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Abstract

Background: Despite decades of new discoveries in biomedical research, the overwhelming complexity of cells has
been a significant barrier to a fundamental understanding of how cells work as a whole. As such, the holistic study of
biochemical pathways requires computer modeling. Due to the complexity of cells, it is not feasible for one person or
group to model the cell in its entirety.

Results: The Cell Collective is a platform that allows the world-wide scientific community to create these models
collectively. Its interface enables users to build and use models without specifying any mathematical equations or
computer code - addressing one of the major hurdles with computational research. In addition, this platform allows
scientists to simulate and analyze the models in real-time on the web, including the ability to simulate loss/gain of
function and test what-if scenarios in real time.

Conclusions: The Cell Collective is a web-based platform that enables laboratory scientists from across the globe to
collaboratively build large-scale models of various biological processes, and simulate/analyze them in real time. In this
manuscript, we show examples of its application to a large-scale model of signal transduction.

Background
The immense complexity in biological structures and pro-
cesses such as intracellular signal transduction networks
is one of the obstacles to fully understanding how these
systems function. As understanding of these biochemical
pathways increases, it is clear that they form networks of
astonishing complexity and diversity. This means that the
complex pathways involved in regulation of one area of the
cell (so complex that a researcher could spend their entire
career working in that area alone) are so interconnected to
other, equally complex areas that all of the different path-
way systems must be studied together, as a whole, if any
of the individual components are to be understood. How-
ever, the large scale and minute intricacy of each of the
individual networks makes it difficult for cell biologists or
biochemists working in one area of a cell’s biochemistry
to be aware of, let alone relate their results to, findings
obtained from the various different areas. So how will all
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of these individually complex systems be possible to study
in an integrated biochemical “mega-system?”
In order to address this problem, the concept of systems

biology study has emerged [1-8]. However, with i) data
being generated by laboratory scientists at a staggering
rate in the course of studying the individual systems, ii)
the fact that these individual systems are so complicated
that scientists rarely have detailed knowledge about areas
outside those that they study, there is a huge imped-
iment to implementing a systems approach in cellular
biochemistry, and iii) for laboratory scientists to fully
embrace systems biology computational tools must lend
themselves to usage without requiring advanced mathe-
matical entry or programming.
Several significant advancements in the systems biology

field have been made as a response to the sea of data
being generated at ever increasing rates. For example,
in the area of biochemical signal transduction, several
community-based projects to organize information about
signal transduction systems such as the Alliance for Cellu-
lar Signaling [9], the former Signal Transduction Knowl-
edge Environment [10], UniProt [11], or theWikiPathways
project [12] have been created. These resources provide a
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way to organize and store important laboratory-generated
data and information such as gene sequences, protein
characteristics, interaction partners, etc.; these are then
easily accessible via the Internet to the scientific commu-
nity. Building on these resources and advancements has
been the development of tools to visualize and analyze
these data and, specifically, the entities that make up the
complex, network-like structures of biological processes.
Amongst themost widely used tools to visualize biological
networks is the open-source software, Cytoscape [13].
The information contained in the above database

resources (and visualized via Cytoscape) is limited in
that it is mostly static; biological systems however are
dynamic in nature. Hence to fully understand the under-
lying mechanisms (and those of corresponding diseases),
the dynamics of these processes need to be considered.
Computational modeling and simulation has been suc-

cessfully adopted in a number of fields to dramatically
reduce development costs. The use of these modern tools
to organize and probe biological structure and function
has a high potential to provide the basis for new break-
throughs in both basic understanding of cell function
and the development of disease therapies. The ability
to observe the actual dynamics of large scale biolog-
ical systems increases the probability that, out of the
tens of thousands of combinations of interactions, unex-
pected points of intervention might be deciphered. The
Cell Collective aims at providing an environment and
resource where the biomedical community, as a whole,
can more effectively bring these exciting new computa-
tional approaches to bear on cellular systems. The inte-
gration of computational and laboratory research has the
potential to lead to improved understanding of biological
processes, mechanisms of disease, and drug development.
If a “systems approach” is to be successful, then there

must be a “system” into which the thousands of labora-
tory scientists all over the world can incorporate their
detailed local knowledge of the pathways to create a global
model of biochemical pathways. With such a systems plat-
form, all local information would be far more accurate
if laboratory scientists would contribute their specialized
expertise into a system that enables the integration of
the currently dispersed knowledge. Hence, a collabora-
tive modeling platform has the potential to substantially
impact and move forward biomedical research.
This is precisely the purpose of The Cell Collective.

