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Abstract

Background: Mathematical modelling has become a standard technique to improve our understanding of complex
biological systems. As models become larger and more complex, simulations and analyses require increasing
amounts of computational power. Clusters of computers in a high-throughput computing environment can help to
provide the resources required for computationally expensive model analysis. However, exploiting such a system can
be difficult for users without the necessary expertise.

Results: We present Condor-COPASI, a server-based software tool that integrates COPASI, a biological pathway
simulation tool, with Condor, a high-throughput computing environment. Condor-COPASI provides a web-based
interface, which makes it extremely easy for a user to run a number of model simulation and analysis tasks in parallel.
Tasks are transparently split into smaller parts, and submitted for execution on a Condor pool. Result output is
presented to the user in a number of formats, including tables and interactive graphical displays.

Conclusions: Condor-COPASI can effectively use a Condor high-throughput computing environment to provide
significant gains in performance for a number of model simulation and analysis tasks. Condor-COPASI is free, open
source software, released under the Artistic License 2.0, and is suitable for use by any institution with access to a
Condor pool. Source code is freely available for download at http://code.google.com/p/condor-copasi/, along with
full instructions on deployment and usage.
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Simulation

Background
Mathematical modelling is becoming increasingly recog-
nized as an important tool in the study of biological sys-
tems [1]. Databases such as BioModels [2] provide access
to peer-reviewed published models, which can be freely
downloaded in the standards-compliant SBML format [3].
Model construction, however, is only the first in a number
of steps that can be used to gain insight into the function
of a complex biological system.
Many models consist of a set of ordinary differential

equations (ODEs) describing how the concentrations of
various chemical species change with time. The dynamic
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behaviour of the model can be examined through inte-
gration of the ODEs, a relatively computationally simple
task. In many cases, it can be helpful to simulate the
model behaviour using a stochastic or hybrid algorithm
[4], which can yieldmore information than a deterministic
solution can provide. Solving a model using a stochastic
method requires more computational power than solv-
ing it deterministically [4], and must be repeated many
times to yield information on the distribution of potential
trajectories.
In addition to examining the dynamic behaviour of a

model, we may also wish to analyse it using techniques
such as sensitivity analysis – examining the influence of
specific model parameters (such as kinetic rate constants)
on a systems-level property (such as the flux through the
main branch of a pathway). Other tasks commonly used
to examine models include optimizations (finding the best
set of parameters to maximize or minimize the value of a
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particular objective function), or parameter fitting (find-
ing the best set of parameters so that the model behaviour
most represents that seen experimentally).

COPASI
A number of software tools are available for biological
systems modelling. Some of these, such as MATLAB, are
very flexible, but require users to have a knowledge of pro-
gramming. Other tools, such as COPASI [5], are designed
with a user-friendly interface, and do not require any pro-
gramming expertise, while still providing sophisticated
algorithms and analyses.
COPASI allows users to construct and analyse mod-

els using a graphical user interface (GUI). Simulations
using a deterministic, stochastic or hybrid method can be
performed at the click of a button. In addition to time-
course simulations, COPASI can perform a range ofmodel
analysis tasks, including steady-state analysis, sensitivity
analysis, parameter estimation, and optimizations.
As models become more detailed and complex, simu-

lation and analysis requires increasing amounts of com-
putational power, potentially requiring more power than
can be offered by even the most high-powered desktop
machine.

Client-server simulation tools
The limitations of using personal computers to perform
computationally intensive simulations have led to the
development of a number of server-based systems biology
tools. These allow a user to set up mathematical models
and to display any results on their local machine, but to
perform computationally-intensive simulations on one or
more remote machines.
One such example is JWS Online [6], a modelling tool

accessed through a web-based Java applet, which per-
forms all simulations on a remote server. The compu-
tational capacity is limited by the performance of the
server, and so it is not ideally suited for computationally
intensive tasks. VCell [7] is another tool for model sim-
ulation and analysis. Models are prepared using a local
Java interface, and simulations are performed on a dis-
tributed computing cluster operated by the VCell team, up
to a maximum of 100 simulation repeats per submission.
Parameter estimations can also be performed, but these
are run locally.
Another way of running simulations remotely is to

incorporate them into an automated distributed workflow,
using a management tool such as Taverna [8]. COPASI
Web Services [9] enables COPASI simulation and anal-
ysis tasks to be incorporated into a distributed work-
flow by setting up COPASI simulation servers to offer
computing cycles. Using automated workflows allows
for very flexible usage patterns, though creating work-
flows can be a complex process. In addition, users

must have the computational resources available for
running simulations.

