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Abstract

Background: Metabolic control analysis (MCA) and supply–demand theory have led to appreciable understanding of
the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply–demand
theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control
Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very
explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways
in which regulation could be organized, with the potential of causing adaptation to be perfect.

Results: This study integrates control engineering and classical MCA augmented with supply–demand theory and
HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the
‘integral control’ (or near integral control) known in control engineering. This study then focuses on robustness against
and adaptation to perturbations of process activities in the network, which could result from environmental
perturbations, mutations or slow noise. It is shown however that this type of ‘integral control’ should rarely be
expected to lead to the ‘perfect adaptation’: although the gene-expression regulation increases the robustness of
important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the
protein degradation reactions should be zero order in the concentration of the protein, which may be rare
biologically for cells growing steadily.

Conclusions: A proposed new framework integrating the methodologies of control engineering and metabolic and
hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically
and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular
biochemical networks that have been and are being identified by genomics and systems biology, correspond to the
‘perfect’ regulatory structures designed by control engineering vis-à-vis optimal functions such as robustness. To the
extent that they are not, the analyses suggest how they may become so and this in turn should facilitate synthetic
biology and metabolic engineering.
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Background
With the development of quantitative functional genomics
approaches, it has become possible to analyse the cellular
adaptation of cell physiology to altered environmental
conditions experimentally, by monitoring changes in
fluxes, metabolites, proteins or mRNAs. Such adaptations
tend to occur at multiple regulatory levels if not simultan-
eously, then subsequently, depending on the time scales of
observation [1-3]. In principle, an adaptive change in the
rate of an enzyme (or flux) can be mediated by changes in
(i) the concentration of metabolites (e.g. substrates, prod-
ucts and effectors) with direct, cooperative and allosteric
effects on the activity of the enzyme [4], (ii) changes in the
concentration of the enzyme through gene-expression al-
terations, and (iii) covalent modification via signal trans-
duction. The first is termed metabolic (or enzymatic)
regulation. The second is known as gene-expression (me-
diated) regulation and the third as signal-transduction
(mediated) regulation. Because of similar properties, the
latter two types of regulation have been considered to-
gether under the term ‘hierarchical regulation’ [2,5,6]. Al-
though in this paper only the former two types of adaptive
changes will be discussed explicitly, because of the above-
mentioned similarities, the third type is addressed impli-
citly. Until now, significant progress has been made on the
modelling of genome-scale metabolic networks in micro-
organisms integrating metabolic and gene-expression
regulation [7,8]. The steady-state properties of a number
of representative metabolic regulatory mechanisms, such
as end-product inhibition, have been investigated substan-
tially both in terms of metabolic control analysis (MCA)
[9,10] and by the supply–demand theory championed by
Hofmeyr and Cornish-Bowden [11-13]. In order to take
gene-expression regulation into account, hierarchical con-
trol analysis (HCA) [14,15] has been developed as an ex-
tension to MCA, but it has not yet been linked up with
the supply–demand theory. Developing such a link would
seem useful as in quantitative experimental studies gene-
expression regulation turned out to be as important as
metabolic regulation [1,2,5,16].
The adaptive changes of reaction rates through meta-

bolic and genetic regulation are usually due to feedback
and/or feed-forward mechanisms. In biology, there is a
perception that evolutionary optimization has made
these mechanisms perfect. If this were so, this would
suggest that such mechanisms might be identical to ‘per-
fect’ regulatory mechanisms designed by control engin-
eering [17]. Indeed, Csete and Doyle [18] have suggested
that such a convergent evolution of engineering and
biology may have occurred. In particular, they came with
an integral control structure containing both an actuator
unit (corresponding to an integrator) and a controller/
sensor unit. They showed that this regulatory structure
would lead to a phenomenon called perfect adaptation
and then proposed that such structures should be com-
mon to biology. In systems biology contexts, several bio-
chemical processes have been discussed in terms of their
control system structures. For example, robust perfect
adaptation in bacterial chemotaxis signalling system, in
mammalian iron and calcium homeostasis, and in yeast
osmoregulation, have been interpreted as integral feed-
back control systems [19-22], without however proving
that they corresponded precisely to the very same regu-
latory topology or even performance. A recent study
identified the three different types of control structures
used in control engineering, i.e. proportional, integral,
and derivative control, in the regulation of energy me-
tabolism [23]. With the exception of [22], the above
work focused only on metabolic regulation, whereas
[22] did not compare metabolic regulation with gene-
expression regulation. In this study, the integration of
metabolic and gene-expression regulation plus the in-
tegration between Metabolic Control Analysis and
Control Engineering will be investigated.
Control engineering has examined which network

structures may make adaptation of a network upon a
sustained perturbation of a network component, ‘perfect’.
Perfection was defined as the phenomenon that some
important system variables (known as ‘controlled vari-
ables’) should be completely robust to the perturbations,
i.e. with steady states values unaffected by the perturba-
tions. Such perfect robustness can be achieved when a
time integrator is applied to any variation of the con-
trolled variable (or system error). This control feature is
known as ‘integral control’. Through this time integral,
the network would continue to change until the con-
trolled variable is restored completely to its initial value.
Because there must be some compensation for the per-
turbation, a different system variable then has to move
away from its initial state. This so-called ‘manipulated
variable’ is non-robust (fragile) to the perturbation, but
enables the controlled variable to be robust.
If the control action is proportional to the variation of

the perturbed variable itself, or a function thereof that is
zero when that variation equals zero, the ultimate devi-
ation of the controlled variable from its value before the
perturbation, will be nonzero. This is the so-called ‘pro-
portional control’ of control engineering. Perturbations
may also result in a sustained oscillation of the con-
trolled variable and to prevent this from happening, the
third type of control focused on by control engineering
can be useful, i.e. so-called ‘derivative control’, which will
not be discussed in this paper, but has been exemplified in
reference [23].
As mentioned above, the mechanism of integral con-

trol is often referred to as ‘perfect adaptation’. Other au-
thors have referred to similar network behaviour that
was not based on the same integrative mechanism by
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the same phrase of perfect adaptation. One such case is
that all steps in a metabolic pathway are regulated iden-
tically, i.e. their activities being modulated by the same
factor. Tyson et al. [24] referred to this as perfect adap-
tation, but the mechanism hinges on precise regulation
of various steps, we would suggest to refer to this as
‘perfect regulation’ since the adaptation part is not cru-
cial. Kacser and Acerenza [25] called this the universal
method for metabolic engineering. Fell and Thomas [26]
proposed that this may be a common motif in biological
regulation and Adamczyk et al. [27] elaborated it into
the stealthy engineering principle. This paper will not
discuss this perfect regulation mechanism, but focus on
the robust perfect adaptation mechanism operating
through integral control loops.
In this work, we shall try to bridge two rather uncon-

nected approaches in analysing regulation of network
properties. The one is that of control engineering which
has devised networks structures that lead to perfect or im-
perfect adaptation. The other is that of biochemistry with
MCA and supply–demand theory, as well as true-to-life
examples of intracellular biochemical networks involving
both metabolism and gene expression. We shall focus on
pathways synthesizing precursors for macromolecule syn-
thesis (proteins, nucleic acids) in which that precursor
often inhibits an enzyme early in the pathway, both directly
and through gene expression. Such end-product regulatory
structures allow for some simplifications [28]. This makes
them suitable for illustrating our relatively simple conclu-
sions that are however valid more generally. We shall
hypothesize that because a time integration of protein syn-
thesis is involved, gene-expression regulation should be a
prime example of integral control, whilst metabolic regula-
tion is our candidate for the role of proportional control.
We shall then interpret both these steady-state robustness
properties and the control properties in terms of a new
hierarchical supply–demand framework.

Methods
Kinetic description and classical control analysis
In this section, we demonstrate that the unique steady
state of a metabolic network under regulations can be
analysed by both the kinetics-based analysis and by
metabolic (or hierarchical) control analysis. A hierarch-
ical supply–demand theory linking hierarchical control
analysis with classical supply–demand analysis, is devel-
oped for when gene-expression regulation is active. As a
result the steady state properties of a metabolic network
subject to various regulatory mechanisms can be ana-
lysed within a unified theoretical framework.

