99 % quantile) calculated from the
global GRN. Edge-betweenness is defined by the number of
shortest paths going through an edge in the network, and
in the context of GRN, edge-betweenness measures the
number of targets that a regulation would affect. In the core
GRN, there were 32 nodes and 42 edges. Among them, nine
interactions have been supported by previous experiments.
In particular, 17 additional experimentally-supported inter-
actions can be inferred from the core GRN indirectly (the
list can be found in Additional File 3). The core GRN is
illustrated in Figures 3 and 5, and the adjacent list of core
GRN can be found in Additional File 4.
The number of edges in the core GRN only covers 1.0 %

of all edges in the global GRN, and deletion of these edges
does not affect the global GRN's connectivity. Thus, it can
be inferred that the local attributes of the network will not
be affected by the core GRN. However, the sum of the
edge-betweenness takes up 65.8 % of the sum of edge-
betweenness in the global GRN. This means that most of
the information is controlled by the core GRN, and would
affect most of the nodes in the global GRN. When deleting
these important edges, the global attributes of the network
would be altered and the system would be susceptible to
failure.
The core GRN’s role has two aspects. First, it adjusts the

regulatory network on the top level. It divides the whole
network into two layers with a clear boundary. In the
bottom layer, proteins are synthesized under the regulation
of TFs and miRNAs, to play roles within or outside of cells.
While in the top layer, the core GRN controls what type of
proteins would be expressed at what time and at what cellu-
lar location. As a result, the entire GRN is organized as a
controllable and distributed system. Second, the core GRN
can improve the redundancy of the regulatory network.
Regulators and regulatory relationships in the core GRN
can control more than one module, and regulations of the
non-regulator proteins are influenced by the core GRN
through a variety of paths. Therefore, when a regulation
path does not work for some proteins, the system will
assign other paths to process regulations in order to avoid
the overall collapse caused by a small portion of damage. In
addition, a large number of feedforward and feedback loops
exist in the core GRN, which contribute to the flexibility, re-
siliency and stability of the core GRN, and further to the
stability of the whole regulatory network.
In the core GRN, most of the regulators are related to

cancers. PBX1 [51], TWIST1 [52], HNF4A [53], ERG [54],
FOXA2 [55], NR2F2 [56], FLI1 [57], GLI2 [58], RARB [59],
RUNX3 [30], BHLHB3 [60], RUNX2 [61], TCF4 [36] and
FOXF1 [62] are reported TFs related to cancers. After
querying the human microRNA disease database (HMDD)
[50], we found miR-21 [63], miR-199a [42], miR-155 [64],
miR-142 [65], miR-181a [66], miR-146a [41], and miR-150
[40] are reported miRNAs related to cancers. Especially,
there is direct evidence for the involvement of TWIST1,
HNF4A, GLI2, RARB, RUNX3, TCF4, FOXF1, miR-21,
miR-199a, miR-155, miR-142, miR-146a, miR-181a, and
miR-150 in HCC generation.

Transcription-level regulation of biological pathways
In the complete cellular system, there exist several kinds of
biological networks: metabolic networks containing chem-
ical reactions between metabolites and enzymes, protein-
protein interaction networks containing protein modifica-
tion and signaling transduction, and the gene regulatory
network. The aim of GRN control is to regulate the quantity
of downstream proteins, and to further influence the
protein-protein interaction and metabolic networks. For a
type of specific biological network, pathways are a set of
genes and molecules that act together in the form of both
metabolic and protein-protein interactions to carry out cer-
tain biological functions. It may explain how pathways are
affected in diseases from the viewpoint of gene regulation of
pathways. Thus, we predicted the regulations of KEGG
pathways by the GRN. We found enriched pathways from
all genes in the GRN, and the significant pathways are listed
in Table 3 (FDR< 0.05). Most of the enriched pathways are
highly related to HCC, such as fatty acid metabolism, which
is associated with tumors [67] and cell adhesion. An ex-
ample of the regulation of the fatty acid metabolism path-
way is illustrated in Figure 6, where the top part is the GRN
level and the bottom part is the pathway level. It may pro-
vide insights to explain how fatty acid metabolism is altered
under the control of the GRN. For regulations of all signifi-
cant pathways by core the GRN, readers can refer to Add-
itional File 5.

