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Abstract

Background: Malaria causes over one million deaths annually, posing an enormous health and economic burden
in endemic regions. The completion of genome sequencing of the causative agents, a group of parasites in the
genus Plasmodium, revealed potential drug and vaccine candidates. However, genomics-driven target discovery has
been significantly hampered by our limited knowledge of the cellular networks associated with parasite
development and pathogenesis. In this paper, we propose an approach based on aligning neighborhood PPI
subnetworks across species to identify network components in the malaria parasite P. falciparum.

Results: Instead of only relying on sequence similarities to detect functional orthologs, our approach measures the
conservation between the neighborhood subnetworks in protein-protein interaction (PPI) networks in two species,
P. falciparum and E. coli. 1,082 P. falciparum proteins were predicted as functional orthologs of known
transcriptional regulators in the E. coli network, including general transcriptional regulators, parasite-specific
transcriptional regulators in the ApiAP2 protein family, and other potential regulatory proteins. They are implicated
in a variety of cellular processes involving chromatin remodeling, genome integrity, secretion, invasion, protein
processing, and metabolism.

Conclusions: In this proof-of-concept study, we demonstrate that a subnetwork alignment approach can reveal
previously uncharacterized members of the subnetworks, which opens new opportunities to identify potential
therapeutic targets and provide new insights into parasite biology, pathogenesis and virulence. This approach can
be extended to other systems, especially those with poor genome annotation and a paucity of knowledge about
cellular networks.

Background
Malaria is a major threat to public health and economic
development in endemic regions. About 300-500 million
cases are reported, and 1-2 million people die from
malaria every year. Children and pregnant women are
among the hardest hit of malaria victims. Five parasite
species, P. falciparum, P. vivax, P. malariae, P. ovale, and

P. knowlesi, cause human malaria. P. falciparum is the
most virulent and widespread one.
The continuous morbidity or mortality of malaria is lar-

gely due to the rapid development of parasite resistance to
currently available drugs and the increasing insecticide
resistance of mosquito vectors. It is imperative to search for
new lines of antimalarial drug and vaccine targets. The
complete genome sequencing of P. falciparum and its
sibling species and strains [1-6], the subsequent transcrip-
tomic [7-30], proteomic [31-46], metabolic [47-54], interac-
tomic analyses [55-60] and, most recently, next-generation
sequencing [61-63] efforts have set the stage for a quantum
leap in our understanding of the fundamental processes of
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the parasite life cycle and mechanisms of drug resistance,
immune evasion, and pathogenesis. However, the paradigm
of -omics driven target discovery has been significantly
hampered by our limited knowledge of the cellular net-
works associated with parasite survival, development, trans-
mission, invasion, and pathogenesis.
We propose to circumvent this limitation using a sub-

network alignment approach. It has been shown that net-
work alignment offers an effective means to elucidate
network structure and predict protein orthologs [64-69].
Our approach extends the concept of network alignment
to align subnetworks of proteins for measuring their
functional relations in a network context. It is particularly
useful when the genome of interest suffers from poor
annotation due to low or no sequence similarity to
known proteins, a significant problem for P. falciparum,
as over 60% of the predicted open reading frames (ORFs)
were annotated as “hypothetical” without functional
assignment [5]. Previously, we developed a supervised
learning algorithm for remote homology detection based
on support vector machines (SVMs) and profile kernels
[70], and predicted a group of novel proteases [71],
which were implicated in networks associated with sig-
naling, stress response, cell cycle progression, metabo-
lism, and invasion [72]. In this study, we attempt to
identify network components beyond sequence-similarity
searches.
PPI network alignment algorithms are designed to

match nodes in two PPI networks such that the conserved
interactions between the orthologs in the networks are
captured or maximized in counts. The current network
alignment algorithms are either local or global approaches.
Local network alignment [64-69] aims at detecting pairs of
subnetwork modules with many functional orthologs.
Typically, these algorithms start from conserved regions
and expand the regions greedily in the two PPI networks.
Global network alignment attempts to find the best con-
sistent mapping of the proteins in the two PPI networks
for maximizing the number of conserved interactions. Pre-
vious studies tackled the global network problem with
Markov Random Field (MRF) [73], combinatorial graph
matching by optimization [74-76], and random walk on a
Kronecker product graph of two PPI networks [77].
Since P. falciparum shares very few orthologous pro-