Basic regulatory architecture and kinetic analysis
The overall regulatory behaviour of a pathway can be
decomposed into a number of elementary structures.
Feedback inhibition by end-product has been reported
for quite a few metabolic pathways, particularly in anab-
olism [29]. Another regulatory motif is the feed-forward
activation of downstream enzymes (see Appendix A and
[30]). In addition, in many metabolic pathways one or a
few reactions are product insensitive. The reactions cata-
lyzed by hexokinase, phosphofructokinase, and pyruvate
kinase in mammalian glycolysis [31] and several steps in
the central carbon metabolism in B. subtilis [28], consti-
tute examples. The activities and concentrations of some
of these enzymes are regulated by allosteric effectors, co-
valent modification or transcription. In this study we take
a linear pathway with metabolic and gene-expression
regulation of the first reaction through the end metabolite
as the example of choice [28] (Figure 1). The first reaction
(catalyzed by enzyme E1) is assumed to be insensitive to
its immediate product. With this example we will be able
to illustrate the essence of the principles we are after.
The following differential equations describe this end-

product regulation pathway:

_x2 tð Þ ¼ E1 tð Þ⋅ f 1 x1 tð Þ; xn tð Þ; p tð Þð Þ− E2 tð Þ⋅ f 2 x2 tð Þ; x3 tð Þð Þ
_x3 tð Þ ¼ E2 tð Þ⋅ f 2 x2 tð Þ; x3 tð Þð Þ− E3 tð Þ⋅ f 3 x3 tð Þ; x4 tð Þð Þ
⋮ ⋮ ⋮

_xn tð Þ ¼ En−1 tð Þ⋅ f n−1 xn−1 tð Þ; xn tð Þð Þ−En tð Þ⋅ f n xn tð Þð Þ
_E1 tð Þ ¼ g xn tð Þð Þ− kED⋅E1 tð Þ

ð1Þ
Here, we assume that the concentration of the sub-

strate x1 is not influenced by the pathway and that only
E1 is regulated through gene-expression. xi is the con-
centration of ith metabolite, and fi describes the kinetics
of the ith reaction. Parameter p corresponds to other fac-
tors that could affect the activity of the first enzyme, e.g.
co-factors or external metabolic modulators. Such effects
on other enzymes are not addressed here. The gene ex-
pression function g is here assumed to depend on the ul-
timate metabolite only, the latter acting on the synthesis
of the first enzyme. More realistic situations involving
the dynamics of mRNA will be discussed in later sec-
tions. This paper is relevant for gene-expression regula-
tion in general, i.e. includes regulation at the level of
transcription, translation and post-translational modifi-
cation, but our examples will mostly deal with only one
type of these at a time and mainly consider transcription
regulation. kED is the degradation rate constant of the
first enzyme. In fast growing organisms and for stable
proteins kED may merely represent the dilution effect
due to cell growth and division (i.e. kED = μ, μ denoting
the specific growth rate) [5,28], but in other cases it will
depend on proteolysis, which will be discussed later.
By definition of the steady-state in living cells [32], x1(t)

and p(t) are constants at steady state, i.e. x1 tð Þ ¼ �x1 and
p tð Þ ¼ �p . Similarly, the concentrations of the enzymes are



Figure 1 The end-product module with gene-expression and metabolic regulation. x1, x2,…, xn represent the concentrations of metabolites
in the pathway; E1, E2,… are the concentrations of enzymes catalysing each reaction. For illustration, only the enzyme of the first reaction (E1) is
assumed negatively regulated via both metabolic (allosteric) effect and gene-expression regulation through the end product xn.
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constants and equal to �E2;…; �En respectively. Accordingly,
if such a constant steady-state regime exists, and it is the
unique solution of the following equation:

f 1 �x1; �xn; �pð Þ⋅ g �xnð Þ
kED

¼ �En⋅ fn �xnð Þ ð2Þ

which only depends on the first and the end enzyme
features and is only a function of the end product con-
centration xn. Usually, both f 1 �x1; xn; �pð Þ and g(xn) are
monotonically decreasing functions of xn, which de-
scribe the negative, metabolic and gene-expression
regulation, respectively. Likewise, fn(xn) is usually a
monotonically increasing function of xn. As shown by
Equation (2), the steady-state regimen corresponds to
the intersection of the two functions, and is unique due
to the monotonic characteristics of f1, fn and g, as illus-
trated in Figure 2.
Alternatively, if the ith reaction (i > 1) is product insensi-

tive but the first reaction is not, then f1 is re-defined and it
Figure 2 Illustration of the unique steady state regimen of a end-produ
also becomes a function of x2, while the kinetic function
of the ith step only depends on xi. It can be proven that at
steady state, x2 then only depends on functions f2,…, fi
and is independent of fi + 1,…, fn − 1. This conclusion is
both theoretically attractive and practically useful, because
the steady state properties of an otherwise complex meta-
bolic pathway may only depend on a limited number of
enzyme features [33]. This is a case where the complexity
of a pathway is limited; its flux and the concentrations of
the upstream metabolites are only controlled by the prop-
erties of the upstream enzymes and the corresponding
genes.
We will now examine how metabolic control analysis

and supply–demand theory deal with these types of
metabolic control structures.

Metabolic regulation: MCA and the supply–demand theory
Metabolic Control Analysis (MCA) has mostly dealt
with the steady state properties of the metabolic part of
ct module in terms of kinetics-based analysis.
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schemas such as the ones mentioned in the previous
subsection. Modular MCA [34] has divided metabolic
networks of this type into modules with relatively au-
tonomous activities, connected through well-identified
metabolites. In the supply–demand theory, Hofmeyr and
colleagues [12,13] have used a similar simplification to
demonstrate much of the essence of the regulation of
cell function. According to the latter, the metabolic part
of the end-product pathway in Figure 1 can be parti-
tioned into a two-step linear pathway with supply and
demand blocks as shown in Figure 3.
The concentration and flux control coefficients of

metabolic control analysis measure the steady state
change in the concentration of a metabolite X and flux J,
respectively, in response to a change in the activity of a
process i. That change in activity may be effected by
changing a parameter pi (e.g. concentration of an inhibi-
tor) that is specific for step i:

CX
i ¼ ∂ lnX

∂ lnpi

� ��
∂ lnvi
∂ lnpi

� �
¼ ∂ lnX

∂ lnvi

CJ
i ¼

∂ lnJ
∂ lnpi

� ��
∂ lnvi
∂ lnpi

� �
¼ ∂ lnJ

∂ lnvi

ð3Þ

The vi is an activity rather than the rate of reaction i
at steady state. When the parameter pi is changed, vi is
not equal to the resultant change of the steady-state rate
of reaction i; it is the change in that rate only if all the
other variables that affect that rate been kept constants.
The concentration control coefficients of the aforemen-
tioned supply–demand system can then be defined as
Cxn

s ¼ ∂ ln xnð Þ=∂ lnvsupply and Cxn
d ¼ ∂ ln xnð Þ=∂ lnvdemand ,

and the flux control coefficients, CJ
s and CJ

d similarly.
These control coefficients describe the control exercised
by a specific reaction or enzyme on the overall system
variables or fluxes, while the ‘local’ regulatory properties
of individual enzymes are quantified by the elasticity co-
efficients, such as
Figure 3 The supply–demand structure of the end-product module w
pathway with only metabolic regulation from the end product to the first
linear metabolic pathway.
εsxn ¼
∂ lnvsupply
∂ lnxn

; εdxn ¼
∂ lnvdemand

∂ lnxn
ð4Þ

εsxn and εdxn measures how the reaction rates of the supply
and demand blocks are influenced by the end product con-
centration xn. Because the rates are those of blocks rather
than of single enzymes, these elasticities are named ‘overall
elasticities’ [32]. They can be further expressed into more,
though not quite elemental elasticity coefficients:

εsxn ¼ c J11 ⋅ εv1xn þ c J1n−1⋅ ε
vn−1
xn

εdxn ¼ εvnxn

ð5Þ

where εv1xn denotes the total elasticity of the first reaction
with respect to xn through the metabolic regulation. The
lowercase flux control coefficients c now refer to the local
control within the supply module only (if seen as if in isola-
tion with xn fixed). They can be obtained from summation
and connectivity theorems as control coefficients of the
module (see Appendix B). When assuming the first reac-
tion is product insensitive, the supply modular elasticity in
(5) can be further simplified as

εsxn ¼ c J11 ⋅ εv1xn ð6Þ

In such a case, the first enzyme has the full control of
flux (i.e. rate-limiting step) within the supply module,

such that c J11 ¼ 1 and

εsxn ¼ εv1xn ð7Þ

Using the summation and connectivity theorems in
MCA, all the four concentration and flux control coeffi-
cients can be expressed in terms of the elasticity coeffi-
cients (see Appendix B). For the concentration control
of the supply step and the flux control of the demand
step this becomes, using (5) and (7):
ith only metabolic regulation. The upper diagram represents a linear
enzyme. The lower part is the supply–demand representation of the