Condor
Condor is a system for high-throughput computing,
allowing computing jobs to be run on a pool of machines
[10,11]. The pool can contain dedicated computers,
though one of the main strengths of Condor is its ability
to utilize non-dedicated machines during periods when
they would otherwise be idle. For example, in academic
institutions, large numbers of computers are in use during
working hours on weekdays, but will sit unused overnight
and at weekends. Condor is often configured to detect
when a machine is not being used by its owner, and can
then assign queued computing jobs to be run on it. Con-
dor is compatible with most major operating systems,
including Windows, Linux and OSX.
In order to submit a computing job to run on Con-

dor, a job description file must first be prepared. This file
contains information about the executable file to be run,
any files that must be transferred to remote machines,
and the software and hardware requirements of the job,
such as the operating system and minimum amount of
memory required. Once the job description has been pre-
pared, it is submitted, and added to a queue for resources.
A machine known as the Master decides when, and on
which machine each job is to be run.
Condor pools can contain thousands of machines. The

computing power of such pools can be most readily
exploited when a computing task can be split into mul-
tiple, independent, jobs which can be run in parallel.
However, the requirement to split large tasks into multiple
smaller ones, along with a complex Condor job submis-
sion process involving command line tools, makes this
difficult for many users.

Condor-COPASI
COPASI can be used, without any modification, with
high-throughput computing environments such as Con-
dor. However, in order to exploit the parallel nature of a
Condor pool, any simulations or analyses must be manu-
ally split into multiple small, independent jobs a task that
can be difficult. In addition, Condor requires the use of
command-line tools to submit jobs and to monitor their
status. This can be difficult, and may deter many users
from making use of these facilities.
Therefore, we developed Condor-COPASI, a tool which

integrates COPASI with Condor, allowing users to per-
form a selection of model analysis and simulation tasks in
parallel using a Condor pool. Condor-COPASI is designed
to be very simple to use, with all user interaction tak-
ing place through a GUI. The process of splitting tasks
into an optimal number of parallel jobs, and submit-
ting them to the Condor pool is handled automatically,
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without requiring user interaction. Once jobs have been
submitted to the Condor pool, Condor-COPASI monitors
their status, automatically emailing a notification to the
user upon completion. Results can be displayed within the
interface in a variety of formats, including tables and inter-
active graphical displays, or can be exported for further
processing.

Implementation
Condor-COPASI is a server-based application, accessed
by users through a web interface which is compatible with
all modern web browsers. Access to the web interface is
controlled on a per-user basis; the administrator must cre-
ate an account for each user of the system. A database is
used to store user account information, along with infor-
mation about the computing jobs each user has submitted,
such the submission and end times, the number of paral-
lel jobs used and CPU hours used. Historical usage data
is stored, and statistics can be displayed though the web
interface to monitor how the system is being used. Other
files, such as COPASI models, and outputted results are
stored as flat files in a directory of the system.
We designed Condor-COPASI to run as a server-based

application, since the alternative – a local application to be
run on each users machine – would require Condor to be
installed and configured on each individual local machine.
Installing Condor and configuring it to be able to submit
jobs is a complicated process, and in many cases impracti-
cal. In addition, Condor requires that the machine which
is used to submit jobs must remain powered on while
remote jobs are running; an onerous requirement for
many users, particularly when jobs have a long run time
and are submitted from a portable machine. Running as
a server-based application removes this requirement for
the individual users, since only the server must remain
powered on while jobs are running.
Condor-COPASI is written in the Python programming

