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Abstract

Background: An important step in strain optimization is to identify reactions whose activities should be modified
to achieve the desired cellular objective. Preferably, these reactions are identified systematically, as the number of
possible combinations of reaction modifications could be very large. Over the last several years, a number of
computational methods have been described for identifying combinations of reaction modifications. However,
none of these methods explicitly address uncertainties in implementing the reaction activity modifications. In this
work, we model the uncertainties as probability distributions in the flux carrying capacities of reactions. Based on
this model, we develop an optimization method that identifies reactions for flux capacity modifications to predict
outcomes with high statistical likelihood.

Results: We compare three optimization methods that select an intervention set comprising up- or down-
regulation of reaction flux capacity: CCOpt (Chance constrained optimization), DetOpt (Deterministic optimization),
and MCOpt (Monte Carlo-based optimization). We evaluate the methods using a Monte Carlo simulation-based
method, MCEval (Monte Carlo Evaluations). We present two case studies analyzing a CHO cell and an adipocyte
model. The flux capacity distributions required for our methods were estimated from maximal reaction velocities or
elementary mode analysis. The intervention set selected by CCOpt consistently outperforms the intervention set
selected by DetOpt in terms of tolerance to flux capacity variations. MCEval shows that the optimal flux predicted
based on the CCOpt intervention set is more likely to be obtained, in a probabilistic sense, than the flux predicted
by DetOpt. The intervention sets identified by CCOpt and MCOpt were similar; however, the exhaustive sampling
required by MCOpt incurred significantly greater computational cost.

Conclusions: Maximizing tolerance to variable engineering outcomes (in modifying enzyme activities) can identify
intervention sets that statistically improve the desired cellular objective.
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Background
In recent years, increasingly sophisticated computational
methods have been developed to identify optimal genetic
modifications to achieve a desired metabolic engineering
objective. The problem of identifying optimal genetic
modifications can be expressed in terms of operating
state variables such as reaction flux, and control (deci-
sion) variables such as the presence or absence of gene
expression. The optimal design “tunes” these variables
such that the solution meets the engineering objective
while satisfying several constraints reflecting physico-
chemical considerations, experimental observations and
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assumptions about the physiology of the cell or organ-
ism. Due to biological variability [1,2], stochastic effects
associated with gene expression, and imprecision in en-
gineering implementation, it is questionable that enzyme
levels can be precisely tuned to exactly match the target
values calculated using computational design tools. More
likely, the target enzyme levels, and thus the correspond-
ing reaction flux capacities, can only be achieved with a
finite degree of uncertainty. Addressing uncertainty at the
design stage is a challenging issue that has become increas-
ingly important not only for engineering biological systems,
but also man-made systems such as electronic devices. In-
deed, the past decade has witnessed a paradigm shift in de-
sign of electronics and computational design tools, where
all modern electronic circuits are now designed to
ntral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

mailto:soha@cs.tufts.edu
http://creativecommons.org/licenses/by/2.0


Yousofshahi et al. BMC Systems Biology 2013, 7:29 Page 2 of 13
http://www.biomedcentral.com/1752-0509/7/29
maximize tolerance to manufacturing and operational vari-
ations or to include tuning circuitry for post-manufacturing
re-calibration. As metabolic engineering efforts progress
from proof-of-principle to scaled-up manufacturing, com-
putational methods to effectively address biological and en-
gineering uncertainties at the design stage will become
increasingly important in ensuring the identification of the
most robustly optimal gene modifications.
The uncertainty in achieving targeted enzyme values

suggests that the enzyme levels, and hence the correspond-
ing flux carrying capacities (bounds), could be considered
statistical distributions rather than fixed value parameters.
In this statistical interpretation, a flux constraint in a con-
ventional deterministic optimization problem represents
the most conservative point in the flux capacity distribu-
tion, since a deterministic problem enforces all constraints
with zero uncertainty. Although the deterministic ap-
proach affords relatively straightforward problem formula-
tion and is most commonly practiced [3-5], this approach
might lead to choosing an intervention set that may be
far from optimal in a statistical sense. Alternatively, a
sampling-based optimization approach (e.g. Monte Carlo
sampling [6]), with the obvious caveat of being computa-
tionally intensive, probabilistically explores a possible
space of enzyme activities, i.e. flux capacity distributions,
and solves for an optimal intervention set for each sam-
pled instance of flux capacities. Repeated sampling pro-
duces multiple intervention sets and a corresponding
distribution of objective function values. Another alterna-
tive for incorporating uncertainties in an optimization
problem is chance-constrained programming (CCP), which
selects an optimal solution with a user-defined degree of
probabilistic confidence in meeting constraints. Chance-
constrained programming was first introduced in [7] to
solve the problem of temporal planning when uncertainty
is present. Since then, CCP has been utilized in numerous
applications, including circuit sizing [8], soil conservation
[9], ground water management [10], energy management
[11], and molecular property optimization [12].
Current strain optimization methods generally seek to