The Cell Collective is an environment to model biolog-
ical processes. The platform allows scientists to deposit
and track dynamical information about biological pro-
cesses and integrate and interrogate this knowledge in the
context of the biological process as a whole. Laboratory
scientists can directly simulate large-scale models in real
time to not only help test and form new hypotheses for
their laboratory research, but also to make research more

easily reproducible (through sharing their models with
collaborators). Furthermore, the creation and simulation
of models in The Cell Collective doesn’t require direct use
of mathematics or programming – a substantial advance-
ment in the field [14]; this tool has been developed to
bring modeling into the hands of mainstream laboratory
scientists.

The role of The Cell Collective in the current landscape of
systems biology technology
As a result of the constant flow of data from laborato-
ries, the success of biomedical research relies now, more
than ever, on computational and computer technologies.
While a number of different technologies have already
been developed and succeeded in their purpose, The Cell
Collective further builds on the successes of these efforts
to provide a novel technology to exploit the full potential
of systems biology. In this section, a discussion of some of
these technologies follows. Note that, the following is not
an extensive review, rather we aim to illustrate how The
Cell Collective fits within the landscape of systems biology
resources. For better understanding, these resources have
been categorized according to their function.

A) Biological databases (as mentioned in the Background
section, Alliance for Cellular Signaling [9], STKE
[10], UniProt [11], the WikiPathways project [12],
KEGG [15], UniProt [16], Reactome [17], Pathway
Commons [18], etc.) were developed as one of the
first steps to deal with the sea of biological data being
produced with high-throughput technologies. The
information contained in these biological databases
focuses on static cell “parts lists.” In other words, the
data focuses on the description of the individual
entities rather than the dynamical relationship
between the individual parts. Conversely, The Cell
Collective, and specifically its Knowledge Base
component (discussed in the Results section) extends
static knowledge and data into dynamical models;
hence the information contained in the Knowledge
Base (which is purely qualitative) is dynamical in
nature; it takes into account the dynamical
relationship between all of the interacting partners.

B) Software for dynamical models (which employ
mathematical frameworks similar to the ones used in
The Cell Collective – i.e., rule-based formalisms) also
already exist (e.g., GINsim [19], BooleanNet [20],
CellNetOptimizer [21], or BoolNet [22]). These tools
have been built and used mainly for individual groups
to study networks of a confined size. They also rely on
the users’ training in computer programming and/or
mathematics (and hence are first and foremost tools
developed for modelers); this makes it difficult for
laboratory scientists to incorporate these tools into
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their experimental studies. The Cell Collective
provides a novel tool in the area of large-scale, whole
cell models, while extending the use of
computational modeling to laboratory scientists.

C) Model repositories such as the CellML repository
[23] or the BioModels Database provide a central
location to store models developed by the
community. These models are then available to
others for download and further analyses using other
tools. The BioModels Database is primarily a model
repository, however, it does provide simulation
capabilities via the JWS simulator [24]. In addition,
the PathCase systems biology tool [25,26] provides a
central place for kinetic models from the BioModels
Database and KEGG pathways to be queried,
visualized, and simulated side-by-side. Similar to
these resources, The Cell Collective provides the first
repository (with simulation capabilities) for models
based on a qualitative mathematical
formalism.

D) Model exchange standards such as the Systems
Biology Markup Language (SBML, [27,28]) or
CellML [29] make it easier for models to be
exchanged between different groups and
simulated/analyzed by different simulation tools. For
example, when a research group wants to simulate a
model deposited to the BioModels Database, the
model’s description in SBML or CellML ensures that
the model truly corresponds to the same model used
by a different group, and hence the generated data
can be easily reproduced. While users can share their
models with other users of The Cell Collective
directly, without the need to import/export model
files, the platform currently provides SBML export
features based on the most recent version of SBML
L3 qualitative package [30].

E) Visualization and analysis tools for static interaction
networks, such as the aforementioned Cytoscape
[13], but also others including VisANT [31] or Gephi
(http://gephi.org), have been used extensively to
visualize and analyze the graph properties of
networks of various types and sizes. As a
complement to existing graph analyses, The Cell
Collective deals with dynamical models – ones that
can be put in motion via computer simulations – and
hence focuses on the visualization of the dynamics of
these models via simulations, and susbsequent
analyses (e.g., input-output relationships). Together,
The Cell Collective is a platform that not only
provides a unique combination of successful systems
biology and modeling approaches, but also offers
significant innovations to these technologies. In this
manuscript, discussed are the various components
and features of the platform, and exemplified on a

previously published large-scale network model of
signal transduction [32].

Implementation
The Cell Collective is a server-based software imple-
mented in Java and powered by MySQL database. The
simulation engine is based on ChemChains which was
implemented in C++ [33]. The user interface of The Cell
Collective was implemented primarily using JavaServer
Faces (http://www.javaserverfaces.org) and Primefaces
(http://www.primefaces.org).