Conclusions
In this study, we established the gene regulatory network
that is involved in HCC generation. We revealed that the
GRN is modular, where different sets of regulators take
charge of specific biological functions. Among them,
miRNAs mainly regulate mitochondria and oxidative reduc-
tion, while TFs regulate the immune responses, extracellular
activity and the cell cycle. At a higher level, a core GRN
exists to organize regulations among different modules and
to maintain the robustness of the whole network.
Our strategy for constructing the GRN has two advan-

tages. First, the interactions were integrated from three data
sources, which are target prediction, experimentally-sup-
ported interactions and microarray data. Target prediction
provides potential evidence for direct physical interactions,
while microarray data can measure the correlations between
regulators and targets. Moreover, experimentally-supported
interactions can help to improve the quality of the network.
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Figure 5 Core gene regulatory network. Different colors represent the different modules to which the nodes belong. The color for each
module is the same as the color illustrated in Figure 3. Black edges represent the interactions are supported by experiments.
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Three data sources assign relations to regulators and targets
from different aspects, and the integration of the three data
sources can make the result more reliable. Second, cutoff of
correlations for TFs and miRNAs were set independently of
one another. We found that the regulation strength differed
from TFs to miRNAs, and the reason for this unequal
strength is probably due to the mechanisms of the two
kinds of regulators. The selection of cutoffs was processed
by a scale-free topological criterion to ensure the final net-
work is biologically sensible.
HCC is a complex disease that involves various molecule

interactions. Analysis of the gene regulatory network can
help to reveal the mechanisms involved in the development
of HCC. In this article we applied a strategy to reveal the
most important regulations at the transcriptional level and
post-transcriptional level from a systematic view. The core
gene regulatory network proposed is highly related to HCC,
and we believe it will provide valuable insights for further
experimental validations.

Methods
Processing of microarray data
Microarray data for liver cancer was downloaded from
the GEO database [GEO: GSE22058]. The experiment
examined genome-wide expression profiles of both
miRNAs and mRNAs from paired tumor (TU) and adja-
cent non-tumor tissues (AN) from a cohort of 96 HCC
patients. All HCC patients were infected by HBV. We
utilized intensity values that have been normalized by
RMA algorithm, and combined the intensities of tumor
and adjacent non-tumor tissue into ratio values. To
avoid the occurrence of the division of small intensities
leading to high ratio values, we added a penalized term α
to calculate the ratio, as in Formula 1, where α is the
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Figure 6 Gene regulation of the fatty acid metabolism pathway by th
miRNAs; Nodes in blue represent genes in pathways.

Table 3 Enriched KEGG pathways of genes in the GRN

KEGG pathway p-value FDR

hsa00071:Fatty acid metabolism 1.04e-06 1.93e-04

hsa04660:T cell receptor signaling pathway 1.69e-06 1.56e-04

hsa04514:Cell adhesion molecules (CAMs) 7.74e-06 4.77e-04

hsa04640:Hematopoietic cell lineage 1.25e-04 5.75e-03

hsa04512:ECM-receptor interaction 2.42e-04 8.91e-03

hsa04610:Complement and coagulation cascades 3.18e-04 9.76e-03

hsa03320:PPAR signaling pathway 3.18e-04 9.76e-03

hsa00280:Valine, leucine and isoleucine degradation 3.90e-04 1.03e-02

hsa05340:Primary immunodeficiency 4.71e-04 1.08e-02

hsa00620:Pyruvate metabolism 4.98e-04 1.02e-02

hsa04510:Focal adhesion 6.56e-04 1.21e-02

hsa00830:Retinol metabolism 1.21e-03 2.02e-02

hsa04666:Fc gamma R-mediated phagocytosis 1.48e-03 2.26e-02

hsa00640:Propanoate metabolism 3.06e-03 4.27e-02
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mean value of 25 % quantile of intensity in tumor and
adjacent non-tumor respectively.

ratio ¼ log
intensityTU þ α

intensityAN þ α

0
@

1
A

α ¼ q0:25 intensityTU
� �þ q0:25 intensityAN

� �
2

ð1Þ

Since there are multiple probes for some genes, the ratio
values for genes were merged by averaging the ratio of their
probes. After merging multiple probes, in total there were
18503 genes and 202 miRNAs. These genes and miRNAs
were taken as the candidate list in which we looked for gene
regulations.