language [12], using the Django web development frame-
work [13]. It must be installed on a server which has
access to a Condor pool and permission to submit jobs.
Additionally a web server must also be installed (though
this is somewhat standard). Finally, a Django-compatible
database must be available – choices currently include
MySQL, PostgreSQL, Oracle and SQLite.
Condor-COPASI allows users to submit a number of

predefined tasks, each of which is amenable to running in
parallel (see Use Cases for full details). Tasks are submit-
ted by uploading a pre-prepared COPASI model using the
web interface (Figure 1). Condor-COPASI then automati-
cally determines the best way to split the task into parallel,
automatically creates the necessary files, and submits the
parallel jobs to Condor.
While the web interface is written in Python, all simu-

lation and analysis tasks are performed using the COPASI

Simulation Engine. Condor-COPASI works by automati-
cally modifying the XML-based COPASI file format, gen-
erating a custom COPASI model file for each parallel job.
In addition to the model file, a Condor job specification
file is automatically generated for each parallel job. These
files are submitted to the Condor pool, along with a copy
of the COPASI Simulation Engine (CopasiSE) binary for
the appropriate machine architecture. The COPASI Sim-
ulation Engine carries out all computation on the remote
machine, writing output to a text file. These text files
are transferred back to the Condor-COPASI server, where
they are processed and collated.
Various graphical plots can be produced. Static two-

dimensional charts such as depicting the dynamics of
mean and standard deviation of particle numbers in
stochastic simulations are generated using the Python
Matplotlib library [14] (Figure 2, Figure 3). An interac-
tive bar chart, showing maximal and minimal sensitivity
values of various model parameters for different poten-
tial parameter sets is also available. A scroll bar can be
dragged to change the range of the parameter set, while
the chart values update automatically. This feature is pro-
vided using the GoogleMotionChart API [15], the chart is
displayed using a mixture of javascript and flash; all data
is processed and rendered locally, and no data is sent to
Google.

Results
Available use cases
Condor-COPASI currently provides access to seven use
cases, each of which is likely to require significant
amounts of computational power, and can be efficiently
split into smaller independent parallel jobs.

Global sensitivity analysis
The global sensitivity analysis procedure, as described in
[16], involves performing a number of optimizations –
one maximization and one minimization for each param-
eter. Since each optimization can be run independently,
the task can be trivially split, with one parallel job for each
maximization or minimization. For example, a model with
30 parameters for which a sensitivity is to be calculated
will generate 60 parallel jobs.
COPASI provides access to a number of optimization

algorithms, including deterministic such as Truncated
Newton [17] and stochastic such as Particle Swarm [18].
Any of these algorithms can be selected for use in this task.
If a user wishes to try more than one optimization algo-
rithm, multiple tasks should be prepared and submitted,
each with a different algorithm selected.
Results are provided in table format, and through graph-

ical summaries of the importance of each parameter to the
target property of the model. Charts showing progress of
the optimization tasks can also be generated, displaying
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Figure 1 Screenshot of job submission process. A screenshot of the submission process for the global sensitivity analysis task. Other than
preparing a COPASI model file, very little user interaction is required – all aspects of the Condor submission process are handled automatically.

the best optimization value against the number of steps
taken by the algorithm.

Stochastic simulation repeat
This task allows for multiple repeats of a stochastic time-
course simulation to be performed – a necessary proce-
dure to determine the distribution of the trajectories. The
results of each repeat are recorded, and for each time
point particle number means and standard deviations are
calculated. Plots of the results can be displayed in the web
interface, and all result outputs can be downloaded as a
tab-separated text file. Splitting of this task is carried out
using the load balancing algorithm described below.