Figure 4 Illustration of hierarchical control. The lower part
represents a metabolic supply–demand system, in which the supply
is catalyzed by enzyme Es (or enzymes stemming from an operon).
The upper part describes the synthesis of enzyme Es in process a
and its degradation in process b. Full arrows represent chemical
conversions. Dashed arrows represent allosteric influences or
catalysis. ‘s’ and ‘d’ stand for ‘supply’ and ‘demand’, respectively.
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Cxn
s ¼ 1

εdxn− ε
s
xn

¼ 1
εvnxn− ε

v1
xn

CJ
d ¼ CJ

vn ¼
εsxn

εsxn− ε
d
xn

¼ 1

1þ εdxn=ε
s
xn

�� �� ¼ 1
1þ εvnxn=ε

v1
xnj j
ð8Þ

These equations show that if the first reaction has
complete flux control within the supply module, the con-
trol of steady state end-product concentration and flux are
only functionally depend on two elasticity coefficients, i.e.
the ones that correspond to the first and last reactions.
When the feedback is very strong, i.e. εv1xn

�� ��≫ εvnxn
�� ��, the con-

trol of the demand flux CJ
d is close to 1. The MCA and

supply–demand simplification thereof discussed in this
section partially explain the state-steady properties of the
aforementioned full regulatory system, but only for the
case of metabolic regulation. When including the gene-
expression regulation, a more complete interpretation can
be achieved by using the hierarchical control analysis and
a new ‘hierarchical supply-demand’ theory as investigated
in the next subsection.

Gene-expression and metabolic regulation: hierarchical
supply–demand theory
Westerhoff and coworkers have developed hierarchical
control analysis (HCA), an extension of MCA that can take
gene-expression regulation and signal transduction into
account [14,26]. We shall here implement this by extend-
ing the meaning of the elasticity coefficients in the previous
subsection to include regulation through gene expressions.
When considering the metabolic part of the network

alone, i.e. if gene expression were always the same, the
control on the concentration of intermediate X in a sup-
ply–demand system follows (8). If the roles of the synthe-
sis and degradation of metabolic enzymes are considered
explicitly, as illustrated in Figure 4, HCA has to be intro-
duced, and the corresponding hierarchical control coeffi-
cient becomes:

HX
s ¼ ∂ lnX

∂ lnvsupply
¼ 1

εdX − �
εsX

ð9Þ

Capital H is here used for the hierarchical control co-
efficients as defined in Table 1. �εsX is an “overall” elasti-
city coefficient, including a classical ‘direct elasticity’
only related with metabolic responses (i.e. εsX similar to
the εsxn defined in the MCA in (8)) and an ‘indirect elas-
ticity’ due to gene-expression regulation:

�εsX ¼ εsX þ εsEs
⋅ cEs

a ⋅ ε
a
X

ð10Þ
The lower case c is used for ‘metabolic control coeffi-
cients’, i.e. control coefficients that only take the local
network (metabolic, or gene expression but not their
combination) into account. εsEs

is often equal to 1, i.e.
when the rate of the reaction in isolation is proportional
to the concentration of the enzyme catalyzing it.
Using metabolic control analysis for the gene expres-

sion part of the network, the control coefficient of the
protein synthesis reaction with respect to the concentra-
tion of the protein synthesized is:

cEs
a ¼ 1

εbEs
− εaEs

ð11Þ

Combining the above expressions, one can express the
hierarchical coefficient quantifying the control exerted
by the supply enzyme on the concentration of the meta-
bolic intermediate X in terms of all the elasticity coeffi-
cients in the network:

HX
s ¼ 1

εdX− εsX−
εsEs ⋅ε

a
X

εbEs−ε
a
Es

¼ 1

εdX þ − εsXð Þ þ εsEs ⋅ −εaXð Þ
εbEsþ −εaEsð Þ

¼ −HX
d

ð12Þ
The terms in parentheses are usually positive. The

equation shows that the control by supply (i) decreases
with the absolute magnitudes of the elasticities with re-
spect to X of the supply, of the demand, and of the pro-
tein synthesis, but (ii) increases for increasing elasticities
of the protein synthesis and degradation reactions with
respect to the concentration of the enzyme. The equa-
tion also shows that for finite non-zero magnitudes of
the elasticities, the hierarchical control coefficients for
control by supply may be decreased by elasticities in the
gene-expression network, but is usually not brought



Table 1 The list of symbols and definitions

Symbol Definition & comments

Cf
i or c

f
i Metabolic control coefficients as defined in (3). f is the system function of interest (i.e. a particular flux, Jj, or a metabolite concentration X).

Lowercase c is used to represent control within a local network (e.g. supply module). The index i refers the process that is controlling.

Hf
i Hierarchical control coefficient. Its mathematical definition is in the same form as metabolic control coefficients in (3), but the system

under study can be more general. MCA only studies the control in a metabolic pathway or a signal transduction cascade, but not their
combination. HCA investigates the control in a hierarchical regulatory network with interactions at different levels, i.e. metabolic, signal
transduction, and gene-expression.

ℜf
i MCA (or HCA) based robustness coefficient.

ℜf
i≡

1

∂ lnf
∂ lnei

� �≡ 1
Cf
i
or 1

Hf
i
.

Ffi Fragility coefficient. It is the inverse of the robustness coefficient and identical to the control coefficient. Ffi≡
∂ lnf
∂ lnei

≡ 1
ℜf

i
≡Cf

i or Hf
i :

εvjxi Elasticity coefficient defined in MCA. It denotes the immediate influences of metabolite xi with respect to the reaction rate in the jth step
in the pre-steady state.

εsxi or ε
d
xi Elasticity coefficient of metabolite xi with respect to the metabolic supply (s) or demand (d) module, as defined in (4).

�εvjxi ,
�εsxi

(or �εdxi )
The overall elasticity (see [32]) for a reaction step under both metabolic and gene expression regulation, or the overall elasticity in a
hierarchical supply or demand module.

vTrsc or
vTrnl

Reaction rate of transcription or translation

vRD or vED Reaction rate of mRNA or protein degradation

kRD or kED mRNA or protein degradation rate constant

kiproteolysis Rate constant of ith order proteolysis

μ The cells’ specific growth (division) rate

E Concentration of enzyme

X or xi Concentration of intermediate metabolite

R Concentration of mRNA

r Reference signal.
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down all the way to zero. The same applies to the con-
trol by demand, which is equal to minus the control by
supply.
Now let us recall the end-product module with both

metabolic and gene-expression regulatory feedbacks of
Figure 1. As the end product (xn) regulates the first reaction
through both metabolic regulation and gene-expression
regulation, the corresponding ‘overall’ elasticity (see Table 1)
of the first reaction can be expressed as:

�εv1xn ¼ εv1xn þ εv1E1
⋅cE1

vTrans ⋅ε
vTrans
xn

ð13Þ
where εv1xn denotes the elasticity through metabolic regula-

tion, cE1
vTrans denotes the control of gene expression (i.e. tran-

scription and translation) on the concentration of the first
enzyme [15,35]. By replacing the εv1xn in (7) with the more

complete expression (13), i.e. using εsxn ¼�εv1xn , the hier-
archical control coefficient Hxn

s can be expressed into elas-
ticity coefficients, in a similar manner as (12). Since both
metabolic and gene-expression regulation constitute nega-
tive feedbacks, εsxn is negative and becomes more negative
with increasing xn due to increasing product inhibition.
εdxn is positive and decreases asymptotically to zero
with increasing xn. Therefore, the relationship between
the reaction rate and end product concentration can be
described in terms of the elasticities as depicted in
Figure 5. Figure 5 explains the unique steady-state
results obtained from classical steady state analysis
(see Figure 2).
An illustration of the supply–demand relationship

similar to Figure 5 has been presented in [13]. However,
here we extend the interpretation of the system and cor-
responding elasticity coefficients to the more general
case that includes gene-expression regulation. As an ex-
tension to the classical supply–demand theory, the ana-
lysis given in this section can be named the ‘hierarchical
supply-demand’ theory.

Control engineering
The discipline of Control Engineering first identifies a
so-called controlled variable, which it sees as the output
of the system. In metabolic biochemistry, output often
relates to a flux, but can also be the concentration of an
important metabolite in the pathway. Control engineer-
ing next examines the various categories of mechanism
that may contribute to the capability of the network of



Figure 5 Illustration of the steady state properties of a supply-demand system in terms of changes in the flux, intermediate
concentration and elasticity coefficients.