teins with other species, the conserved interactions
between P. falciparum PPI network and the PPI network
of model organisms are too few to reveal meaningful
alignments. Thus, network alignment is not directly
applicable to the study of P. falciparum PPI network.
Instead of focusing on detecting alignment, we propose
to measure the functional relation between P. falciparum
proteins and the annotated proteins in another species by
aligning the neighborhood subnetworks of the two pro-
teins. The neighborhood subnetwork of a protein (called

the central protein) contains the nearby neighbors reach-
able by the protein through a small number of hops in
the PPI network. Our assumption is that the neighbor-
hood subnetwork captures information on the functional
role of the central protein. Based on this assumption, if
two proteins are functional orthologs, their neighborhood
subnetworks will share similar paths or other structural
patterns. Our subgraph alignment approach is designed
to summarize the structural similarity between neighbor-
hood subnetworks for ortholog prediction.
As a proof-of-concept, we chose to predict the com-

ponents in the transcriptional regulation network in
P. falciparum. It was chosen because: (1) parasite employs
exquisite regulatory machinery on gene expression to
assure timely and accurate coordination on parasite
growth, development, infection, and virulence. (2) Very lit-
tle is known about the components, dynamics, and design
principles of this network. New discoveries of network
components could significantly fill our knowledge gaps
and possibly lead to new short lists of proteins that are
poorly understood and poorly annotated for functional
characterization. The correspondent network used was
from Escherichia coli. Detection of network similarities
among Eukaryotes and among Prokaryotes have been
demonstrated [73,78], but detection of similarities between
these two groups is a more challenging problem. The abil-
ity to make comparisons across such a wide phylogenetic
gap means, firstly, that evolutionarily conserved (and
therefore significant) subnetworks can be detected and,
secondly, that it is possible to search beyond more closely
related strains. This is especially significant in cases like
P. falciparum, where the immediate relatives reveal com-
paratively little about its functional subsystems.

Results and discussion
Module-based subnetwork alignments predicted 1,082
components in transcriptional regulation network in
P. falciparum
It is a common belief that the malaria parasite possesses a
complex and orchestrated transcriptional regulatory sys-
tem [79,80]. However, only a small number of transcrip-
tional regulators have been identified, including a
conserved set of basic transcription factors [81] and those
predicted based on parasite developmental microarray
expression profiles and motif analysis [82-84]. A recent
study by Bischoff and Vaquero [85] combining literature
searches, motif finding, and transcriptomic, proteomic,
and interactomic analyses expanded this list to include
proteins related to chromatin functions and remodeling.
Our functional module-based subnetwork alignments

predicted that 1,082 P. falciparum proteins were func-
tional orthologs of known transcriptional regulators in
the E. coli network (Additional file 1). 37% of these pre-
dicted functional orthologs appeared to be “putative
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uncharacterized proteins” or “conserved Plasmodium
proteins” of unknown function. This is in agreement with
the fact that 10 years after the completion of genome
sequencing, the proportion of ORFs with no functional
assignment has only been reduced to 45% [86]. Func-
tional enrichment analysis [87] revealed that 31 Gene
Ontology (GO) terms were over-represented (p < 0.05),
including those processes that are well known to be asso-
ciated with transcriptional regulation such as proteolysis
[72], response to stimulus, and proteasome activity
(Figure 1).