Parallel scan
The Parameter Scan task in COPASI automatically scans
through various values for one or more parameters, per-
forming a subtask such as steady-state analysis, a time-
course simulation, or an optimization for each set of
parameters. It can also be used to repeat a subtask a

number of times using the same parameter values, or
to sample parameter values from a random distribution.
Condor-COPASI can split this task into parallel, using
a non-overlapping range of parameter values for each
chunk. The number of subtask repeats to perform in
each parallel job is determined using the load balancing
algorithm.
Due to the diverse nature of possible outputs from this

task, Condor-COPASI does not produce graphical plots.
Instead, a text-based output must be prepared for the task
by the user, before the task is submitted. After the task
has finished, a collated text file containing the output from
all parallel jobs is made available to download; this file is
identical to the output that would have been produced had
the parameter scan run on a single machine.

Optimization repeat
Many of the optimization algorithms available in COPASI
are stochastic, and will return a different solution each
time they are run. Condor-COPASI can repeat an optimi-
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Figure 2 Stochastic simulation output screenshot. Screenshot showing showing the output of a stochastic simulation repeat task. For each of
the three chemical species, particle number means and standard deviations are displayed.

zation multiple times, using the same algorithm for each
repeat, and from these repeats, determine the best objec-
tive value and associated parameter set. The number of
optimization repeats to be performed for each parallel job
is determined using the load balancing algorithm. Once
the task has finished running, a COPASI model file con-
taining the best parameter values can be downloaded.

Alternatively, the parameter values can be displayed in the
browser.

Parameter estimation repeat
The Parameter Estimation task in COPASI is able to
find the best parameter set to fit experimental data. Like
the optimization task, many of the algorithms available
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Figure 3 Enlarged stochastic simulation output plot. An enlarged version of the plot shown in Figure 2.

are stochastic, and each time they are run will return a
different solution. Condor-COPASI can repeat a param-
eter estimation multiple times, using the same algorithm
for each repeat, determining the best solution from all
repeats, using the load balancing algorithm to determine
how many repeats to perform in each parallel job. Once
the task has completed, a COPASI model file containing
the best parameter set found by the parameter estima-
tion can be downloaded, or the parameter values can be
displayed on-screen.

Optimization with different Algorithms
Since COPASI has many optimization algorithms avail-
able, and it is not clear which one works best for each
problem, a modeller often wishes to run the problem
through several of them. Condor-COPASI can run an
optimization several times using a different algorithm for
each one. The user can select which algorithms will run,
and can configure all tuning parameters of those algo-
rithms. Each optimization is run as a separate parallel job,
and after all jobs have completed, the best algorithm(s)
are determined. In addition, a COPASI model file contain-
ing the best available parameter set as determined by the
optimization can be downloaded, or the parameter values
viewed in the browser.

Rawmode
The raw mode task is designed for advanced users, and
allows one or more COPASI tasks to be repeated an arbi-
trary number of times. The user is able to specify all
command-line arguments for the CopasiSE binary, and
must specify any required input and output files. One

repeat is performed per parallel job, and any output files
generated must be manually collated and processed by
the user. This mode extends the applications of Condor-
COPASI to a number of other possibilities, however
it requires the user to understand the use of COPASI
through the command line interface, as well as a basic
knowledge of distributed computing.

Load balancing
The Stochastic Simulation, Parallel Scan, Optimization
Repeat and Parameter Estimation Repeat use cases all
involve repeating a particular task multiple times, and
can be run in parallel by performing a certain number
of repeats per job. For these tasks, the user specifies
the total number of repeats to perform, while the num-
ber of repeats to perform per job, and subsequently the
total number of parallel jobs, is determined using a load
balancing algorithm.
The load balancing algorithm constructs the parallel

jobs such that they each run for an approximately equal
length of time, t, a parameter which is set by the system
administrator. The algorithm first measures how long a
single repeat of the task to be performed takes to com-
plete. The parallel jobs are then built up with an appro-
priate number of repeats, such that the total run time of
each job is approximately equal to t. If a single run takes
longer than t, the algorithm will time out, and assign only
one repeat per job.
It is important to choose a good value for t. If it is too