Computational framework and simulations
Models in The Cell Collective are based on a qualita-
tive, rule-based mathematical framework. In this frame-
work, each species can assume either an active or inac-
tive state. Which state a species assumes at any given
time point depends on a set of rules that take into
account the activation state of all immediate upstream
regulators.
The Bio-Logic Builder provides the user interface for

users to enter qualitative information about the regula-
tory mechanism of each species in a model, and sub-
sequently converts this information into an appropriate
mathematical (algebraic) expression (manuscript submit-
ted). Before the simulation engine (ChemChains) can
simulate a model, the mathematical expressions of indi-
vidual species are converted into C++ (.cpp) files, which
are subsequently compiled into a single dynamical library
(.so file). This dynamical library encodes the entire model
which is subsequently simulated by ChemChains (see
Figure 1).
Though a discrete (active/inactive) mathematical

framework is used to represent the modeled biological
processes, ChemChains has been developed to enable
simulations of discrete models while using continuous
input/output data. In general, the activity levels of the
models’ individual constituents is measured as %ON.
Depending on the context of the biological process being
simulated, this measure corresponds, for example, to
concentration or the fraction of biological species being
active at any given time.
In the case of real-time simulations, %ON of a species

represents its moving average activity, and is calculated
as the fraction of the active/inactive states over a slid-
ing window. For simulations using the Dynamical Analysis
feature, the activity levels of the individual species (or
%ON) also corresponds to the ratio of active/inactive
states, but is calculated once the dynamics of the model
settle in a steady behavior (or an attractor as described
in great detail in [33]). In both the real time simula-
tions and dynamical analysis, %ON is used as a semi-
quantitative way to measure the dynamics of the modeled
biological processes.

http://gephi.org
http://www.javaserverfaces.org
http://www.primefaces.org
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Figure 1 Construction of models prior to their simulations via
built-in ChemChains. The bio-logic for each species (defined by
users) is converted (automatically) to a mathematical (Boolean)
expression. Each species’ expression is encoded to a C++ file, and all
files are subsequently compiled into a single dynamic library (.so file)
which can be read and executed by ChemChains for simulations.

Simulation performace
We analyzed the perfomance of individual simulations for
randomly generatedmodels of different sizes and different
complexities (in terms of network connectivity). Specifi-
cally, we considered models with 10, 100, 500, and 1,000
nodes and network connectivities of 2, 5, 10, 20, and
100. Note that for biological application, relatively small
(low single digit) connectivity is most realistic [32,34,35].
As can be seen Table 1, simulations in The Cell Collec-
tive are relatively efficient as the required computational
resources are in a linear relationship with the increasing
parameters of the generated networks.

Results and discussion
The Cell Collective is a web-based platform (accessible at
http://www.thecellcollective.org) in which laboratory sci-
entists can collaboratively build mathematical models of

Table 1 Simulation performance for models with ranging
complexity

# of nodes/
connectivity

2 5 10 20 100

10 0.88s 0.94s 0.85s 0.99s 0.93s

100 4.82s 4.98s 5.55s 5.95s 9.8s

500 26.99s 29.42s 32.11s 37.31s 68.73s

1,000 60.89s 64.61s 70.95s 79.59s 149.34s

Simulations consisted of 10,000 time steps and were performed on a computer
with a single core, 2GHz processor and 2GB of RAM.

biological processes by utilizing existing laboratory data,
and subsequently simulate the models to further guide
their laboratory experiments. Conceptually, the platform
can be broken up into three parts (Figure 2) that form the
basis for the core functionality of the software: 1) inte-
grated Knowledge Base of protein dynamics generated
from laboratory research in a single repository, 2) integra-
tion of this knowledge into mathematical representation
that allows visualization of the dynamics of the data (i.e.,
put it in motion via simulations), and 3) simulations and
analyses of the model dynamics. As can also be seen in
the figure, these three parts form a loop that is closed by
laboratory experimentation. The first model in The Cell
Collective (available in for all users to simulate and build
upon) is one of the largest models of intracellular signal
transduction [32]. Features available in the current version
of The Cell Collective are described in more detail in the
following sections.

Knowledge Base of interaction dynamics
When laboratory scientists produce new results, for
example regarding the role of one protein interacting with
another protein, these results are usually published along
with thousands of other results generated by the scien-
tific community. The publication of individual results in
isolation means that separate findings are not necessarily
absorbed, verified, analyzed, and integrated into the
existing knowledge. With the invention of various high-
throughput technologies, the gap between the amount
of knowledge produced and the ability of the scientific
community to fully utilize this knowledge has grown [36].
The first major component of The Cell Collective (as