He et al. BMC Systems Biology 2013, 7:131 Page 8 of 21
http://www.biomedcentral.com/1752-0509/7/131
maintaining the controlled variable close to its original
steady state value when the system is subject to a sus-
tained perturbation. The ‘error (function)’ is the devi-
ation (δX) of the value of the controlled variable (X)
from its value before the perturbation, or the difference
to a reference signal r. The network ‘adapts’ to the per-
turbation of the controlled variable, i.e. to the error
function, in a so-called ‘control action’. RNA polymerase
plus the ribosomes that together translate changes in the
concentration of metabolites to changes in gene expres-
sion, or direct metabolic regulation of the activity of an
enzyme correspond to such control actions. The output
of the control action (or of the ‘controller’) is often
named the manipulated variable. In metabolism, reac-
tion rates v(X, E) are variables manipulated either by the
concentration of metabolites (f (X)) or by the concentra-
tion of the enzyme that catalyses the reaction concentra-
tion (E). A mechanical control system often includes an
actuator that converts the control signal into some kind
of mechanical motion. For a biochemical system dis-
cussed in this study, this may correspond to the enzyme
catalysing the reaction synthesizing or degrading X. Usu-
ally there exists a sensor measures the controlled variable
and translates its error function into the input signal of
the controller. In a gene-expression regulation, the tran-
scription factor can be regarded as the sensor.
The three most widely used categories of control

are the proportional, integral, and derivative (PID)
control mechanisms [17]. They differ depending on
whether the control system’s response is a function of
the ‘error function’ itself, the time integral thereof or
the time derivative thereof, respectively. In systems
biology literature, the proportional control mechanism
has already been referred to in terms of metabolic
regulation [19,20,23] (e.g. feedback inhibition). However,
when Control Engineering discusses proportional control
mechanisms, response is proportional to the error func-
tion. In actual biochemistry, enzyme activity is rarely a
linear function of the concentrations of metabolites X,
which includes the enzyme’s substrate, its product and
allosteric modifiers. MCA accommodates this nonlinearity
by allowing the elasticity coefficient to differ from 1.
Metabolic regulation by the ‘error function’, is part of the
nonlinear dynamics of the process or system, i.e. f (X),
both conceptually and in the mathematical modelling. It
would seem therefore that the proportional control of
Control Engineering can be nonlinear in biochemical
networks.
Integral control action through the accumulation of

molecules in the metabolic process has also been reported
[19,20,23]. Here the systems response should be a function
not of the error function itself but of the integral of that
error function. In the present study we examine gene-
expression regulation from this point of view, since pro-
tein synthesis requires time integration and depend on the
error function, and because changes in protein concentra-
tion directly affect the rate of the reaction the protein may
catalyzes. We may expect that this integral control some-
how corresponds to the ‘indirect elasticities’ of HCA.
Whether indeed gene-expression regulation corresponds
to an exact (or ideal) integral control mechanism will be
further discussed in the Results and Discussion section.
Whether there exists a derivative control action and
whether it relates to a specific type of regulation in a meta-
bolic pathway will not be investigated in this paper. Refer-
ence [23] already identified an example.
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Considering the dynamics of a metabolic system, we
can write the time dependence of the concentrations of
its metabolites as:

_X ¼ N⋅v X;Eð Þ ¼ N⋅E⋅f Xð Þ ð14Þ

N is the stoichiometry matrix. E is a diagonal matrix
with the concentrations of the enzymes that catalyse the
various reactions along its diagonal. f (X) is a vector
function of the concentrations of the metabolites and
kinetic parameter values. The regulated metabolic path-
way can be described in terms of a closed-loop feedback
control system, as indicated in Figure 6, in which kp, ki
and kd are the PID control parameters. We here note
that Figure 6 and subsequent figures refrain from bio-
chemical detail. This is because the analysis in the
present paper aims at obtaining a set of conclusions with
general significance. Being specific in the schemes we
use as illustrations would detract from this aim.
When considering a sustained perturbation γ∙δp (e.g.

change in a parameter p) and denoting by δ the (small)
deviation from the steady state prior to this perturb-
ation, the time dependent variation in the metabolite
concentrations may be observed:

δ _X ¼ N ⋅ δv X;Eð Þ ¼ N⋅Ess⋅f ′ Xð Þ⋅ δX þ N⋅ f Xð Þss⋅ δE þ γ⋅ δp

ð15Þ
Figure 6 The closed-loop control structure of a metabolic pathway su
feedback control mechanisms: i) proportional or nonlinear control that is re
be related with signalling, e.g. phyosphocreatine buffering; and iii) integral
synthesis requires time integration. The former two control loops i) and ii)
process. Here, metabolite concentration X is the output of a metabolic pro
rates v(X,E) are the manipulated variables because they are functions of bot
(gene-expression regulation), and metabolic process (f(X)), i.e. the outputs o
regulation or signalling). Here, the integral control input q(t) is a function o
between the controlled variable and a reference signal (r).
The subscript ss refers to the steady state values. By
substituting the time integration of gene expression, i.e.

ki⋅
Z t

0
q τð Þ⋅dτ , for δE, and assuming the proportional

and derivative actions a part of the metabolic process
(14),

δ _X¼N⋅ Ess⋅ f ′ Xð Þ⋅ δX þ N⋅ f Xð Þss⋅ ki⋅
Z

0
δφ Xð Þ⋅ dt þ γ⋅ δp

ð16Þ

This describes the overall dynamics of a closed-loop
metabolic system under perturbation as a sum of three
terms. The first term of these is a nonlinear function of
(or in first order proportional to) the perturbation of the
controlled variable (i.e. the error function) δX. This term
describes all the direct elasticities, including non-regulatory
system kinetics such as substrate and product effects, and
(other) metabolic regulation such as allosteric activation.
The second term corresponds to a time integral of a func-
tion of the perturbation of the controlled variable δX, and
can also depend on other system variables as discussed in
the Results and Discussion section.
We shall now examine whether these two terms in the

equation (16), correspond to the proportional and integral
control loops of Control Engineering.
bject to various types of regulation. There are three types of
lated to the substrate or allosteric effects; ii) derivative control that can
control introduced by gene-expression regulation because protein
are often modelled together with the dynamics of the metabolic
cess and is the controlled variable of different control loops. Reaction
h enzyme concentration E, i.e. the output of integral control loop
f proportional/nonlinear and derivative control loops (metabolic
f the controlled variable (q(t) = φ(X(t)) or the difference (or error)
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Results and discussion
A simple example of combined metabolic and
gene-expression regulation of an important intracellular
process: ATP (energy) metabolism
Let us consider the simple example given in Figure 7, i.e.
a two-step pathway with ATP and ADP as combined
intermediate and with the expression of the gene encod-
ing the first enzyme E increasing in proportion to the
concentration of ADP. The ‘moiety conservation sum’ C
is the sum of the concentrations of ATP and ADP and a
constant here (i.e. C = [ATP] + [ADP]) because the reac-
tions only convert the one into the other. The metabolic
regulation addresses the interplay between the supply
and demand processes (s and d).
The dynamics of ADP and enzyme E are here assumed

to follow mass action kinetics:

d ADP½ �=dt ¼ −ks⋅E⋅ ADP½ � þ kd⋅ C− ADP½ �ð Þ
dE=dt ¼ ka⋅ ADP½ �−kb⋅E−k0

ð17Þ

The degradation of the enzyme is here written as the
sum of two terms, which will serve to emphasize the im-
plication of this degradation to be independent (for kb = 0)
or dependent (for k0 = 0; see below) on the enzyme con-
centration. The first order degradation rate reflects the
Figure 7 ATP energy metabolism in a two-step pathway with
gene-expression regulation. The lower part represents a simplified
ATP/ADP energy metabolism process, in which ADP acquires energy
from the supply process (s) (i.e. phosphorylation) and produce ATP;
also ATP can release energy in the demand process (d) (i.e.
hydrolysis) and be converted to ADP. The supply is catalyzed by
enzyme E (or enzymes stemming from an operon). The upper part
describes the synthesis of enzyme E in process a and its degradation
in process b.
assumption that there is a rather unspecific protease activ-
ity for which the particular enzyme E we are considering
here is a minority substrate. The zero order degradation
would reflect a case where there is a specific protease
system for enzyme E (e.g. an ubiquitination followed by a
generic protease) that is saturated by the already high
concentration of the enzyme relative to the KM of the ubi-
quitin transferase. In (17) all rate constants are considered
non-negative and k0 = 0 whenever E is non-positive. The
closed-loop control system structure of the pathway can
be represented as in Figure 8.
The control system diagram suggests that the ADP

concentration is the controlled variable and the en-
zyme concentration E a manipulated variable in the
gene-expression control loop. The zero order degrad-
ation rate k0 can be treated as a reference signal to
the system. The metabolic regulation is included as a
part of the ADP kinetic process. By considering a
perturbation of kd from its steady state value (i.e.
δkd), and reformulating the kinetics of ADP and E
(see Appendix C), we have