General transcriptional regulators
The predicted functional orthologs include several general
transcriptional regulators (Table 1) that are commonly
present in a wide variety of species. The first is basic tran-
scription factor 3b (Accession number PF14_0241). It was
found via yeast 2-hybrid (Y2H) analysis [57] to have a
direct PPI with a nascent polypeptide associated complex
a chain protein (PFF1050w), the erythrocyte binding anti-
gen-181(EBA-181, PFA0125c), and a putative coronin

binding protein (PFF1110c), suggesting that it may be
involved in protein folding, immune evasion, and cellular
actin dynamics (Figure 2). The second is a putative
CCAAT-binding transcription factor (PF14_0374). A Y2H
assay [57] showed that it had PPIs with six proteins. Two
of these proteins are likely involved in global transcription,
including (a) a putative NOT1 protein (PF11_0049). Pro-
teins in the NOT1 family were shown to regulate the
activity of general transcription factor TFIID [88]; and (b)
a conserved Plasmodium protein (PF14_0603) that has a
functional domain RPC4 which comprises a subunit of
the tRNA specific polymerase RNA Pol III. The third
interacting protein is a merozoite surface protein 7
(MSP7) precursor (PF13_0197), which is a regulator of
parasite growth and a surface antigen regarded as a poten-
tial vaccine target [89]. The fourth protein associated with
PF14_0374 is a conserved Plasmodium membrane protein
(PF14_0315) that contains two FYVE/PHD zinc fingers for
binding to potential target molecules. The remaining two
proteins associated with PF14_0374 are 40S ribosomal pro-
teins S10 (PF07_0080) and S20e (PF10_0038), indicating

Figure 1 A graphical representation of the results of a Gene Ontology analysis done using BiNGO. The node size is proportional to the
number of proteins represented by that GO term. The color represents the P-value for each enriched GO term as shown in the scale; white
nodes are not enriched. The nodes are positioned to approximate their level in the Gene Ontology.
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the interactions between transcription and translation
(Figure 2).
A putative YL1 nuclear protein (PF14_0608) was pre-

dicted to be a transcriptional regulator. It has two func-
tional domains YL1 (Pfam accession PF05764) and YL1
C-terminal domain (PF08265), both of which are typical
DNA binding domains. This protein may be related to
chromatin remodeling. In addition, a Y2H assay using
this protein as a bait pulled out a chloroquine resistance
marker protein (PF14_0463) (Figure 2).

Apicomplexan-specific ApiAP2 transcriptional regulators
Most interestingly, our subnetwork alignments also
predicted 11 putative transcriptional regulators belong-
ing to the Apicomplexan-specific ApiAP2 family. A
characteristic feature of this family is the presence of
the Apetala2 (AP2) domain. AP2 transcription factors
play a pivotal role in floral development in plants [90].
The recent discovery of AP2 in the Apicomplexa, the
phylum to which malaria parasites belong, suggested

that the ApiAP2 proteins were derived from bacteria or
the apicoplast progenitor via transponsons, followed by
lineage-specific radiation [91]. These ApiAP2 proteins,
in addition to regulating heterochromatin formation
and genome integrity, may develop novel parasite-
specific functions such as antigenic variation, invasion,
and sporozoite development [92-95]. P. falciparum
possesses 27 ApiAP2 members. Among the 11 ApiAP2
proteins predicted by our network alignments, five con-
tain a single AP2 domain, four contain two AP2 domains,
and two contain three AP2 domains (Figure 3). Analyzing
the protein-protein association data from the STRING
database [4], in conjunction with the data from the Y2H
assays, temporal microarray experiments, proteomics, and
literature, revealed that these 11 ApiAP2 proteins are asso-
ciated with 1-17 proteins in the cellular networks (Figure 4
and Additional File 2). At least four ApiAP2 proteins
(PF07_0126, PFD0985w, PF11_0404 and PF10_0075) have
PPIs, suggesting that they play central role in transcrip-
tional regulation.