small, each task will produce a large number of parallel
jobs, each with few repeats. In this situation, the overhead
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associated with submitting jobs to the Condor pool will
become a significant factor, and in an extreme situation,
running the job on Condor could take longer than if all
jobs had been run sequentially on a single machine. How-
ever, if t is too large, then each task will produce a small
number of parallel jobs, each taking a long time to com-
plete. In this situation, the computational capacity of the
Condor pool will not be fully exploited, and the benefits
of running in parallel will be negated. In addition, jobs
may run for too long, risking eviction from the machines
they are running on – non-dedicatedmachines in the pool
are normally only available when they would otherwise be
idle, such as overnight and at weekends – meaning there
is often an upper bound on the length of time a job can
run for.
To determine the best value for t, we ran an optimization

repeat task with t values ranging from 0.1 to 1000 min-
utes (Figure 4). We found that setting t to 15 minutes gave
a good trade-off between job submission overhead and
gaining the benefits of running jobs in parallel. However,
factors such as the number of machines in the Condor
pool, and the speed of network communications between
the server and machines in the pool will impact on this
value. Therefore, we advise administrators to consider
adjusting this value if necessary.
We also include an option for applicable tasks to over-

ride the load balancing algorithm, and to construct jobs

with only one repeat per parallel job. This is useful in sit-
uations where the user knows a priori that each repeat is
likely to take longer than t, saving them from having to
wait for the load balancing algorithm to time out, or in sit-
uations where one wishes to make the run-time for each
parallel job as short as possible.

Error handling
Condor handles various types of error – if jobs are evicted
from the machine they are running on, they will automat-
ically be re-queued and executed on an available machine.
In cases where a job fails (for example, due to a malformed
job specification file), the job will remain in the queue,
but will be marked as ‘held’. We note that while Condor
supports application checkpointing for compatible soft-
ware, which allows evicted jobs to resume on a different
machine without loss of computation time, COPASI does
not support checkpointing, so all evicted jobs must begin
again from the start.
Condor-COPASI monitors the status of each submit-

ted job – the queue of jobs is periodically polled to
check for jobs marked as ‘held’, and the exit status of all
completed jobs is checked (a non-zero exit status indi-
cates an error) by parsing the log files. When an error is
detected, Condor-COPASI will try to determine whether
it happened before COPASI was executed on the remote
machine (indicating a malformed job specification file) or

Figure 4 Tuning the load balancing algorithm. The load balancing algorithm uses a parameter t to determine, where possible, the ideal run time
for a single parallel job. We determined that the optimal t value, minimizing the wall clock time for the task, was 15 minutes. At t <= 5 minutes, only
one repeat was performed per parallel job, and the job submission overhead outweighed the benefits of running in parallel. At t >= 20minutes, too
many repeats were performed by each parallel job, and the benefits of running in parallel were reduced. Our tests were performed by running 1500
repeats of an optimization task, where each optimization had a 5 minute run time, on a Condor pool containing 2000 available executing nodes.
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after (indicating a problem with the way the task was set
up in COPASI).
After detecting an error, Condor-COPASI will email

the user to notify them that the task did not complete
successfully. The web interface will display the probable
cause of the job failure (Figure 5), and allow the user
to download a compressed copy of all files generated by
Condor-COPASI, including Condor log files, automati-
cally generated COPASI model files, and any returned
results files. Such files can assist the user in determining
the cause of the failure, and allow them tomanually collate
any results generated if they will be useful.
Finally, Condor-COPASI will log all activity to a text file,

including any errors and exceptions encountered. Exam-
ining this file can be helpful to determine the cause of a
failure if it is otherwise not clear.

Performance
To illustrate the effectiveness of Condor-COPASI, we
collated data from 12 months of real-world usage on our

installation of Condor-COPASI; for each task submitted,
we recorded the total CPU time used by all parallel jobs,
the wall clock time of the task, and the number of par-
allel jobs used. The cumulative total of CPU time used
does not include any time spent queuing for resources to
become available, or any other delays caused by the Con-
dor job submission process. It is analogous to the time
it would take to run each parallel job sequentially on a
single-core local machine, and therefore provides a good
measure of how long the computing task would have taken
to performwithout using Condor-COPASI. Thewall clock
time represents the total waiting time between submis-
sion of the task to Condor-COPASI and its completion,
and includes time where possibly no jobs were running
because the Condor pool was running jobs for other users.
Therefore, the total waiting time for each task is not nec-
essarily dependent only on the nature and size of the task.
The wall clock times reported come from a production
system where Condor was shared with other users and are
therefore indicative of typical usage.