highlighted in Figure 2) is a Knowledge Base which
enables laboratory scientists to contribute to the integra-
tion of knowledge about individual biological processes
at the most local level which includes, for example, the
identification of direct protein-protein interactions. How-
ever, the goal of The Cell Collective is not to duplicate
other well-established resources by providing extensive
parts lists that make up various biological processes and
cells. Instead, the aim of the platform is to extend static
knowledge and data into dynamical models; hence the
information provided in the Knowledge Base needs to
be dynamical in nature. This means that the information
(which is purely qualitative – see the Methods section)
contained in The Cell Collective Knowledge Base takes
into account the dynamical relationship between all of the
interacting partners. For example, let’s assume, there are
two positive regulators (X and Y ) of a hypothetical species
Z. While in the context of a parts list, information about
the above species and interactions would be sufficient,
in order to abstract the biological process to a dynami-
cal model, one needs to know the dynamical relationship
between the interacting partners. For instance, are both X

http://www.thecellcollective.org
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Figure 2 Overview of the flow of knowledge about biological processes, and the role of The Cell Collective in integrating and
understanding this knowledge in the context of the biological processes as a whole.

and Y necessary for the activation, or is either one of them
sufficient to activate Z? This is the type of information
that is used to construct dynamical models in The Cell
Collective.
Based on a widely known wiki-like concept, the Knowl-

edge Base module of the platform was developed to
allow laboratory scientists to contribute – collabora-
tively – their knowledge to the complete regulatory
mechanisms of individual biological species. Because all
of the regulatory information forms the basis of the
modeled biological/biochemical process, and hence has
to be correct for the model to exhibit similar behav-
iors as seen in the laboratory, this process of aggre-
gating all known information about a species into one
place can also serve as a mechanism to identify pos-
sible contradictions or holes in the current knowledge
about the regulatory mechanism of a particular species.
Using the previous hypothetical example, let’s assume
laboratory scientist A discovers that proteins X and Y
are both necessary to activate species Z, but scientist
B’s laboratory results suggest either protein X or Y can
sufficiently activate Z (Figure 3). The process of inte-
grating all known information on species Z becomes
crucial in discovering such discrepancies (or additional
missing information), which may have not been found
otherwise. Because the goal of The Cell Collective is
to also integrate this information into dynamical mod-
els, simulations of the large-scale model (which might
have hundreds or thousands of additional components

in it) can suggest whose data is more likely to be
correct. Assume that scientist A adds his informa-
tion into the model and the model exhibits phenom-
ena similar to the ones seen in the laboratory, whereas
when the model is built with the data from scientist
B’s experiments, the simulation dynamics of the over-
all model fails to resemble the known actions of the
real system. In such a case, new laboratory experiments
would be warranted, with a potential to produce more
insights into the regulatory mechanism of protein Z
(Figure 3).
The sea of biological information has made it dif-

ficult for the data to be verified on such an inte-
grated basis. We fully understand how some of the
most complex biological systems work only when the
experimental data is re-integrated into and seen in
the context of the entire system; a platform for inte-
gration of data is exactly what The Cell Collective
provides.

Dynamical information
Each species in The Cell Collective’s Knowledge Base has
a dedicated page where laboratory scientists can directly
deposit their knowledge regarding the species’ regulatory
mechanisms. While the wiki-like format of the Knowl-
edge Base gives users the ability to input their data in
a free form which can be also interactively discussed,
each page is structured to help users organize and review
their data more efficiently. Because the wiki format is
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Figure 3 Integration of laboratory results via modeling. The different relationships between hypothetical interactions of X and Y with Z as
discovered by scientists A and B. Solid lines depict the necessity of the interaction for species Z to be activated, whereas dashed lines correspond
the optional nature of the interaction. Because scientist B’s results suggest an “OR” relationship between the regulators, there are two graphical
representations of Z’s regulatory mechanism.

an easy medium for collecting knowledge from a large
number of individuals, a number of scientific efforts have
successfully adopted a variation of this technology (e.g.,
[12][32][33][34]).
First, the Regulation Mechanism Summary section

describes the general mechanism of the activa-
tion/deactivation of the species. This section, found at
the top of the page of a given species, is most important
from a systems perspective as the information therein
takes into an account the role of all immediate upstream
regulators (see below).
TheUpstream Regulators section contains the list of key

players that have a role in the regulation of the species,
as well as any evidence (as found in the laboratory) sup-
porting those roles. Using the earlier example involving
the regulatory mechanism of species Z, this section would
include proteins X and Y as upstream regulators, and
the findings of laboratory scientists A and B suggest-
ing the role of these regulators in the activation of the
species (Figure 4). On the other hand, the Regulation
Mechanism Summary section (discussed above) would
contain the overall dynamical information as to how Z
is regulated in the context of both X and Y (i.e., are
both regulators required for the activation, or only one of
them?).
Model-specific Information section: Because a number

of molecular species can be regulated differently based
on the type of the cell, this section allows users to
enter such cell type-specific information. For example,
an intracellular species can be regulated either by dif-
ferent players, or the same players but with different
dynamical relationships in, say, a T cell and a mammary