identify combinations of gene-level modifications that
will result in an improvement of the desired cellular ob-
jective. These modifications are commonly gene deletions,
but may be also up- or down-regulations of gene expres-
sion. A notable example of a computational method to
identify gene knockouts is OptKnock [4]. This method uses
bi-level programming to identify gene deletions that satis-
fy the coupled objectives of metabolite overproduction and
biomass formation. Another gene deletion strategy is
Genetic Design through Local Search (GLDS) [5], which
employs a heuristic and flux balance analysis (FBA) to it-
eratively find sets of zero flux reactions (corresponding to
gene deletions) that would result in the maximization of
the target reaction flux. Other, related methods for large-
scale problems involve metaheuristic approaches to itera-
tively improve a candidate set of gene deletions by generat-
ing and selecting variants of the candidate set via
assessment of the objective function. An example of this
approach is OptGene, which uses an evolutionary algo-
rithm to improve the set of gene deletions with respect to
an objective function [13].
Optimization methods have also been described to

identify targets for gene expression modification. OptReg
[3] is a constraint-based method that uses bi-level pro-
gramming to determine which sets of genes should be
amplified or down-regulated to satisfy a coupled pair of
engineering and cellular objectives. Another class of
computational strain design methods utilizes elementary
mode (EM) analysis. One recent example is Computa-
tional Approach for Strain Optimization aiming at high
Productivity (CASOP), which ranks reactions based on
their contributions to the yield of desired product [14].
Another example is Flux Design, which selects reactions
for up-regulation or deletion based on their correlation
with the objective flux computed from EMs that contribute
to the target product [15,16]. Despite increasing sophistica-
tion, these and other current computational strain design
methods implicitly assume that reaction flux changes can
be implemented precisely, and thus do not consider uncer-
tainties as part of the problem formulation.
In this paper, we investigate three computational methods

to address uncertainty in strain optimization. Specifically,
we compare two probabilistic methods, CCP based op-
timization (CCOpt) and sampling based optimization
(MCOpt), against deterministic optimization (DetOpt). The
performance of each method is tested on two metabolic
models for which enzyme level changes and corresponding
flux capacity distributions are estimated either from kinetic
parameters or steady-state flux data. The performance of
the solutions, i.e. predicted target fluxes and corresponding
intervention sets, is evaluated using Monte Carlo simula-
tions (MCEval) designed to simulate the variable outcomes
resulting from experimental implementation of the modifi-
cations specified by the optimization solutions.

Methods
Chance-constrained optimization (CCOpt)
Figure 1 illustrates the difference between a determinis-
tic and probabilistic interpretation of an uncertain
upper-bound constraint on the flux of reaction j. In the
deterministic interpretation, the value of flux vj of any
feasible solution is enforced to be strictly less than all of
the values in the upper-bound (flux capacity) distribu-
tion Capuj . This yields the constraint:

Prob vj < Capuj
n o

¼ 1 ð1Þ
In the probabilistic interpretation, the constraint is not

always satisfied, i.e. there is a nonzero probability that
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Figure 1 Deterministic and chance-constrained interpretation of an upper bound on reaction flux. The dotted lines represent the upper
bound for the flux of a reaction j in a deterministic (left panel) and chance-constrained interpretation (right panel). The arrows show the flux
ranges. If the upper bound is a random variable, the deterministic interpretation forces the flux vj below the lowest value in the upper bound
distribution. The chance-constrained interpretation allows vj to exceed the lowest value in the upper bound distribution by some probability
specified by the parameter ε.
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flux vj will be equal to or larger than some of the values
in the distribution Capuj . In the case of CCP, the con-

straint is relaxed by introducing a parameter ε, which re-
flects the confidence level for the probability that the
solution satisfies the constraint:

Prob vj < Capuj
n o

≥1� ε ð2Þ

To generalize the previous inequality to also consider the
effects of up- or down-regulating the activity of an enzyme
(e.g. through an adjustment in the expression of the gene
that encodes the enzyme), we introduce two sets of binary
decision variables yuj and ydj . In this paper, we use the

phrasing “up- or down-regulation” to describe engineering
modifications that result in expression level changes of en-
zymes or groups of enzymes regardless of the method. A
value of 1 indicates that the corresponding enzyme is up-
or down-regulated, whereas a value of 0 indicates the cor-
responding enzyme expression is unchanged.