Figure 5 Screenshot of failed job submission. A screenshot of a task which failed to run on Condor. Condor-COPASI is able to handle failed jobs,
and can analyze log files to determine the probable cause of failure, along with suggestions on how to fix any problems.
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In all cases, the tasks were run on our local Condor pool
of approximately 2000 execute nodes. The most common
hardware configuration in the pool is an Intel Core2 Quad
processor at 3GHz, with 4GB of RAM. However, we note
that the pool is heterogeneous, with a number of different
hardware configurations, and nodes continuously coming
online and offline.
To illustrate the improvements in run time using

Condor-COPASI, we calculated the speed-up factor for
each task, defined as CPU time/wall clock time. The
speed-up factors were plotted against the number of par-
allel jobs used (Figure 6). In general, speed-up factors of
between 100 and 103 are seen. For tasks except global
sensitivity analysis, there is a roughly linear relationship
between the number of parallel jobs used, and the speed-
up factor achieved. We note that the global sensitivity
analysis task cannot be parallelized as efficiently as the
other task types, so the highest speed-up factors for this
task type were lower than other task types. Some tasks
achieved a low speed-up factor (< 100); most of these
tasks had a low CPU time and used few parallel jobs, so
there was little benefit to running in parallel. Of particular
note are two global sensitivity analysis tasks with speed-
up factors of around 0.1 and 0.3, with 60 parallel jobs each.
For these tasks, the CPU time used was very low (around
6 minutes), while several hours were spent waiting for
resources in the Condor pool.

Specific examples
To further illustrate the benefits of running tasks on
Condor-COPASI, we describe 5 detailed examples of tasks
that were run (summarized in Table 1), showing the extent
to which they were parallelized, and the speed-up factor
achieved (defined as CPU time/wall clock time).
Global sensitivity analysis – we ran a global sensitiv-

ity analysis on a model of NFκB signal transduction [19],
examining the control of 27 parameters on the frequency
of nuclear NFκB oscillation, using a parameter space con-
sisting of the original parameter values ±20%. The task
completed on Condor-COPASI in approximately 7 hours
using 54 parallel jobs, using a cumulative total of 368
hours of computing time, achieving a speed-up factor of
53.
Global sensitivity analysis – we ran a global sensitivity

analysis on a model of the MAPK signalling cascade [20],
examining the control of 30 parameters on the concentra-
tion of nuclear MAPK-PP, using a parameter space con-
sisting of the original parameter values ±50%. The task
completed on Condor-COPASI in approximately 7 hours
using 60 parallel jobs, using a cumulative total of 90 hours
of computing time, achieving a speed-up factor of 13.
Stochastic simulation repeat – we ran 1,000,000 repeats

of a stochastic time-course simulation of a three-
variable calcium oscillation model [21]. Condor-COPASI

completed the task in approximately 20 hours (includ-
ing time taken queuing for resources and processing the
resulting output files), using a cumulative total of 2,280
hours of computing time across 340 parallel jobs, achiev-
ing a speed-up factor of 114.
Scan in parallel – we used the parallel parameter scan

task to perform 300,000 Monte Carlo simulations of an
NFκB signal transduction model [19]. Condor-COPASI
completed the task in approximately 31 hours, using
14,926 parallel jobs, using a cumulative total of 3,980
hours of computing time, achieving a speed-up factor of
128.
Scan in parallel – we used the parallel parameter scan

task to perform 1,000,000 Monte Carlo simulations of a
MAPK signalling cascade model [20]. Condor-COPASI
completed the task in approximately 3 hours, using 1,849
parallel jobs, using a cumulative total of 429 hours of
computing time, achieving a speed-up factor of 143.