δ ADP½ �
: ¼ − ks⋅Ess þ kdð Þ⋅ δ ADP½ �− ks⋅ ADP½ �ss⋅

Z ∞

0

ka⋅ δ ADP½ �− kb⋅ δEð Þ⋅ dt
þ C− ADP½ �ss
� 	

⋅δkd
ð18Þ

Comparing this to a general closed-loop control
system (16), with ADP for X, we recognize on the right-
hand side first a proportional response term, then an
integral response term, and then the perturbation term.
The proportional response corresponds to the direct
‘elasticity’ of the supply and demand reactions with re-
spect to the error function δ[ADP], which is a metabolic
and instantaneous regulation. The integral response is
related to the protein synthesis and degradation and thus
to gene-expression regulation.
When the degradation of enzyme is zero order in terms

of E (i.e. when kb = 0), the gene-expression regulation be-
comes an ideal integral control loop, and the metabolic
network can exhibit robust perfect adaptation to the exter-
nal or parametric perturbations. This can be understood
by requiring (18) to be valid in a steady state, i.e. with time
independent values for [ADP] and E. Because the time in-
tegral reaches to infinity this requires that the argument of
the integral, i.e. ka ⋅ δ[ADP] − kb ⋅ δE, must equal zero. The
mechanism for this perfect adaptation is that after the per-
turbation the concentration of the enzyme will vary until
it makes the time dependences equal zero by itself, forgo-
ing the more usual process in metabolic regulation that
changes in the controlled variable arrange for the steady
state to be re-attained in the presence of the sustained
perturbation.



Figure 8 Control system structure of ATP energy metabolism. k0 and kb are the zero and first order protein degradation rate constants. ka is
the protein synthesis rate constant.
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For the more general case where the enzyme degradation
may depend on the enzyme’s concentration, the (hierarch-
ical) control of the enzyme level by the demand reaction
can be expressed in terms of the kinetic parameters and
the steady-state ADP concentration (see Appendix C):

HE
kd ¼

∂ lnE
∂ ln kd

¼
ks⋅ka
kb

⋅ ADP½ �ss
� 	2

kd⋅C þ ks⋅ ADP½ �ss
� 	2⋅ kakb

¼ 1−
1

1þ ks⋅ ADP½ �ssð Þ2
kd⋅C

⋅ kakb
ð19Þ

The flux control exercised by the demand reaction is
quantified by:

HJ
kd

¼ ∂ ln J
∂ ln kd

¼ 1−
ADP½ �ss
C

1þ ks⋅ ADP½ �ssð Þ2
kd⋅C

⋅ kakb

ð20Þ

Both the control of enzyme level and the control of de-
mand flux by the perturbation equal 1 minus a hyperbolic
function of kb. For the ideal integral control scenario of
kb = 0, the enzyme concentration E tracks the activity of
the pathway degrading ATP perfectly, i.e. HE

kd ¼ 1. More
importantly, the pathway flux perfectly tracks the perturb-
ation in the demand flux and HJ

kd
¼ 1. This is the case of

robust perfect adaptation. For other cases when kb ≠ 0, the
adaptation of the pathway to the perturbation will not be
perfect and both control coefficients are smaller than 1.
Also the robustness coefficient [36] of the ADP con-

centrations vis-à-vis perturbations in the demand reac-
tion can be expressed in terms of kinetic constants and
the concentration of ADP (see Table 1 for definition):

ℜ ADP½ �
kd

¼ 1
∂ ln ADP½ �
∂ ln kd

¼ kd⋅C þ ks⋅ ADP½ �ss
� 	2⋅ kakb

C− ADP½ �ss
� 	

⋅kd
ð21Þ

Only if kb = 0, kd = 0, or [ATP]ss =0, the ADP and ATP

are perfectly robust (ℜ ADP½ �
kd

¼ ∞ ) versus perturbations.
The fragility [36] of the ADP concentration vis-à-vis per-
turbation in the demand reaction, which is the inverse of
the robustness, can be quantified by the concentration
control coefficient for the concentration of ADP with re-
spect to the degradation process. It reads as:

F ADP½ �
kd

≡1=ℜ ADP½ �
kd

¼ ∂ ln ADP½ �
∂ ln kd

¼ C− ADP½ �ss
C þ ADP½ �ss

� 	2⋅ ks⋅kakd ⋅kb

ð22Þ

This fragility is a hyperbolic function of the first order
degradation rate constant of the enzyme and hence zero
when that degradation is zero-order (see Figure 9 for il-
lustration). The fragility has the ATP/(ADP + ATP) ratio
as its maximum value (hence the minimum robustness
equals the (ADP + ATP)/ATP ratio). Half maximum fra-
gility is attained for:

kb ¼
ADP½ �ss

� 	2
C

⋅
ks⋅ka
kd

ð23Þ

This means that the fragility may be low for a substan-
tial magnitude of the first order rate constant of protein
degradation if the rate constant for protein synthesis is
also high. The control coefficients for the enzyme level
HE

kd and the demand flux HJ
kd

attain a maximum of 1
and a value of ½ when the fragility of ADP is half
maximal.
These conclusions can be generalized somewhat by

directly implementing HCA and hierarchical supply–de-
mand result given in (12). For the above model the elas-
ticity coefficients assume the following magnitudes:

εsADP½ � ¼ εaADP½ � ¼ εsE ¼ 1

εaE ¼ 0

εdADP½ � ¼ −
ADP½ �

C− ADP½ �

ð24Þ



Figure 9 The fragility of the ADP concentration with respect to
perturbation in the demand flux as the protein degradation
rate constant kb changes. The fragility is zero when the kb is zero;
the maximum fragility equals the ATP/(ADP + ATP) ratio. The solid
line represents the fragility under a ATP/(ADP + ATP) ratio of 0.5 at
steady state; the dot-dash line is with a ratio of 0.4; and the dashed
line is with a ratio of 0.6. The half maximum fragility is attained when
kb satisfies (23), e.g. kb = 0.3333 under a ATP/(ADP + ATP) ratio of 0.5.
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For the robustness of the ADP concentration vis-à-vis
increased demand one then finds:

1

H ADP½ �
d

¼ −εdADP½ � þ εsADP½ � þ
εsE⋅ε

a
ADP½ �

εbE−ε
a
E

¼ C
C− ADP½ � þ

1

εbE

ð25Þ
This shows that robustness is infinite if the enzyme

degradation reaction is zero order (i.e. εbE ¼ 0), and that
the robustness becomes smaller with increasing order
(elasticity) of this reaction.
The most important conclusion here is that there is

no discontinuity in the ability of integral control loops
to lead to good adaptation. The closer the degradation
of the enzyme that enables the adaptation is to a zero-
order reaction, the stronger its tracking of the perturb-
ation in the demand flux, and the higher the robustness
of the variable that is to be kept homeostatic. Important
perhaps is the phenomenon that the robustness is not
determined by the magnitude of the degradation reac-
tion but by its kinetic order (i.e. elasticity of effective Hill
coefficient). The corresponding conclusions pertain to
the tracking of the demand by the enzyme level E and
the control of the pathway flux by the demand reaction.
A further issue in control engineering is the robustness

of systems versus perturbations at various frequencies.
In engineering, an airplane wing has to be robust to vari-
ations of air pressures at high frequencies, as well at low
frequencies. In order to achieve this combined robust-
ness, different control loops may have to be put in place
simultaneously, although a trade-off limits what one can
do [18]. In systems biology, this can be illustrated for the
end-product feedback regulation in Figure 1. If the flux
demand of the pathway increases rapidly, the concentra-
tion of the end product decreases rapidly and as a result
of the direct allosteric product inhibition effect, the ac-
tivity of the first enzyme will increase quickly too. This
metabolic control of enzyme activity is a fast actuator of
the system. However, if there is a further increase in the
flux demand, the first enzyme may ‘lose’ its control cap-
acity since its activity may be approaching its maximum
capacity (kcat). At this stage, the system may then
undergo a second ‘adaptation’ through gene expression
which should be expected to be slower because the cell
has to produce enzyme, but still ultimately lead to an
increase in the concentration of the first enzyme. This
increase should then decrease the direct metabolic
stimulation of the catalytic activity of the enzyme dis-
cussed above. In this sense, the regulation of the first en-
zyme of the pathway is bi-functional in dynamic terms
[18]: The metabolic regulation rapidly rejects high fre-
quency perturbations but possibly with small amplitude
or capability, while the gene-expression regulation is
slow to adapt, but may be able to reject very large con-
stant perturbations.