epithelial cell. This section enables users to differenti-
ate between the regulatory mechanisms of the species
in the two (or more) different types of cells (i.e., mod-
els). Hence, this section can be utilized by users to
define upstream regulators and the regulation mecha-
nism summary that is specific to users’ different mod-
els. For example, the regulation mechanism summary of
species Z in scientist A’s model would describe his find-
ings that both upstream regulators of Z are necessary
for its activation, whereas scientist B’s regulation mech-
anism summary on wiki page for Z would indicate that
either one of the upstream regulators can activate Z
(Figure 4).
Finally, References is a section that users can use to

record any published works that support information
entered in any of the above sections. Users can enter ref-
erences by simply entering the Pubmed ID (pmid) of the
article of interest and The Cell Collective will automati-
cally import all of the bibliographical information about
the works.
As a starting point, we have deposited all biological

knowledge describing one of the largest dynamical models
of signal transduction built and published as part of our
previous research [32]. This model consists of around 400
biochemical interactions between 130 species, comprising
a number of main signaling pathways such as the Epi-
dermal Growth Factor, Integrin, and G-Protein Coupled
Receptor pathways. The dynamical information about
the hundreds of local interactions, collected manually
from published biochemical literature, is available in the
Knowledge Base module. Expert scientists in the field
may begin contributing to it, as well as discovering
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Figure 4 Visualization of the flow of data generated by
laboratory scientists through The Cell Collective Knowledge
Base and Bio-Logic Builder. For example scientists A and B identify
different upstream regulators (protein X and Y, respectively) of
protein Z. This knowledge is subsequently recorded in the Upstream
Regulators section on the page of protein Z. Then both scientists A
and B determine what the relationship is between the two upstream
regulators of Z. Once the overall regulation mechanism is agreed
upon, the scientists use Bio-Logic Builder to add the regulatory
mechanism of Z to an actual model. The mathematical representation
of the species bio-logic is generated in the background, so the user
never has to define any mathematical equations nor expressions.

discrepancies and gaps in the biological knowledge that
might have been included in the model.
Once the dynamical information about the individual

interactions is added in the platform Knowledge Base,
the next step is to convert this knowledge into a dynam-
ical model; a discussion on where this piece fits into the
overall concept of The Cell Collective follows in the next
section.

Building computational models
While the Knowledge Base component of The Cell Collec-
tive serves as the knowledge aggregator for the dynamical
regulatory mechanisms of individual biological species,
the next step (#2 in Figure 2) is to convert this knowl-
edge into a dynamical computational model that can be
simulated and analyzed on the computer.
Perhaps one of the biggest challenges in transforming

biological knowledge into a computational model is the

conceptual gap between the mathematical and biological
sciences. Thus far, the creation of mathematical models
has been limited to scientists who are well versed in com-
puter science and mathematics. To address this issue, we
have developed Bio-Logic Builder (manuscript submit-
ted), a component of The Cell Collective, which allows
laboratory scientists to build computational models based
purely on the logic of the species’ regulatory mechanisms
as discovered in the laboratory.
The step of transforming biological knowledge into its

model representation is aided by the information pro-
vided in the Knowledge Base component of the software
platform (Figure 4). Specifically, as discussed above, the
information recorded for the corresponding local interac-
tions by individual scientists amounts to the overall regu-
lation mechanism which represents the blueprint of each
species’ bio-logic. While the local interactions (concerning
a hypothetical protein Z in Figure 4) are discovered in the
laboratory by individual scientists (for example scientists
A and B as shown in the figure), the species overall reg-
ulation mechanism should take into an account all of the
local knowledge (and hence should be determined in a
collaborative fashion). Bio-Logic Builder was developed in
such a way that all that is necessary to construct the com-
putational representation of the regulatory mechanism
of each species is the same qualitative data provided in
the Knowledge Base component. Scientists define each
species’ bio-logic in a modular fashion by simply defin-
ing activators and inhibitors (i.e., upstream regulators)
of the species of interest, as well as the logical relation-
ship between the upstream regulators (e.g., whether or
not a set of activators is required for activation, as dis-
cussed in an example above). Because models in The
Cell Collective utilize a qualitative, rule-based mathemat-
ical framework, no kinetic parameters are necessary to
construct the models. (A quick tutorial on how to use
the Bio-Logic Builder to construct models is available at
http://www.thecellcollective.org)
Once the bio-logic is defined for all species in a

given model, in silico simulations and analyses can be
conducted (step #3 in Figure 2). How this can be
done with The Cell Collective is the focus of the next
section.