Discussion
Performance
Condor-COPASI enabled us to significantly reduce the
run time of many simulation and analysis tasks. In 12
months of real-world usage on our installation, we saw
tasks running up to 442 times faster than if they had been
run on a single computing core, with an average speed-up
of 32 times. This has enabled us to perform model simu-
lations and analyses that would otherwise not have been
feasible, with some individual analysis tasks using more
than a year of computing time, but completing in less than
a day.
In an ideal situation, for most task types, the decrease

in run time for running a particular task on Condor com-
pared to running it on a single computing core should be
proportional to the number of executing nodes available
in the Condor pool. So, for example, if we have a task that
takes 1000 minutes to run on a single core, and a Condor
pool available with 1000 equally fast executing nodes, then
the speed increase would be 1000-fold and the task would
complete in 1 minute.
In practice, various limitations, overheads and discrep-

ancies in the local network architecture and Condor pool
mean the overall running time for a task will always
be more then the theoretical minimum, and it is rarely
possible to predict exactly how long a task will take to
complete.
There is an overhead associated with submitting and

running each parallel job – the Condor Master must add
the job to the queue for resources and assign it to an
appropriate executing node when one becomes available.
The submitting nodemust then send the associatedmodel
and data files, along with a copy of the COPASI binary,
over the network before job execution can start. In a situa-
tion where we have a small number of jobs to submit, each
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Table 1 Example tasks run on Condor-COPASI on a pool of 2000 nodes, showing wall clock time on Condor, total CPU time, and speed-up factor (CPU time/wall
clock time)

Task type Description Number of parallel jobs Wall clock time CPU time used Speed-up factor

Global sensitivity analysis 27 parameters from NFκB signalling model [19] 54 7 hours 368 hours 53

Global sensitivity analysis 30 parameters from MAPK signalling model [20] 60 7 hours 90 hours 13

Stochastic simulation 1,000,000 repeats of calcium oscillation model [21] 340 20 hours 2,280 hours 114

Parallel scan 300,000 repeats of NFκB signalling model [19] 14,926 31 hours 3,980 hours 128

Parallel scan 100,000 repeats of MAPK signalling model [20] 1,849 3 hours 429 hours 143
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Figure 6 Speed-up Factors. The speed-up factor (CPU time/wall clock time) and number of parallel jobs used were recorded for 190 tasks
submitted during 12 months of real-world usage on our Condor-COPASI installation, with a Condor pool of approximately 2000 execute nodes. The
color of each marker indicates the type of task performed, and the area of each marker is proportional to the base-10 logarithm of the CPU time used.

of which will take a long time to execute, the overhead
will likely not be significant. However, if we have a large
number of jobs to submit (especially in the situation where
there are more jobs than executing nodes available to
run them), each of which will can be executed in a short
amount of time, then the submission overhead will be
more significant, and could become a limiting factor in
the execution time for the task. In this situation, it may
be preferable to construct the parallel jobs so that they
each perform a certain number of repeats, increasing the
job execution time while keeping the submission over-
head constant, thus reducing the impact of the submission
overhead. The load balancing algorithm described above
attempts to find an ideal compromise between the degree
to which the job is parallelized and the job submission
overhead.
Another factor that can affect the execution time of

our jobs is the potentially heterogeneous nature of the
machines in the Condor pool – disparities in hardware
specification will mean that the job execution time will
vary from machine to machine. Thus, unless we specify
exact hardware requirements for our jobs, their execu-
tion time will vary depending on the specification of the
machine they are assigned to.
Wemust also consider that wemay be competing for the

available resources with other users. Therefore, the num-
ber of available executing nodes will depend on howmany
other users are using the Condor pool, and our priority
within the queue relative to others.