Conditions for integral and pseudo-integral control:
end-product pathway
In this section, we recall the end-product module ex-
ample (of which the simple ATP metabolism example is
a special case) to analyse gene-expression regulation in a
more general metabolic pathway. In particular, the con-
ditions will be identified for which the gene-expression
regulation constitutes ideal integral control or pseudo-
integral control will be discussed. A simple but represen-
tative end-product example is given in Figure 10, i.e. a
linear pathway with three metabolites, where for all the
three enzymes the gene expression is regulated by the
last metabolite. The kinetic model of this example with
all the parameters is provided in [5].
Gene transcription and translation are modelled here

explicitly by further including the dynamic function of
mRNA as

_R ¼ vTrsc− vRD ¼ gTrsc x3ð Þ− kRD⋅R
_E ¼ vTrnl− vED ¼ gTrnl Rð Þ− kED⋅ E

ð26Þ

Here gTrnl(R) = kTrnl ⋅ R is a function of mRNA concen-
tration R. kED essentially consists of three parts. One
term is due to dilution, which is proportional to the spe-
cific cell growth rate μ. The other terms correspond to
proteolysis, as below:

kED ¼ μþ k1proteolysis þ k0proteolysis=E ð27Þ



Figure 10 A linear end-product pathway with gene-expression and metabolic regulation. The metabolites are denoted by xi, mRNA by mR
and enzymes by E. S and P are the external metabolites. Metabolite x3 inhibits the rate of enzyme 1 through metabolic regulation and the
synthesis of enzyme 1, 2 and 3 through gene-expression regulation. Enzymes 1, 2 and 3 are encoded on the same operon.
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The final term denotes the zero order proteolysis as
would be caused by proteases that are saturated with the
protein of interest. We here assume that the specific
growth rate μ is independent of the activity of the path-
way under study, an assumption that is sometimes but
not always realistic. Since after multiplying with E the
last term is independent of the protein concentration,
it is convenient to move this term into the protein syn-
thesis function gTrnl(R). Hence, the new protein degrad-
ation rate can be defined as,

kED ¼ μþ k1proteolysis ð28Þ
and the protein dynamics can be re-written as,

_E ¼ gTrnl Rð Þ− kED⋅E
¼ kTrnl⋅R− k0proteolysis

� �
− μþ k1proteolysis
� �

⋅ E
ð29Þ

In the exponential growth phase or if proteolysis is
first order (i.e. kED ≠ 0), the above pathway example
corresponds to a pseudo- or non-integral control
scenario. The control structure of the regulatory system is
then given by Figure 11. The dynamics of the ‘sensor’
is decomposed here by addressing both transcription
and the translation through mRNA. At steady state,
often gTrnl(R)ss = kED ⋅ Ess ≠ 0. Therefore, after perturb-
ation of a system parameter (i.e. kinetic constants),
the new steady state values of x3, R, and gTrnl(R) will
no longer be the same as the old steady state values,
which indicates that then the regulatory system does
not achieve perfect adaptation. However, when kTnD is
very small, near-perfect adaptation behaviour should
be observed.
An ideal integral control scenario will happen only
when cell enters a stationary phase and there only exists
zero order proteolysis, i.e. kED ¼ μþ k1proteolysis ¼ 0 . In

such case, at steady state, gTrnl(R)ss ≡ 0 due to integral
control, and R and x3 will also always keep the same
constant values at steady state, no matter how the sys-
tem parameters are perturbed. The adaptation of the
system is then perfect in the sense of making the system
properties R and x3 robust against the perturbations.
The functions gTrnl(·) and gTrsc(·) can also be multivari-
ate, i.e. contain other system variables. Only if those var-
iables do not depend functionally on the protein
concentration (E), the adaptation vis-à-vis perturbations
of the system kinetic parameters will remain perfect.
The ideal integral control scenario that we considered

above led to the perfect robustness of certain system
variables with respect to certain (external or parametric)
perturbations. A second aspect of the perfect adaptation
scenario is the perfect tracking by a second system vari-
able of perturbations. Perfect tracking means that the
relative change in the variable is identical to the relative
change in the perturbing parameter. If the parameter is
the activity of a process, then this means that the corre-
sponding control coefficient is equal to 1. The perfect
tracking of references and the perfect robustness of con-
trolled variables to perturbations are two aspects of inte-
gral control systems, i.e. the two features can be
observed simultaneously for the same system. A specific
pathway then shows perfect robustness of a system vari-
able vis-à-vis multiple perturbations (or parameters) but
perfect tracking with respect to only a limited set of pa-
rameters (e.g. a reference signal r).



Figure 11 Control system structure of a pseudo-integral or an ideal integral control problem. hTrsc(·) denotes the transcription process.
gTrnl(·) denotes the rate of protein synthesis. The pseudo-integral control system becomes an ideal integral control only when the dashed line
connecting the degradation rate kED is removed.
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For the aforementioned example, the zero order proteoly-
sis can be regarded as a ‘reference’ signal r ¼ k0proteolysis . Ef-

fectively perturbation of this rate constant corresponds to
an external perturbation of protein synthesis. The effect is
that even at an ideal integral control case, i.e. when kED = 0,
the steady state concentration of mRNA will not become 0.
Rather, it will always ‘track’ the reference r (i.e. R = r/kTrnl ≠
0) whenever _Ess ¼ 0. The reference tracking control system
structure is included in Figure 11 with reference r referred
to by a dashed arrow, and with gTrnl(R) then representing
kTrnl ⋅ R.

Practical concerns and assumptions on degradation rate
constant kED
In general, kED ¼ μþ k1proteolysis > 0 . It may seem that

the condition of integral control can be approached,
when either i) kED < < α with α a very small positive
value, or ii) kED < < kTrnl (or kED · E < < gTrnl(R)). In the
latter case, for the level of protein to remain bounded,
there should be a background degradation rate of the
protein independent of the concentration of that protein.
This would be so if:

μþ k1proteolysis≪k0proteolysis=E ð30Þ

During the exponential growth phase of bacteria such
as E. coli less than 1% of a protein may be degraded dur-
ing a cell division cycle [37]. Consequently the major
term in the protein degradation is the dilution term μ
and this term is generally very small. Indeed, by defin-
ition, eμ ⋅ T = 2, where T is the doubling time of the bac-
teria and then μ = ln2/T. Practically, the smallest value
for T is close to 20 minutes [38], which corresponding
to the fastest growth rate of E. coli:

μ≈ ln 2= 20� 60ð Þ ¼ 5:8� 10−4 s−1
� 	 ð31Þ

Such a growth rate in microbes such as E. coli and
yeast, which is fast for organisms but slow at the time
scale of RNA and protein synthesis, produces a small ef-
fective degradation rate constant for the proteins. Below
we shall see whether such a small degradation rate
constant suffices to produce near-perfect adaptation
behaviour in practice, which would be interpreted as
a quasi-perfect integral control system.

Simulation study
In this section, both the integral and the non-integral con-
trol scenarios are simulated based on the example given in
Figure 10 with all the kinetic parameters given in [5]. Three
different systems are considered, with kED = 0, 0.2, and 0.4,
respectively. All three systems are simulated from the same
initial condition. The concentration changes of mRNA, E
and x3 are shown in Figure 12. After a period of time (e.g.
30 seconds) the three systems reach different steady states.
Then at 50 seconds we perturb one system parameter (i.e.
the kcat of the third reaction) by 20% for all three cases.
After a while the three systems reach new steady states.
After perturbation only the system with zero order protein
degradation (i.e. kED = 0), returns to the same steady state
values for mRNA and x3 as those before perturbation,
which indicates perfect adaptation: this is an ideal integral
control system. In this case the manipulated variable,
the enzyme level E, varies strongly. Its adaptation enables
x3 and mRNA to be completely robust vis-à-vis the



Figure 12 The responses of mRNA, enzyme (E), x3 under perturbation with different kED values.
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perturbations of the kcat of the third reaction. In the other
two cases (i.e. kED = 0.2 or 0.4), the change in enzyme level
is smaller, but the new steady state values of mRNA and
x3 deviate from their previous steady-state values and
adaptation is not perfect. However, the deviations are not
large; only 3% for x3 and 4% for mRNA when kED = 0.2,
and 4% for x3 and 8% for mRNA when kED = 0.4.
Now let us consider the reference tracking scenario.

The responses of enzyme and mRNA to a 20% perturb-
ation in the protein stability (r) at t = 50 seconds, are
given in Figure 13 for three different rate constants of
enzyme degradation kED. Only when kED = 0 the mRNA
concentration tracked the reference value with zero
steady state ‘deviation’. This indicates the existence of a
perfect integral action of the feedback regulatory system.
When kED was not equal to zero (i.e. kED = 0.2 or kED =
0.4), the mRNA response did not track the reference sig-
nal, indicating that in these two cases the controller of
the system was not an ideal integral controller, although
it changed less than did the reference signal.