Simulations and analyses of model dynamics
The idea behind abstracting biological processes as com-
putational models is to be able to visualize the dynamics
of these processes on the computer, and to conduct in
silico experiments that can provide i) new insights into
laboratory experiments and ii) additional basis for the-
oretical computational research to further elucidate the
complexity governing these biological processes. With its
simulation and analysis component, The Cell Collective
has been designed to provide exactly these features.

http://www.thecellcollective.org
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Specifically, in the current version of the platform, two
tools for simulations and analyses (discussed below) are
available.

Real-time simulations
Perhaps the most unique and novel innovation to com-
putational modeling is the real-time simulation feature in
the platform, which allows users to visualize the dynamics
of any model interactively and in real time. Similar to the
rest of the platform, the simulation features have been
designed with simplicity and intuitiveness in mind.
All modeled biological/biochemical processes in The

Cell Collective, represented by species that make up the
internal machinery of the cell, are simulated in exter-
nal environments which drive the dynamics of the sys-
tem. In our example of signal transduction, this environ-
ment is represented by external species corresponding to
various extracellular signals such as growth hormones,
stress, etc. Using a simple slider, users can change the
amount of each extracellular signal (measured in %ON
on a scale of 0 to 100 – see the Methods section for

more detail) and visualize the effects of the changes on
the dynamics of the cell while the simulation is running.
Similarly, users can introduce biological mutations to sim-
ulate loss-of-function and gain-of-function experiments
while watching the dynamics of the cell change as a result
of the mutations. For users’ convenience, real time sim-
ulations can be also paused and resumed at any time.
Figure 5 shows a screen-shot of the real time simulation
tool. A short video demonstration of real time simulations
using the previously mentioned large-scale model of sig-
nal transduction is also available as a Additional file 1.

Dynamic Analysis
Laboratory studies to identify functional relationships
between extracellular stimuli and various components of
the cell involve a number of experiments that can be both
time consuming and resource demanding. For example,
a laboratory study [37] that suggests that Akt (a ser-
ine/threonine kinase involved in the regulation of a variety
of cellular responses such as apoptosis, proliferation, etc.)
is activated in response to the Epidermal Growth Factor

Figure 5 Screen-shot of a real-time simulation. Users can change the activity level of the extracellular species via simple sliders (boxed in red).
Each tracing in the graph corresponds to an activity level of a species specified in the legend by the user. Any effects of the change of activity of the
external species is then reflected in the dynamics of the species’ graph; as the user moves the slider, the activity patterns of the selected species
change in real time. In addition, by using the “Mutate” button, users can simulate the effects of gain/loss-of-function mutations on the dynamics the
modeled biological process.
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(EGF), the activity of Akt is measured and compared in
untreated cells and cells treated with EGF. Such studies
usually involve the construction of a number of protein
constructs, cell cultures, assays, etc, amounting to the use
of many resources.
While Akt has been known for many years to be

activated in response to EGF, there are many areas of
the cell that are not as well understood. Laboratory
experiments in such areas can be sometimes based on
less sound hypotheses that may lead to the waste of many
resources. But what if one had the ability to pre-test
laboratory hypotheses on the computer, using a com-
putational model, in a matter of minutes? This would
allow laboratory scientists to weed out weak hypotheses
while focusing on the ones that have a better chance of
being proven correct, and hence resulting inmore efficient
studies.
This is where the Dynamic Analysis simulation fea-

ture of The Cell Collective plays an important role. This

tool allows users to conduct in silico experiments that
closely resemble the way laboratory experiments are per-
formed, with the advantage that in these computational
studies researchers can perform more simulations and
experiments in a much shorter time-frame. For example,
models in The Cell Collective can be simulated and their
dynamics visualized and analyzed in hundreds or thou-
sands of extracellular environments (as opposed to the
limited number of scenarios possible in the laboratory) in
a manner of minutes.
As an example, we will demonstrate how the soft-

ware can be used to study the relationship between EGF
and Akt. The dynamical analysis studies are done in
two parts. First, on the main page of the simulation
tool (Figure 6), users define the extracellular environ-
ment under which the study will be done. This is anal-
ogous to the preparation of cell media in the laboratory.
Similar to laboratory experiments with real cells, differ-
ent studies using computational models (or virtual cells)

Figure 6 Dynamical analysis page. Dynamical analysis page. For each in silico experiment, users can use the dual sliders to define the ranges of
activity levels of each extracellular species. Users can also set additional properties of the experiment including the number of simulations as well as
mutations (gain/loss-of-function).
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also require the set up of optimal extracellular condi-
tions. As visualized in the figure, this can be done easily
by setting the ranges of the activity (from 0 to 100%)
of the individual extracellular (external) species via the
dual sliders (or by just typing the activity levels in the
appropriate text boxes). Because in this example exper-
iment, we are interested in the effects of EGF on the
network model, the activity of EGF (boxed in red) is
set to range on the full scale between 0 and 100% ON.
On the other hand, the activity ranges of the remaining
external species are selected for optimal results based on
our previous research [32], and supported by laboratory-
generated data. For example, the Extracellular Matrix
(ECM) is set to higher activity levels, varying between 56
and 100% (boxed in blue); this corresponds to a biological
finding that EGF-induced growth (as well as other cellu-
lar processes) is dependent on cell anchorage via ECM
[38]. (Note that, from our experience with large-scale
models, while optimal conditions should be determined,
the simulations and results are not sensitive to exact
values.)
While in this example, 100 simulations are performed,