Table 1 Representative P. falciparum proteins that were predicted to be involved in transcriptional regulation

Functional category PlasmoDB Accession Number Annotation

General transcription regulators PF14_0241 putative basic transcription factor 3b

PF14_0374 putative CCAAT-binding transcription factor

PF14_0608 putative YL1 nuclear protein

ApiAP2 PFL1085w putative transcription factor with 1 AP2 domain

PF11_0442 putative transcription factor with 1 AP2 domain

PF14_0079 putative transcription factor with 1 AP2 domain

PF11_0091 putative transcription factor with 1 AP2 domain

PF14_0633 putative transcription factor with 1 AP2 domain

PFD0985w putative transcription factor with 2 AP2 domains

PFL1900w putative transcription factor with 2 AP2 domains

PF07_0126 putative transcription factor with 2 AP2 domains

PFE0840c putative transcription factor with 2 AP2 domains

PF11_0404 putative transcription factor with 3 AP2 domains

PF10_0075 putative transcription factor with 3 AP2 domains

chromosome organization PFD0685c structural maintenance of chromosomes protein 3 homolog

MAL13P1.96 structural maintenance of chromosomes protein 2

zinc finger proteins PF10_0091 putative zinc finger protein, C2H2 type

PFL0465c zinc finger transcription factor (Krox1), C2H2 type

MAL7P1.155 putative zinc finger, C3HC4 type

PF10_0046 putative zinc finger, C3HC4 type

PF10_0186 putative zinc finger C-x8-C-x5-C-x3-H type

MAL7P1.68 putative zinc finger protein, DHHC type

PF14_0197 putative zinc finger protein, DNL type

PFD0970c putative zinc finger protein, CW type

PF10_0143 putative transcriptional activator ADA2

Others PFE0870w putative transcriptional regulator

PF14_0170 putative NOT family protein
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The ApiAP2 protein with highest connectivity is
PFD0985w, which has 17 interaction partners (Figure 4). It
has direct physical interactions with two other ApiAP2
proteins (PF07_0126 and MAL8P1.153). It is associated
with a nucleosome assembly protein (PFI0930c) that is
implicated in chromatin remodeling, and a putative Ndc80
homolog (PFF0785w) that may be a component of the
mitotic spindle related to chromosome segregation. It is
also associated with three surface antigens including a reti-
culocyte binding protein 2 homologue a (PF13_0198)

which may play a role in determining host-cell invasion
specificity [96], an antigen 332 (PF11_0506) in the Duffy
binding-like (DBL) protein family which may be related
to parasite entry to the host, and an asparagine-rich anti-
gen (PF08_0060). This ApiAP2 protein PFD0985w also
appeared to be related to a number of secreted proteins
including a putative secreted ookinete protein (PFA0430c),
and two proteins that are associated with Maurer’s clefts
[97], parasite-derived membranous structures within the
host cell cytoplasm [PfSec31(PFB0640c), which is a COPII-

Figure 2 A graph showing the proteins associated with three general transcriptional regulators. Square nodes represent the three
transcriptional regulators. Node size is proportional to the degree of the node. Nodes are colored according to their functional classification in
the eggNOG database [121]. The COG categories are [122] (J) Translation, ribosomal structure and biogenesis, (A) RNA processing and
modification, (K) Transcription, (L) Replication, recombination and repair, (B) Chromatin structure and dynamics, (D) Cell cycle control, cell division,
chromosome partitioning, (Y) Nuclear structure, (V) Defense mechanisms, (T) Signal transduction mechanisms, (M) Cell wall/membrane/envelope
biogenesis, (N) Cell motility, (Z) Cytoskeleton, (W) Extracellular structures, (U) Intracellular trafficking, secretion, and vesicular transport,
(O) Posttranslational modification, protein turnover, chaperones, (C) Energy production and conversion, (G) Carbohydrate transport and
metabolism, (E) Amino acid transport and metabolism, (F) Nucleotide transport and metabolism, (H) Coenzyme transport and metabolism, (I)
Lipid transport and metabolism, (P) Inorganic ion transport and metabolism, (Q) Secondary metabolites biosynthesis, transport and catabolism,
(R) General function prediction only, and (S) Function unknown. Confidence scores for the interactions among the nodes (S values from STRING)
were divided into three groups - low (0.150-0.399), medium (0.400-0.700) and high (0.701-0.999); the groups are represented by thin, medium
and heavy lines, respectively.
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coated vesicle component and PHISTb (PFD0080c)]. In
addition, PFD0985w has direct PPIs with the 26S protea-
some AAA-ATPase subunit RPT3 (PFD0665c), which is a
component in ubiquitin-proteasome system for protein
degradation, and pyruvate kinase (PFF1300w), an essential
enzyme for glycolysis.
The ApiAP2 protein with second largest connectivity is