HCA and an hierarchical supply–demand interpretation
This simulation example can be represented by a hier-
archical supply–demand structure such as in Figure 4.
To obtain ideal integral control, both protein synthesis
and protein degradation should be independent of the
concentration of the protein that is being degraded (i.e.
_E ¼ gTrnl Rð Þ). Since this implies that protein degradation
is zero order in protein concentration:

εbEs
¼ εaEs

¼ 0 ð32Þ
So that the hierarchical control coefficient of the me-

tabolite concentration becomes

HX
s ¼ 1

εdX−ε
s
X−

εsEs ⋅ε
a
x

εbEs−ε
a
Es

¼ 1

εdX þ −εsXð Þ þ εsEs ⋅ −εaxð Þ
0

¼ 0

ð33Þ
Here εaEs
¼ εvTrnlE , εbEs

¼ εvEDE , HX
s ¼ Hx3

3 for the biosyn-
thetic pathway example. Because the hierarchical control
by supply and demand must add to zero (due to the
concentration control summation law [15]), also the
control by demand on the metabolite concentration be-
comes precisely equal to zero in the zero order protein
degradation case.

Feed-forward activation: a case study of a leucine
biosynthetic pathway
In previous sections, either a metabolic intermediate
(ADP) or a penultimate product (xn) inhibited or re-
pressed upstream enzymes. In this section a different
regulatory structure is investigated, one in which a
metabolite activates downstream enzymes through
gene-expression. A simplified mathematical model de-
scribing the leucine biosynthetic pathway in Saccharo-
myces cerevisiae [39] is used to demonstrate that the
analysis integrating hierarchical supply–demand the-
ory and control engineering continues to apply. The
pathway converts pyruvate to leucine by the sequen-
tial reactions described in Figure 14. There are two
major regulatory mechanisms in the pathway. One is
a metabolic feedback inhibition of Leu4 and Leu9 by
leucine, which is an end-product module similar to
the ones discussed above. The other is the transcrip-
tional (gene-expression) activation of downstream en-
zymes Leu1 (E1) and Leu2 (E2) by αIPM (I1) (through
transcription factor Leu3), which we shall call initial-
product modules (see Appendix A and Figure 17).
The model predictions fit the experimental data and
all the parameter values have been estimated and
provided in [39].
The hierarchical control coefficient quantifying the con-

trol of supply enzymes Es with respect to the concentration
of I1 (αIPM) can be expressed into the various elasticity co-
efficients (see also Figure 15),



Figure 13 The responses of enzyme (E) and mRNA concentrations with different kED values. First the reference signal r was set to 0.5. By
adjusting the protein synthesis rate (ktrnl), the same steady state values of mRNA (i.e. mRNAss = (kED · Ess + r)/ktrnl = 0.5) and enzyme concentrations
were produced. At t = 50 seconds, the reference signal r was changed from 0.5 to 0.4.
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HI1
s ¼ 1

εdI1 þ εdE1
cE1
a1 ε

a1
I1 þ εdE2

cE2
a2 ε

a2
I1

� �
−εsI1

¼ 1

εdI1−ε
s
I1 þ

εdE1
⋅εa1I1

ε
b1
E1
−εa1E1

þ εdE2
⋅εa2I1

ε
b2
E2
−εa2E2

and its value can be computed from the simulation of the
pathway model by perturbing Eu and recording the changes
in the steady state value of I1. This led to HI1

s ¼ 0:12. The
hierarchical control coefficient is small but not zero, which
indicates that the regulatory network can react and adapt
to this external perturbation although the adaptation is not
‘perfect’.
The closed-loop control system structure of the down-

stream gene-expression activation is the same as that of
the upstream inhibition case described in Figure 11 (with
end-product metabolic regulation dominating process dy-
namics). It is still a negative feedback control rather than a
Figure 14 A schematic diagram of the simplified leucine biosynthetic
represents Leu2, I1 and I2 denote αIPM (α-isopropylmalate) and βIPM respe
and demand modules of the pathway are shown in shading.
feed-forward control in the control context: For a negative
feedback control system, a change (increase/decrease) in
some controlled variable will result an opposite change
(decrease/increase) in the operation of the process itself
in such a way as to reduce changes. For the end-product
module given in (1), when E1 increases the concentra-
tion of the end product xn also increases, whilst as xn
increases E1 would decreases as a result of negative feedback
inhibition (through metabolic or gene-expression regula-
tion). Hence this is a negative feedback control system, since
when E1 increases the system attempts to reduce such an
increase. For case of the positive activation of down-
stream enzyme by a metabolite upstream of that enzyme
(i.e. initial-product module given in (34)), when E1 increases
the concentration of x1 decreases since it is a down-
stream enzyme, while E1 would also decreases as x1
decreasing because of the positive feed-forward activation.
This gives the same result as the end-product case.
pathway model. Eu represents Leu4 and Leu9, E1 represents Leu1, E2
ctively. The source is pyruvate and P represents leucine. The supply



Figure 15 Illustration of the hierarchical supply–demand
structure of the leucine biosynthetic pathway. a1 and b1 denote
the synthesis and degradation of enzyme Leu1 (E1); a2 and b2
denote the synthesis and degradation of enzyme Leu2 (E2). s and d
represent the supply and demand modules as shown in Figure 14.
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Herewith, both two systems are negative feedback
control system in the control context and both can
be represented by the same feedback control structure
as given in Figure 11.
In this model, the protein degradation rates purely de-

pend on the dilution effects, and the estimated growth
rate of μ = 0.0058 min-1 = 9.7 × 10-5 s-1 is very small as
compared to metabolic turnover times and may imply
the existence of a quasi-integral control scenario. For
testing, a simulation study is provided where a 50% in-
crease on the kcat of the first reaction is applied at
800 minutes as an environmental perturbation, the cal-
culated concentration changes of the intermediate me-
tabolites are shown in Figure 16. This perturbation
could be due to an allosteric activation by a substance
added to the system. The concentrations of both αIPM
and βIPM reach new steady states. The differences be-
tween the new and the old steady-state values are
around 7% and 20% respectively. Again, the adaptation
is imperfect; the two concentrations are robust but not
infinitely so.

Conclusions
In this paper, two existing approaches to the analysis of the
robustness and adaptation of networks have been inte-
grated: control engineering and MCA. The former designs
control structures for networks that lead to optimal behav-
iour, for instance in terms of ‘perfect adaptation’ leading to
infinite robustness. The latter quantifies the extents to
which processes in a network determine fluxes and concen-
trations and identifies the molecular interactions that deter-
mine the corresponding distributions of control. Two
extensions of MCA have also been integrated into our ana-
lysis, i.e. HCA adding the possibility to analyse regulation
through gene expression, and supply–demand theory,
greatly simplifying the analysis towards understanding of
the essence. We also integrated the two latter approaches
into a novel hierarchical supply–demand theory. The steady
state properties of exemplary metabolic pathways served as
test cases; they were analysed in terms of the robustness of
their steady state properties. They included a pathway of
free energy transduction, a pathway with feedback inhib-
ition and repression, and a pathway with feed-forward regu-
lation. Most substrates for the synthesis of macromolecules
such as proteins and nucleic acids are the end product of
such pathways, making this analysis important for the un-
derstanding for the control of cell growth.
We then used the resulting framework to address the

question whether metabolic pathways regulated by both
metabolic interactions and through gene expression, come
close to the ideal control structures designed in control
engineering. We focused on the control structures leading
to so-called ‘perfect adaptation’, as defined by (i) complete
robustness of the concentration of the pathway’s end
product towards perturbations in supply and demand, (ii)
perfect tracking of perturbations by variables involved in
the adaptation. Control engineering distinguishes between
proportional, derivative and integral control and showed
that of these only integral control loops produce perfect
adaptation. In a hierarchical control analysis, in a hierarch-
ical supply–demand analysis, as well as in a number of
computer simulations, we showed that such perfect adap-
tation (and perfect tracking) should not be expected for
the usual gene-expression regulation pathways, even
though they seem to engage in integral control. Although
that integral control increased the robustness of the con-
centration of the pathway product vis-à-vis perturbation
in the activities of metabolic enzymes, that robustness was
not perfect, except for the singular case where the meta-
bolic enzymes would be infinitely stable. For complete
steady states, such infinite stability should not be consid-
ered realistic.
We expected that for cases where proteins are highly,

adaptation of the anabolic networks studied should be high
even if not quite perfect. This was however not much ob-
served. HCA can show that this is not to be expected ei-
ther. The perfectness of the adaptation of the networks in
complete steady state should not be a function of the mag-
nitude of any first-order protein degradation rate constant,
but rather a function of the order of the protein degrad-
ation reaction, or to be precise, of its elasticity coefficient:
the protein degradation should be zero order in protein
concentration for the adaptation to become perfect.
Because gene expression regulation involves a time inte-

gral that is a function of changes at the level of the meta-
bolic pathway, we suggest that at least when applied to
biological systems, control engineering is extended so as
to explicitly include such ‘integral control’ loops even if
they do not lead to perfect adaptation. By adding the