users can specify the number of simulations to be run

within the study (Figure 6). During each simulation, an
activity level for each extracellular species is selected ran-
domly by the software such that the activity falls into the
specified range. As a result, the user is able to simulate
what would amount to 100 different laboratory experi-
ments, with each experiment corresponding to a different
external condition.
Once the in silico experiment has completed, users

can analyze the dynamics of the model. Currently, the
Dynamic Analysis tool allows users to generate dose-
response curves to investigate qualitative (input-output)
relationships between external cellular signals and vari-
ous components of the model, such as the one between
EGF and Akt as visualized in Figure 7. As can be seen in
the graph, there is indeed a positive correlation between
EGF and Akt, similar to the phenomenon seen in the
laboratory. An additional significant advantage of com-
putational experiments using this tool is that users can
generate a number of analyses without re-running the
entire experiment. For instance, in addition to examining
the functional relationship of Akt and growth, one can
generate similar dose-response curves for any species in
the model using a single 100-simulation experiment. This

Figure 7 An example of a dose-response curve visualizing the functional relationship between Akt and EGF. Users can generate a number
of graphs that are saved and can later be retrieved from the table at the top of the page. Generated graphs can also be saved on the computer and
used directly in a manuscript.
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is done by specifying the appropriate extracellular sig-
nal and output species (i.e., any species of interest) from
drop-downmenus available on the page. On the generated
graph, the selected external species is represented on the
x-axis whereas the output species is represented on the
y-axis. Furthermore, similar to the real time simulation
feature, mutations to any of the cellular species can easily
be specified which allows users to simulate gain/loss-of-
function in an intuitive fashion. In the current version
of the software, users can generate the dose-response
graphs for all species in the model by selecting the appro-
priate input-output species. While we are in the course
of adding additional means of visualizing the simulation
results, users can also download all generated (raw) simu-
lation data, which can subsequently be analyzed by users
according to their needs.
The Dynamical Analysis feature can be used not only

to generate new hypotheses, but also to test the correct-
ness of the model. Because the models are built using
local knowledge of the individual interactions, how do
we know that all of this local information adds up to a
system that represents what is seen in the laboratory?
Hence the correctness of the model needs to be tested
on global phenomena of the system. The above exam-
ple demonstrates how the model of signal transduction
in a fibroblast cell can be tested to ensure that species
associated with apoptosis and growth (such as Akt) appro-
priately respond to a growth signal (EGF). If, for example,
the dose-response curve for Akt and EGF suggested a
negative correlation, one would have to go back and inves-
tigate which of the local interaction data resulted in the
contradictory result.

Seedmodels
In addition to the signal transductionmodel of a fibroblast
cell created and previously published by our group [32],
as part of our most recent research efforts, we have con-
structed additional models of the budding yeast cell cycle
[39] and host cell infection by Influenza A, including the
viral replication cycle (manuscript submitted). We have
also re-created amodel of ErbB signaling and regulation of
the G1/S transition in the cell cycle during breast cancer.
This model was initially created by the authors to study
trastuzumab resistance and predict possible drug targets
in breast cancer [40]. All of these models are now avail-
able and published in The Cell Collective, hence available
to the scientific community as seed models for further
contributions and/or simulations and analyses.

Collaboration and accessibility
As discussed in the Background section, collaboration
amongst laboratory scientists working in different areas
of complex biological processes and the accessibility to
modeling frameworks is key to new discoveries using the

systems approach. These two properties were strictly kept
in mind when designing the software, and provide the
main framework for The Cell Collective.
First, motivated by this framework was the use a wiki-

like format to keep track of the knowledge concern-
ing the dynamical properties of biological process. This
framework was also applied to the way users interact with
the actual computational models.
Perhaps the most important feature in the context

of accessibility is the concept of “Published Models”
(Figure 8). These models created by the community are
freely accessible to all registered users, fostering the idea
of open science. All users can view the bio-logic as well
as the information in the knowledge base, and perform
real time simulations on these models directly. To make
changes to these models and see how these modifica-
tions affect the dynamics of the model, users can create
personal copies of published models. Once a copy of a
published model is created, the copy will be available
and visible only to the one user until shared under “My
Models” as seen in Figure 8. (As mentioned earlier, a
number of models are now available under Published
Models for all users to access and simulate.)
My Models is a collection of models created by any