PF07_0126. It has 15 PPI partners (Figure 4) that can be
divided into five categories: (1) transcriptional regulation. It

is associated with two otherApiAP2 proteins (PFD0985w
and PFF0200c), and a CCAAT-box DNA binding protein
subunit B (PF11_0477); (2) epigenetic regulation. It is asso-
ciated with PfHMGB2 (MAL8P1.72), which has a DNA-
binding domain: HMG-box (High Mobility Group box).
The proteins in this family have been implicated in regula-
tion of transcription, replication, repair, and chromatin
remodeling; (3) signaling. PF07_0126 is associated with at
least three putative signaling proteins, including (a)

Figure 3 Phylogenetic tree of the ApiAP2 transcriptional regulator family in P. falciparum. The tree was constructed using the neighbor-
joining method [120]. 11 out of the 27 members were predicted by the subnetwork alignment algorithm. ●: ApiAP2 protein with 1 AP2 domain
▲: ApiAP2 protein with 2 AP2 domains; ■: ApiAP2 protein with 3 AP2 domains.
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PF13_0042, which contains a forkhead-associated domain
that is found in a variety of regulatory proteins involved in
signaling. (b) a calcium/calmodulin-dependent protein
kinase (PF11_0060) that is implicated in signaling cascades.
(c) a putative 14-3-3 protein (MAL8P1.69). Proteins in 14-
3-3 family include regulatory ligands to various signaling
molecules such as kinases and receptors; (4) surface
antigens for cell adhesion and entry to the host. PF07_0126
is associated with a Duffy binding-like antigen 332
(PF11_0506), an erythrocyte membrane-associated antigen
(PFD1045c), and a QF122 antigen (PF10_0115) with an
RNA-binding motif; (5) metabolism. The glycolytic enzyme
fructose-bisphosphate aldolase (PF14_0425) is associated
with the ApiAP2 protein PF07_0126.
The role of ApiAP2 proteins in transcriptional and epi-

genetic regulation is also indicated by a direct PPI between
a putative ApiAP2 with 3 AP2 domains PF10_0075 and a
histone acetyltransferase GCN5 (PF08_0034), an enzyme
for histone modification and chromatin remodeling [98].
This ApiAP2 protein may also been involved in the regula-
tion of genome integrity through a PPI with a DNA repair
protein rhp16 (PFL2440w), and cytoskeleton organization
of actin (Figure 4).
Two of these 11 ApiAP2 proteins have been experimen-

tally characterized to some extent: (1) the crystal structure
of the AP2 domain of PF14_0633 has been determined,
revealing a multiple-site binding pattern [99], and gene

disruption assays showed that its ortholog in the rodent
parasite P. berghei was an indispensible regulator for spor-
ozoite development in the mosquito stage [94]. However,
its regulatory roles and targets remain uncharacterized in
P. falciparum. As shown in Figure 4, it has only two direct
PPIs revealed by Y2H assays [57]: the first is a ribosomal
protein P0, and the second protein PTEX150 (PF14_0344)
is an important component in a translocon of exported
proteins (PTEX). Located in the vacuole membrane, PTEX
was recently discovered as a novel ATP-dependent protein
trafficking machinery [100]. Notably, PTEX150 is only pre-
sent in the Plasmodium genus. The PPI between PTEX150
and ApiAP2 suggests that this export machinery may have
parasite-specific regulation. PTEX is becoming an attrac-
tive therapeutic target due to its importance to virulence
and parasite survival and its distant evolutionary related-
ness to the human host. (2) PF11_0442. Its counterpart in
P. berghei is a transcription factor that regulates ookinete-
specific gene expression for parasite invasion of the mos-
quito midgut. PF11_0442, however, may play a role in the
red blood cell (RBC) stage: It has one PPI partner, rhop-
try-associated protein 1 (RAP1, PF14_0102). RAP1 is an
escort protein required to localize RAP2 to the rhoptries,
apical organelles essential for RBC invasion [101].
In summary, ApiAP2 proteins are a family of stage-

specific transcriptional regulators for diverse processes
ranging from epigenetic modification, chromosome