Prob

�
vj≤ 1� yuj
� �

1� ydj
� �

SSUj

þyuj 1� ydj
� �

Capuj þ ydj 1� yuj
� �

Capdj

�
≥1� ε

ð3Þ
where 3, SSUj denotes the reference (unmodified) state
upper bound for reaction j. The fact that there are two ran-
dom variables (Capuj and Capdj ) does not pose a challenge

in solving such an inequality, as at most one of them will
have a nonzero coefficient at a time. Mathematically, the
sum of the two decision variables must be less than or
equal to one ( yuj þ ydj ≤1 ), which simplifies the above in-

equality into the following:

Prob vj≤SSUj þ yuj Capuj � SSUj

� �
þ ydj Capdj � SSUj

� �n o
≥1� ε

ð4Þ
A graphical illustration of the probabilistic constraints

is shown in Figure 2. Down-regulating a reaction de-
creases the upper bound, or the flux capacity. It could
also decrease the lower bound to zero. The capacity
change could leave the flux unchanged or decrease it
below the level of the reference (unmodified) state lower
bound. Up-regulating a reaction increases the flux cap-
acity, but does not affect the lower bound. The flux
value could remain the same or rise above the reference
state upper bound. In this study, we model the capacity
change resulting from a gene expression modification as
a probabilistic (rather than deterministic) event, which
leads to a flux capacity distribution (dashed red lines).
Various approaches have been developed to solve CCP

problems based on properties such as the distribution of
random variables, linearity, and type (individual or joint)
of the chance constraints [11]. One method to solve a
CCP problem is to convert the probabilistic constraints
(here, equation (4)) into their deterministic equivalents
at their specified confidence level ε. This approach re-
quires that the random variables of the problem are in-
dependent, and appear only in an exclusive linear form,
such that the coefficients of all but one are always zero
[17]. Our formulation meets all of these conditions;
therefore, the chance constraints can be converted into
their deterministic equivalents. Using the inverse of the
cumulative distribution functions (CDF) for Capuj and

Capdj , inequality (4) can be reformulated as:

vj≤SSUj þ yuj F�1
j;u εð Þ � SSUj

� �
þ ydj F�1

j;d εð Þ � SSUj

� �
ð5Þ

where F�1
j;u and F�1

j;d denote the inverse CDFs of Capuj
and Capdj respectively, which can be numerically calcu-

lated if needed.
Recasting the chance constraints into the equivalent de-

terministic constraints, the uncertain optimization prob-
lem of maximizing the flux of a desired product through
gene up/down-regulation operations can be formulated
for a system of arbitrary size consisting of N metabolites
and M reactions. Without loss of generality, reversible re-
actions are split into forward and backward components
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Figure 2 Chance-constrained reaction flux bounds with or without enzyme level changes. When there is no modification in the enzyme
level, the flux for reaction j lies within the reference state range (a). When the reaction is up-regulated, the upper bound distribution shifts above
the reference state upper bound (b). When the reaction is down-regulated, the upper bound distribution shifts below the reference state upper
bound and the new (modified state) lower bound may also shift below the reference state lower bound (c). The red dashed lines in (b) and (c)
show the range of possible flux capacity values equaling the spread of the capacity distributions.
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such that the reaction set comprises only irreversible reac-
tions. The chance-constrained cell optimization problem
has the following constraints:

maximize vtarget � α
XM
j¼1

yuj þ ydj
� � !