given user. Users have an additional ability to share and
collaborate on any of these models with a select group
of colleagues. The degree to which such a collabora-
tion can take place is guided with the choice of three
types of permission a user can specify when sharing
his/her model. First, models can be shared such that
other users can simulate the shared models and view
the model’s bio-logic. A second way of model shar-
ing also allows other users to contribute to the mod-
els and directly edit them. Finally, models can be also
shared so that other users become model administrators
and have the same rights as the creator of the model,
including the ability to share the model with additional
collaborators.
Many biomedical research software tools (especially the

commercial ones) tend to limit users in such a way that
once the user commits to the tool, it becomes difficult
to move their data to a different platform. This is exactly
the opposite with The Cell Collective. In addition to being
able to share models with any and every user of the plat-
form, features to export models in formats that can work
with other modeling tools are also available. In the most
recent version, users can export all mathematical expres-
sions for each model (including the available published
models) in the form of flat text files as well as SBML
(SBML [28]).
Finally, a forum is available as part of The Cell Collective

modeling suite. This will afford users additional means of
communication with the scientific community as well as
with the platform’s development team.
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Figure 8Mainmodel panel. The filter in the top left corner allows the user to switch between the different types of models (discussed in text). The
majority of the space in the right section of the panel is dedicated to the model’s controls (boxed in) and more general information about the
model (e.g., creator and description). Users can also navigate from this panel to the simulation page as well as a page containing all model
constituents by using the Simulate and Model Bio-Logic buttons, respectively. As indicated in the right upper corner, users can also initiate the
creation of new models from this page.

Conclusions
Because of the inherent size and complexity of biochem-
ical networks, it is extremely difficult for a single person
or group to efficiently transfer the vast amount of labo-
ratory data into a mathematical representation; this fact
applies to any modeling technique. One way to address
this issue is to engage the community of laboratory sci-
entists that have generated these data and, hence, have
first-hand knowledge of the local protein-protein regula-
tory mechanisms. If the community of laboratory scien-
tists had a mechanism by which they could collaborate
and contribute their intimate knowledge of local inter-
actions into a large-scale global model, the creation of
these models would be greatly enhanced in terms of both
size and accuracy. As most laboratory scientists commu-
nicate their data in qualitative terms, rule-based models
which utilize such qualitative information provide an ideal
candidate for that platform.

Although qualitative models do not require an under-
standing of high level mathematics, it does assume that
users dealing with these models are familiar with rule-
based (e.g., Boolean) formalisms. At first, this may seem
a subtle issue (as most qualitative information generated
in laboratories is practically generated and interpreted in
Boolean terms; e.g., protein x AND y activate protein z),
however, the Boolean truth tables (and expressions) get
more complex as the size of the model increases. This
complexity effectively creates another challenge in build-
ing large-scale models. The Cell Collective and its major
component, Bio-Logic Builder (manuscript submitted),
aims at bridging this gap by enabling users to create these
dynamical models without having to directly interact with
the model’s mathematical complexities.
The collaborative nature of The Cell Collective also

opens doors to more open and reproducible science.
By integrating biological knowledge, currently dispersed
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across hundreds of scientific papers, scientists will be able
to test the integrity of this knowledge in the context of
the b/iological processes as a whole. The model building
process will make it easier to identify published results
that contradict each other, as well as find gaps in cur-
rent knowledge that may have not been realized. Using
a modeling platform such as The Cell Collective has the
potential to generate new hypotheses that can be further
verified in the laboratory.
Furthermore, the non-technical and easy-to-use nature

of building and simulating computational models in The
Cell Collective, the platform has a potential as a great edu-
cational tool for undergraduate and graduate biology stu-
dents with diverse mathematical/computer science skills.
Rather than studying biochemical pathways presented in
current textbooks as “static” and isolated components of
the cell, students can easily visualize and start understand-
ing cells as complex, dynamical systems – precisely as is
the case with real cells. Large models available in The
Cell Collective allow for the instruction of experimen-
tal design – because modeled biological processes have
(the complex) properties of the real counterparts, students
can learn how to design experimental studies, including
the concepts of controls. Students can also create simple
cellular models and study the dynamical properties of a
wide range of molecular subsystems such as positive and
negative feedback loops.
We are actively developing new features and making

The Cell Collective even more intuitive for users to inter-
act with it.We are also working on implementing a plug-in
system to allow the community to be directly involved in
the development of additional features.

Availability and requirements
The Cell Collective is platform independent, and can be
accessed through any modern web browser (Firefox and
Chromium are recommended). Data made public in The
Cell Collective are governed with GNU GPL v.3. The
platform is free for academic use.

Additional file

Additional file 1: Real time simulation example. Video example of a
real time simulation of a large-scale model of intracellular signal
transduction.
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