Figure 4 A graph showing the proteins associated with 11 predicted ApiAP2 transcriptional regulators. Square nodes represent ApiAP2s.
Node size is proportional to the degree of the node. Nodes are colored according to their functional classification in the eggNOG database
[121]. The visualization is as for Figure 2.
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organization and dynamics, invasion, protein sorting and
trafficking, protein turnover, and metabolism.

Other potentially important proteins that may be
involved in transcriptional regulation
Module based subnetwork alignments predicted addi-
tional proteins that are likely involved in transcriptional
regulation (Table 1). Two proteins (PFD0685c and
MAL13P1.96) are members of the SMC (structural
maintenance of chromosomes) superfamily; they both
have a RecF/RecN/SMC N terminal domain and may be
involved in chromatin cohesion and dynamics. A num-
bers of zinc-finger proteins were identified by network
alignments as well. They exhibit different types of
domain configurations, including the classical DNA-
binding motif C2H2 found in transcription factors, the
C3HC4 type (RING finger) typically found in proteins
mediating ubiquitination, the C-x8-C-x5-C-x3-H (CCCH)
type implicated in cell cycle regulation, the DHHC type
found in proteins important for membrane association
and trafficking, the DNL type implicated in protein trans-
location into mitochondria, and the CW type related to
DNA-binding and protein-protein interaction. A putative
transcriptional coactivator (ADA2, PF10_0143) has a ZZ-
type zinc finger domain. ADA2 was shown, in baker’s
yeast and Arabidopsis thaliana, to physically interact with
GCN5, a histone acetyltransferase and a potent transcrip-
tional activator [102,103]. The Y2H assay in P. falciparum
[57] revealed that ADA2 has direct physical interactions
with proteins including a minichromosome maintenance
(MCM) complex subunit (PF14_0177), a pre-mRNA
splicing factor (PFD0265w), a heat shock protein hsp70
interacting protein (PFE1370w), a sodium-dependent
phosphate transporter (MAL13P1.206), a serine/threonine
protein kinase in the FIKK family (PFA0130c), cathepsin C
(PF11_0174), and a mature parasite-infected erythrocyte
surface antigen (PFE0040c), suggesting its potential versa-
tile roles in DNA replication, splicing, transport, protein
processing, signal transduction, and invasion.
Other putative transcriptional regulators include

PFE0870 and PF14_0170. PFE0870 contains two functional
domains: a FACT complex subunit (SPT16/CDC68)
domain which was reported to facilitate transcriptional
initiation and interact with nucleosomes and histones
[104], and a histone chaperone Rttp106-like domain. This
protein may be involved in heterochromatin silencing and
epigenetic regulation. PF14_0170 is a putative protein in
the NOT global transcriptional regulator family. Y2H
assays showed that it had direct physical interactions with
CCAAT-box DNA binding protein subunit B (PF11_0477),
DNA topoisomerase II (PF14_0316), and calcium depen-
dent protein kinase 1 (PFB0815w), emphasizing its involve-
ment in general transcriptional control and chromosome
topology and signaling processes. It also has a PPI with a

Pf11-1 protein (PF10_0374), which may play a role in pro-
tein trafficking processes associated with Maurer’s cleft.