Figure 16 Concentration changes of αIPM (I1) and βIPM (I2) under perturbation (at 800 min).
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subtlety of HCA one can then analyse how perfect the
adaptation furnished by the integral control loop actually
is. We propose a simplification of the control-engineering
concept of ‘proportional control’ to the more general case
where the adaptation is any function of the displacement
of the controlled variable but neither a function of the
time integral nor the time derivative of that displacement.
That function could be more complex than the propor-
tionality used in control engineering and thereby be realis-
tic for biochemical networks, thereby making control
engineering much more useful for the life sciences. Per-
haps the terms ‘proportional control’ should then be re-
placed by ‘direct or metabolic control’, referring to the
direct nature of the interactions.
Metabolic networks typically have more than one meta-

bolic intermediate and when the network is perturbed by
affecting a process activity, many metabolite concentra-
tions tend to change. If it is of particular interest to main-
tain one of these as constant as possible whereas
variations in other metabolite concentrations are less det-
rimental to biological function, then the former may be
designated as the ‘controlled variable’ and the latter as ‘ma-
nipulated variables’ in the control engineering analysis. Be-
cause many enzymes do not serve a function other than
through the reaction they catalyse, they may be the more
obvious ‘manipulated variables’. On the other hand it may
well be that some metabolite concentrations serve as ‘ma-
nipulated variables’ with the sole function of providing
near perfect control loops. cAMP might be an example.
Integral control loops do not require gene-expression

regulation. Also in exclusively metabolic networks, integral
control may arise. An example would be a linear pathway
with the penultimate metabolite affecting the first reaction
of the pathway, whilst its degradation rate is independent
of its concentration. If the first step of the pathway is then
perturbed, the concentration of the penultimate metabol-
ite will be a function of the time integral of the
perturbation of the first metabolite concentration in the
pathway, and it may effect perfect adaptation. On the
other hand, if the degradation rate of that penultimate me-
tabolite were first order, then that concentration would be
a direct function of the concentration of the first metabol-
ite of the pathway, and the regulation would turn into pro-
portional rather than integral control. In hindsight,
reference [33] was an early example of this.
As shown at length in the present paper, gene-

expression regulation does not always lead to perfect
adaptation. Indeed, if protein degradation is first order,
then the deviation in the concentration of the enzyme
may well be proportional to the perturbation in the con-
trolled variable and one effectively obtains ‘proportional
control’ through gene-expression regulation. We con-
clude that whether control loops correspond to the inte-
gral or proportional category of control engineering
depends on the elasticity coefficients (orders) of the re-
actions involved with respect to the controlled variable,
rather than on time integration being involved. The ex-
tension of control engineering with hierarchical control
analysis that was initiated here, may well provide the
subtlety that helps analyse the complex networks that
mankind is confronted with today, both in the life sci-
ences and in economics and environmental sciences. It
may also help design new and better networks, if only
for synthetic biology and biotechnology.
We intend the present work to serve as a beginning of a

development where multiple principles of control engineer-
ing may be compared with achievements by biological evo-
lution. One example where the present work may be
extended to is the case where rather than that one piece of
DNA encodes three metabolic enzymes (as in Figure 8),
one metabolic enzyme catalyses reactions in three meta-
bolic modules in the metabolic network: a multifunctional
enzyme. The gene expression of that enzyme may be regu-
lated by metabolites in all three modules. This is a type of
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network structure that control engineering may come up
with as serving a function of coordination. And it will be of
interest whether this type of network may serve a similar
function in Biology.

Appendices
A. The initial-product module
The initial-product feed-forward regulation module given
in Figure 17 can be mathematically described by the
following differential equations:

_x1 tð Þ ¼ v0 tð Þ−E1 tð Þf 1 x1 tð Þ; p tð Þð Þ
_x2 tð Þ ¼ E1 tð Þf 1 x1 tð Þ; p tð Þð Þ−E2 tð Þf 2 x2 tð Þ; x3 tð Þð Þ
⋮ ⋮ ⋮
_xn tð Þ ¼ En−1 tð Þf n−1 xn−1 tð Þ; xn tð Þð Þ−En tð Þf n xn tð Þð Þ
_E1 tð Þ ¼ g x1 tð Þð Þ−kEDE1 tð Þ

ð34Þ
The first reaction here is still assumed product insensitive

and other factors p can act on the enzyme. Different from
the end-product module, the function g is assumed to be
an increasing function of its argument. It has been demon-
strated in [28] that if a constant steady-state regimen exists,
the following simple relationship should be satisfied, with
�E1 ¼ g �x1ð Þ=kED and g �x1ð Þ=kEDð Þ⋅f 1 �x1ð Þ ¼ v1 . Here, it is
assumed the intermediate reactions of the metabolic path-
ways do not ‘saturate’.

B. Calculation of global and local control coefficients in a
supply–demand system
According to the summation and connectivity laws, for a
supply–demand system, we have

CJ
d þ CJ

s ¼ 1

Cxn
d þ Cxn

s ¼ 0

CJ
d⋅ε

d
xn þ CJ

s⋅ε
s
xn ¼ 0

Cxn
d ⋅ε

d
xn þ Cxn

s ⋅ε
s
xn ¼ −1
Figure 17 The initial-product module with gene-expression and meta
By solving the above four equations, the ‘global’ con-
centration and flux control coefficients with respect to
the supply and demand steps can be derived as

Cxn
s ¼ 1

εdxn−ε
s
xn

; Cxn
d ¼ −1

εdxn−ε
s
xn

CJ
s ¼

−εdxn
εsxn−ε

d
xn

; CJ
d ¼ εsxn

εsxn−ε
d
xn

The expressions of the ‘local’ flux control coefficients
given in (5) can be obtained by solving the following
summation and connectivity laws with respect to the
local linear pathway within the supply module as given
in Figure 3.

cJ11 þ cJ12 þ⋯þ cJ1n−1 ¼ 1

cJ11 ε
v1
x2 þ cJ12 ε

v2
x2 ¼ 0

⋮
cJ1n−2ε

vn−2
xn−1 þ cJ1n−1ε

vn−1
xn−1 ¼ 0

C. Steady state analysis of the ATP metabolism example
The steady state values of ADP and E before the per-
turbation are determined when d[ADP]/dt = 0 and dE/
dt = 0:

Ess ¼
kd⋅ C− ADP½ �ss

� 	
ks⋅ ADP½ �ss

ADP½ �ss ¼
kb⋅Ess þ k0

ka

8>><
>>:

ð35Þ

and

k0 ¼ ka⋅ ADP½ �ss−kb⋅
kd⋅ C− ADP½ �ss

� 	
ks⋅ ADP½ �ss

ð36Þ

It is assumed that cell function requires ADP concen-
tration to be at a certain level (i.e. [ADP]ss) and that in
the absence of the perturbation; the cell has adjusted Ess
bolic regulation.
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and the rate constant k0 (and perhaps kd and ks) to meet
this requirement. We assume that the cell will do this
also at different values of kb. The implication is that if
different values of kb are considered, ka is also different
as defined by (36).
Considering a perturbation of kd from its steady state

value, one finds for the time dependence of the variation
in the enzyme level:

δ _E ¼ ka⋅ δ ADP½ �− kb⋅ δE ð37Þ
and for the time dependence of the variation in the level
of ADP:

δ ADP½ �
:

¼ − ks⋅ Ess þ kdð Þ⋅ δ ADP½ �− ks⋅ ADP½ �ss⋅ δE
þ C− ADP½ �ss
� 	

⋅ δkd
ð38Þ

By integrating the time dependence of the change in
enzyme level δE in (37) into (38) one finds (18). By sub-
stituting the steady state condition of Ess in (35),

δ ADP½ �
:

¼ −kd⋅C ⋅ δ ln ADP½ �− ks⋅ ADP½ �ss⋅ δE
þ C− ADP½ �ss
� 	

⋅ kd⋅ δ lnkd ð39Þ
For that change in ADP level to be time independent,

the integrand in the integral control term should equal
zero around steady state, so that:

δE ¼ ka
kb

⋅δ ADP½ � ð40Þ

By using this expression to eliminate the change in en-
zyme level from (39) for the time dependence of the
change in ADP level and set the latter to zero, the ro-
bustness coefficient in (21) can be obtained. Similarly, by
using (40) to eliminate the change in ADP level from
(39), the control of enzyme level (19) can be obtained.
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