ð6Þ

s.t.XM
j¼1

Sijvj ¼ 0; ∀i∈N ð7Þ

vbiomass≥ 0:01vmax
biomass ð8Þ

vj≤SSUj þ yuj F�1
j;u εð Þ � SSUj

� �
þ ydj F�1

j;d εð Þ � SSUj

� �
; ∀j∈M ð9Þ

vj≥SSLj 1� ydj
� �

; ∀j∈M ð10Þ

XM
j¼1

yuj þ ydj
� �

≤L ð11Þ

yuj þ ydj ≤1; ∀j∈M ð12Þ

ydj þ ydk≤1; y
u
j þ yuk≤1;

∀j∈M; k ¼ j0s backward counterpart

ð13Þ

yuj ∈ 0; 1f g; ydj ∈ 0; 1f g; ∀j∈M ð14Þ

The main objective of the problem is to maximize the
target reaction flux vtarget. It is expected that the opti-
mal value of vtarget will increase monotonically with L,
the number of allowed interventions (enzyme up/
down-regulation operations). On the other hand, the
engineering cost is also expected to increase with the
number of interventions. Therefore, the objective func-

tion in (6) also includes the term �α
XM
j¼1

yuj þ ydj
� �

,

which imposes a small penalty α for each added inter-
vention, and balances the optimal flux of the target re-
action against the number of required interventions.
Constraint (7) represents the steady state assumption
that the rate of production of each intracellular metab-
olite is equal to its rate of consumption. Constraint (8)
guarantees a minimal growth rate equaling at least 1%
of the theoretical maximum of the wild-type (unmodi-
fied) organism. A minimal growth rate constraint is re-
quired to guarantee that the cell remains viable. This
parameter can be adjusted by the user based on the
metabolic model, available data and expectations for
cell viability, which does not alter the optimization al-
gorithm. To maximize the growth rate while simultan-
eously maximizing a certain target metabolite, a bi-level
optimization with two objectives (maximizing biomass
and a target flux) can be applied in place of the con-
straints (6) and (8). However, linear bi-level programs
are NP-hard [18] and there are no efficient algorithms
to solve large-scale problems [19]. Constraint (9) sets
the upper bound flux capacity for each reaction j. Con-
straint (10) sets the lower bound flux for each reaction
j to SSLj (an observed reference state lower bound, if
the observation data is available) or zero, based on the
value of the binary variable ydj . Constraint (11) sets an

upper bound on the number of allowed interventions.
Inequality (12) ensures that enzyme manipulations are
exclusive, i.e. a reaction can be either up- or down-
regulated in a solution, but not both. Similarly, con-
straint (13) guarantees that the forward and backward
directions of a reversible reaction are not both up- and



vbiomass≥ 0:01vbiomass ð18Þ
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down-regulated at the same time. Constraint (14) speci-
fies that the decision variables yuj and ydj can only be 0 or 1.

Deterministic optimization (Detopt)
The deterministic formulation (DetOpt) can be derived
from the CCP formulation by setting ε = 0 in (9), i.e. vj is
strictly less than all possible values the random variables
Capuj or Capdj can take.

Monte Carlo-based optimization (MCOpt)
Chance-constrained optimization can be emulated by re-
peatedly solving the fixed constraint (deterministic)
optimization problem in which the constraint parameters
(Capuj or Capdj ) are set to randomly drawn values using a

MC sampling procedure for each instance of the problem.
The MC sampling requires a priori knowledge of the dis-
tributions for the flux capacities (Capuj =Cap

d
j ). The pro-

cedure for computing the distributions is described below.
Using the randomly drawn set of flux capacities, the cap-
acity constraints become fixed constraints. Effectively, we
replace the inequality in (9) with the constraint below:

vj≤SSUj þ yuj Xu
j � SSUj

� �
þ ydj Xd

j � SSUj

� �
; ∀j∈M ð15Þ

where Xu
j and Xd

j are the randomly drawn set of flux cap-

acities. Each MC sample, i.e. set of randomly drawn flux
capacities, defines an instance of an optimization problem.
The solution to this optimization problem is a set of inter-
ventions and a corresponding optimal flux value for the
target reaction. Repeating the process (sampling and
optimization) many times, we obtain a distribution of op-
timal target flux values.