Conclusions
A functional-module based alignment approach was used
to predict system components in transcriptional regula-
tory networks in malaria parasite P. falciparum. Our
results predicted general transcriptional regulators that
may regulate gene expression in a global or pleiotropic
mode. Our results also imply a group of parasite-specific
transcriptional regulators in the ApiAP2 family that play
roles in diverse cellular processes ranging from chroma-
tin remodeling, protein sorting and secretion, signal
transduction, and invasion. Finally, our analysis has iden-
tified other potentially important proteins involved in
transcriptional regulation. Our present knowledge of the
transcriptional machinery and its regulatory capacity is
rudimentary. The identification of network components
in this machinery will open new avenues to the develop-
ment of novel therapeutic targets and provide new
insights into parasite biology, pathogenesis and virulence.
The premise of our subnetwork alignment approach is

that functional annotations of the proteins can be trans-
ferred across species through conserved interactions in the
aligned PPI networks. Under this framework, a priori
information as to the identity or function of a gene is not
necessary for the gene to be placed in a network. Thus
genes identified only because of their key role in a network
become potential targets. Furthermore, placement of the
gene product in a systems context could, in itself, serve to
identify the function of the gene product. If successfully
applied, a systems biology approach circumvents the limit-
ing factor in comparative genomics - the difficulty in
obtaining reliable functional assignments.

Methods
Ortholog prediction by subnetwork querying
To predict functional orthologs for P. falciparum proteins,
we formulated the problem as subnetwork querying. We
first mapped the annotated E. coli transcriptional factors
(GO:0003700: transcription factor activity) into the E. coli
protein-protein interaction network. For each transcrip-
tional factor, nearby neighbors were selected to form its
neighborhood subnetwork. Similarly, each P. falciparum
protein was mapped into the P. falciparum PPI network
and a neighborhood subnetwork was built to include
its nearby neighbors. Since the E. coli network and the
P. falciparum network differ in size and density, the
nearby neighbors were selected with a rule to control the
neighborhood size. Let Nk(p) denote the set of proteins
that are exactly k hops from the central protein p. The
neighborhood of central protein p is N(p) = N1(p) ∪ N2(p)
... ∪ Nk(p) such that |N(p)| ≤ 500. Specifically, we first
included the neighboring proteins that are 1 hop from the
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central protein. If the size of the neighborhood was less
than 500, we continued to include the proteins that were 2
hops from the central protein. We kept increasing the hop
distance until the neighborhood size was larger than 500.
In other words, nearby proteins were selected by their dis-
tance to the central protein and the neighborhood size
was kept below 500 unless the central protein has more
than 500 direct neighbors in the PPI network.
After we obtained the neighborhood subnetwork for

the E. coli transcriptional factors and all the P. falci-
parum proteins, we aligned each E. coli subnetwork
against all the P. falciparum subnetworks. The central
protein of the best-aligned P. falciparum subnetwork
was identified as the functional ortholog of the E. coli
transcriptional factor.

Aligning neighborhood subnetworks with graph kernel
To evaluate how well a P. falciparum neighborhood sub-
network aligned with an E. coli neighborhood subnetwork,
we assigned a score for each possible alignment and sum-
marized the alignment scores with a graph kernel. Graph
kernels are effective approaches to measure the similarity
between two labeled networks [105,106]. Given a pair of
labeled graphs, a graph kernel is designed to summarize
all possible isomorphic subgraphs (exact matches) in the
two graphs. However, since there are an exponential num-
ber of subgraphs, it is computationally infeasible to detect
all isomorphic subgraphs. A simplification is to compute
the number of common paths between two graphs by a
random walk on a product graph of the two compared
graphs or by dynamic programming [107-109]. Alterna-
tively, a graph kernel can also explicitly summarize the

similarity between the shortest paths in the two graphs
with each pair of shortest paths measured by a convolu-
tion kernel [110]. Since our focus is only on the paths that
go through the central protein, we modified the shortest
path graph kernel to only consider the paths between the
central protein and the other proteins in the subnetwork.
The underlying hypothesis is that each shortest path going
through the central protein can characterize the functional
role of the protein in the chained molecular activities
along the path. As shown in Figure 5, given two subnet-
works Sp with central protein p and Sq with central protein
q, we define a simple shortest path similarity function,

K
(
Sq, Sp

)
=

1∣∣Sq
∣∣ +

∣∣Sp
∣∣

∏

∀(i1,i2)∈Sq
B

(
(i1, i2) , Sp

)

where,

B
(
(i1, i2) , Sp

)
= max

∀(j1,j2)∈Sp

2E
(
i1, j1

)
E

(
i2, j2

)

dist (i1, i2) + dist
(
j1, j2

)