Finally, the extent to which we can parallelize our
task depends on the task type. Where the task involves
repeating a subtask a certain number of times, we can par-
allelize up to the extent where we have one repeat per
parallel job. Other task types, such as the global sensi-
tivity analysis, can only be parallelized according to the
number of parameters we are investigating. For example,
an analysis on a model with 10 parameters will produce
20 parallel jobs (one maximizing optimization and one
minimizing optimization for each parameter). In this situ-
ation, having more than 20 executing nodes available will
not speed up overall job execution any more than having
just 20.
In summary, the degree to which running a task on

Condor will speed up execution compared to running
the same task on a single local machine depends on the
type of task being performed, and the degree to which it
can be parallelized, and will also depend on a number of
other factors, such as submission overheads and demand
for the available resources. However, in testing, we saw
vast improvements in the run-time of all task types (see
Table 1).

Comparison with existing software
Unlike tools such as COPASI Web Services, Condor-
COPASI works as a standalone piece of software,
performing all aspects of file preparation, simu-
lation and results processing with a user-friendly
interface, requiring minimal user interaction. Other
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tools, such as VCell and JWS Online, provide user-
friendly graphical interfaces, but are less able to fully
exploit the parallel nature of a distributed computing
pool.

Other cluster management tools
Condor is one of a number of systems designed for clus-
ter management and job scheduling; other systems with
widespread deployment include Oracle Grid Engine (for-
mally known as Sun Grid Engine) [22], Maui [23], and PBS
[24,25]. The strengths of Condor (namely cross-platform
support including Windows, Linux and OSX, its ability
to utilize non-dedicated resources, and its fully open-
source nature), make it an attractive choice for academic
institutions, particularly those looking to utilize existing
hardware. However, we recognize that many potential
users may only have access to other distributed comput-
ing systems. If demand dictated, it could be possible to
add support for other systems at a later date, though dif-
ferences in job preparation, submission, and monitoring
would make this task non-trivial. As an alternative, we
note that it is possible to install Condor alongside other
job schedulers; the Condor scheduler will only assign
jobs to computing nodes with available computational
capacity.
We also note the growing popularity of cloud comput-

ing systems, such as Amazon’s Elastic Compute Cloud
(EC2), which allow users to lease any required computa-
tional capacity by the hour, without having to invest in
dedicated hardware. Such systems are particularly appeal-
ing to researchers who need only occasional access to
large amounts of computational power. It is currently pos-
sible to use Condor on Amazon EC2 by running one or
more EC2 instances as executing nodes. However, setting
up such an arrangement is difficult, requiring a detailed
knowledge of network configuration, and is likely to be
beyond the capacity of most casual users. Therefore, a
possible future extension of Condor-COPASI could be to
automatically configure and launch EC2 or other cloud
computing instances to form a Condor pool, and to use
this to complement, or as an alternative to, a local Condor
pool.

Conclusions
Condor-COPASI enables the use of ubiquitous distributed
computing by making it easy to submit systems biol-
ogy simulation and analysis tasks without requiring any
knowledge of programming or managing networks of
workstations. The computational power available in such
pools of computers can be vast, particularly in institutions
such as Universities, which have thousands of comput-
ers serving as terminals for only a portion of the day.
Being able to efficiently utilize such a resource can enable
large-scale simulations and analyses to be performed that

would otherwise require toomuch computing power to be
feasible.

Availability and requirements
Project name: Condor-COPASI
Project home page: http://code.google.com/p/condor-
copasi/
Operating system: Server-side software: Linux; user inter-
face can be accessed on any operating system through a
modern web browser
Programming language: Python and Django
Other requirements: Python 2.6; Django 1.2; a web server
with Python support such as Apache; copies of the
COPASI Simulation Engine (CopasiSE) binary in 32-bit
and 64-bit mode forWindows, OSX and Linux; the LXML
and Matplotlib Python libraries; Condor version 7.4 or
higher, a database application – either MySQL, Post-
greSQL, SQLite or Oracle – with an appropriate Python
wrapper.
License: Artistic License 2.0
Restrictions to use by non-academics: None

Full instructions on deployment, and an instruction
manuals users are available on the project home page:
http://code.google.com/p/condor-copasi.
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