Target prediction
Promoters of genes and miRNAs were retrieved from
UCSC genome browser (hg19) [68], and the upstream
AF1

miR−155

miR−142

DSB DCI ALDH9A1 PECI ACADS

Pathway−level

ALDH7A1 ADH6

GRN−level

miR−342

A miR−21

R−146a

e core GRN. Nodes in green represent TFs; Nodes in orange represent
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5 kb sequences were taken. We used TFs identified in
the TRANSFAC database [69] and utilized MATCH
[70] to predict regulations of genes by TFs and
miRNAs by TFs. MATCH was executed using the de-
fault settings. Regulations of genes by miRNAs were
predicted by TargetScan 6.0 [71]. We first obtained
miRNA lists containing broadly conserved miRNA
families, conserved miRNA families and poorly con-
served miRNA families, and then retrieved web pages
of conserved targets for each miRNA family using the
TargetScan on-line search tool. We analyzed web
pages with details of miRNA targets, and noted all
the interactions listed. In the target prediction proced-
ure, after mapping to existing gene lists and miRNA
lists obtained through microarrays, we identified
1450405 TF regulations of genes, 27077 TF regula-
tions of miRNAs and 277392 miRNAs regulations of
genes. We did not use species conservation informa-
tion in the TF target prediction procedure and did
not make any restriction on miRNA targets predic-
tions because some regulatory steps are not conserved
and the use of the species conservation would miss
these positive interactions.

Experimentally-supported interactions
Experimentally-supported regulations of targets by
TFs were downloaded from the ChEA manual data-
base (a collection of TF-to-gene regulations from
ChIP-chip and ChIP-seq publications) [19]. Regula-
tions from miRNAs to targets were downloaded from
TarBase 6.0 [20]. Regulations from TFs to miRNAs
were downloaded from TransmiR 1.1 [21]. After map-
ping to existing gene lists and miRNA lists obtained
through microarrays, there were 85025 interactions
from TFs to genes, 15500 interactions from miRNAs
to genes and 202 interactions from TFs to miRNAs
that have been experimentally validated.

Co-expression model
We only considered correlations between regulators and
targets that have predicted target interactions. We
assumed the expression vector for a certain regulator as y
and the expression vector for one of its targets as x. First
univariate linear regression was applied to y and x, and
then Cook’s distance was calculated to estimate the validity
of the data points. We set data points as outliers where
Cook’s distance were larger than 0.5. The outliers were
then eliminated, and the Pearson correlation coefficient
between regulator and target was calculated.

Topological criterion
We denoted the node degree as k. For one specific
form of network, k follows a power-law distribution
[26] (Formula 2). Networks with such attributes are
well-known as scale-free networks. In these networks,
a minority of nodes dominates most of the connec-
tions; however in the real world, a lot of biological
networks such as protein-protein interactions, metab-
olism networks and transcriptional regulatory net-
works are thought to be scale-free. Thus we assumed
scale-free is an important attribute for large biological
networks. Under some conditions when the size of
the network is moderate or even small, the degree
distribution would be shifted to an exponential trun-
cated power-law distribution [27] (formula 3). For the
construction of GRNs from the co-expression model,
different cutoffs of absolute value of correlation coef-
ficients would result in different networks. The cutoff
was selected under the criterion that the final network
is approximately scale-free, which is measured by the
degree distribution. The real degree distribution in
the GRN is fitted to the power-law distribution or the
exponential truncated power-law distribution, and the
R2 value is used to measure the goodness-of-fit. Since
the GRN is a directed network, the distribution of de-
gree is divided into in-degree distribution and out-de-
gree distribution. In Formulas 2 and 3, γ, λ and α are
network parameters.

P kð Þ � k−γ ð2Þ
P kð Þ � k−λe−αk ð3Þ

Functional Enrichment
Functional enrichment was applied to evaluate whether a
group of genes share common biological functions. We
used DAVID [72] to perform Gene Ontology enrichment
and pathway enrichment. For Gene Ontology enrichment
of genes in each module, we selected GOTERM_BP_FAT,
GOTERM_CC_FAT and GOTERM_MF_FAT as the gene
set categories. For pathway enrichment of whole genes in
the GRN, KEGG was selected as the gene set category.
Functional enrichment for miRNAs was applied by

TAM [49] to evaluate whether a group of miRNAs regu-
late common functions or are involved in common dis-
eases. We used miRNAs in the GRN as the candidate
miRNA list, and looked for over-represented functions
under the category of ‘miRNA function’. We selected all
miRNAs in TAM as background, and the analysis was
performed under miRNA set version 2. Since we did not
take all miRNA categories implemented in TAM, the
false discovery rates (FDRs) were re-calculated using BH
method [73].

Network analysis
The igraph package (version 0.5.5) [74] in R statistical
environment was utilized to analyze networks. Cytoscape
(version 2.8.2) was used to visualize the network [75].
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