E(x, y) = exp(−Eval(x, y)
σ

) with the normalization para-

meter s = 10 measures the sequence similarity between
proteins x and y based on the E-value of the sequence
alignment, and dist(x, y) is the length of the shortest path
connecting proteins x and y in the PPI subnetwork. Since
the scores were small numbers, the computation was done
in -log10 scale. In this similarity function, we took each pair
of the proteins (i1, i2) in one subnetwork and identify the
(j1, j2) in the other subnetwork that gives the maximum
ratio between their sequence similarity with respect to (i1,

Figure 5 Computation of subnetwork alignment score. The alignment score between subnetwork Sp and Sq is the summation of the
similarity score between all pairs of matched shortest paths ((i1, i2) and (j1, j2) in the figure), calculated based on the sequence similarities (E(i1,
j1) and E(i2, j2)) and the distances in the subnetworks (dist(i1, i2) and dist(j1, j2)).
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i2) and the closeness in the subnetworks. Specifically, we
computed the shortest path through the central protein
between all pairs of proteins in the neighborhood subnet-
work. The shortest paths of two neighborhood subnet-
works are then compared and scored pairwise. The total of
the alignment scores was reported as the subnetwork align-
ment score. Our strategy is to incorporate both the
sequence similarity of the proteins and the role of the cen-
tral proteins in the subnetwork in the similarity measure,
which summarizes the functional coherence between the
two subnetworks and between the two central proteins of
the two subnetworks.

Network data and analysis
The E. coli protein-protein interactions were obtained
from IntAct database. IntAct database provides binary pro-
tein-protein interactions derived from literature curation
or direct user submissions. The complete set of protein-
protein associations for P. falciparum was extracted from
the STRING database [111]; each association between a
pair of proteins has a confidence score (S) ranging from
0.15 to 0.999, based on the evidence from sequence simi-
larity comparison, pathway (KEGG [112] and PlasmoCyc
[52]) assignments, genome neighborhood analysis, phylo-
genetic inference, and literature co-occurrence. The asso-
ciations were visualized in Cytoscape [113] and converted
to an undirected weighted graph, where there is a single
edge between any pair of proteins and the S value is used
as the weight. The network was characterized using Net-
workAnalyzer [114]. The default values were used for all
three plugins. The set of proteins associated with tran-
scriptional regulation were screened using BiNGO [115]
to determine if any categories of proteins, as identified by
their Gene Ontology terms, were enriched. The hypergeo-
metric test was used with the Benjamini and Hochberg
false discovery date correction. A significance level of 0.05
was selected.

The omics data mining
P. falciparum genomic sequence and annotation data [5],
transcriptomic microarray data [7,9,12], mass-spectrome-
try proteomic data [34,35,39,40], and protein-protein
interactome [57] data for network associated proteins
were downloaded from PlasmoDB (http://www.plas-
modb.org) [116]. Conserved domains/motifs were identi-
fied by searching InterPro [117]. Multiple alignments
were obtained using the ClustalX program [118] and T-
coffee [119], followed by manual inspection and editing.
Phylogenetic trees were inferred by the neighbor-joining
method implemented in MEGA5 [120]. Bootstrap resam-
pling with 1,000 replicates was carried out to assess sup-
port for individual branches. Bootstrap values of < 50%
were collapsed and treated as polytomies.

Additional material

Additional file 1: Functional orthologs involved in transcriptional
regulation in P. falciparum. The query genome is P. falciparum, and the
target genome is E. coli. GO: Gene Ontology. BP: Biological Process. MF:
Molecular Function. CC: Cellular Component.

Additional file 2: The protein-protein associations involving 11
ApiAP2 transcriptional regulators in P. falciparum.
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Ontology; HMG: High Mobility Group; HSP: heat shock protein; MCM:
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Markov Random Field; ORF: open reading frame; PPI: protein-protein
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