Computing capacity distributions
Traditionally, a gene up/down-regulation operation has
been modeled as a deterministic event leading to a fold-
change in the level of the corresponding enzyme, and hence
a fold-change in the flux capacity of the reaction catalyzed
by the enzyme. Here, we model enzyme level modification
as an uncertain event using a probability distribution. We
assume a normal distribution [20] with an average fold-
change of μ = 6 following gene up-regulation and a spread
of δ = 6σ = 8, where σ denotes the standard deviation. The
average fold-change value reflects experimental data
reported in gene over-expression studies involving mam-
malian cells, specifically adipocytes [21]. We note that the
average fold-change value is a user-specified parameter that
can be adjusted to reflect different cell types and experi-
mental data, and thus does not lead to loss of generality.
The spread δ is chosen so that μ - δ/2 > 1, which ensures
that the flux capacity after up-regulating the enzyme level is
higher than the unmodified state. A decrease in enzyme
level, and hence reaction flux capacity, is modeled by a
normal distribution Nd(μ, σ

2) with an average fold-change
of μ = 0.5 and a spread of δ = 1.
Based on the probabilistic interpretation of fold-changes

in enzyme levels resulting from gene modifications, we
also estimate the resulting reaction flux capacities as prob-
ability distributions. We use two different estimation
methods depending on whether the model is kinetic or
stoichiometric. In the case of a kinetic model, a fold-
change in enzyme level is assumed to directly correlate
with a fold-change in the maximal reaction velocity
(vj,max). Here, the maximal reaction velocity has the same
units as reaction flux. Therefore, flux capacity distribu-
tions were calculated by simply multiplying the enzyme
fold-change distributions with vj,max. In the case of a stoi-
chiometric model, the distributions of flux capacities are
approximated using enzyme control flux (ECF) analysis
[22]. Briefly, ECF analysis calculates the effect of enzyme
level changes on flux distribution based on elementary
mode analysis [23] and a power law model for the rela-
tionship between reaction flux and enzyme activity. Typic-
ally, the ECF problem is underdetermined, and the
solution is obtained as a range of minimal and maximal
flux for each reaction. We use the maximal flux value as
the corresponding reaction flux capacity. The maximal
flux values, calculated using sample points from the distri-
butions of enzyme level modifications (Nu(μ, σ

2) and Nd

(μ, σ2)), form a capacity distribution.
Monte Carlo-based evaluation (MCEval) framework
We evaluate CCOpt, DetOpt, and MCOpt using Monte
Carlo (MCEval) simulations designed to mimic the
expected variations in outcomes when the intervention
sets identified by the three different optimization methods
are experimentally implemented. For CCOpt and DetOpt,
each solution is a single optimal flux of the target reaction
and a corresponding set of interventions. The MCOpt so-
lution comprises a distribution of maximal fluxes and
their corresponding sets of interventions. To compare
these solutions, we perform separate MCEval simulations
using the interventions obtained from CCOpt, DetOpt,
and MCOpt, and apply flux balance analysis (FBA) [24]
with the objective function of maximizing the target flux.

maximize vtarget ð16Þ

s.t.XM
j¼1

Sijvj ¼ 0; ∀i∈N ð17Þ
max



∀j∈M; vj≤
SSUj; if reaction j is unmodified
Xu
j ; if reaction j is up�regulated

Xd
j ; if reaction j is down�regulated

8<
: ð19Þ
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∀j∈M; vj≥
SSLj; if reaction j is up�regulated or unmodified

0; if reaction j is down�regulated
�

ð20Þ

In the FBA problem, the flux capacity constraints are
drawn from the capacity distributions (Xu

j and Xd
j in equa-

tion (19)) if the corresponding reaction (enzyme) belongs
to the optimized set of interventions. Otherwise, the cap-
acity constraints are set to maximal steady state value
(SSUj) calculated for the unmodified reference state. Simi-
lar to MCOpt, MCEval repeatedly solves a series of
optimization problems to generate a distribution of opti-
mal target flux values. Unlike MCOpt, MCEval does not
seek to identify an intervention set reflecting decisions on
enzyme activity modification. Rather, each instance of
MCEval simply solves for the optimal flux and the corre-
sponding flux distribution based on capacity constraints
specified by the CCOpt, DetOpt, or MCOpt solution that
is to be evaluated.

Results and discussion
To assess the benefits and limitations of the optimization
methods, we compare their performance using test cases
involving both a kinetic and a stoichiometric model. The
kinetic model describes the metabolism of Chinese ham-
ster ovary (CHO) cells in fed-batch culture [25]. The stoi-
chiometric model describes the metabolism of adipocytes
undergoing differentiation and growth [26].

CHO cell model
The CHO cell model comprises 24 metabolites and 47 irre-
versible reactions. The kinetic parameters of the model
were previously estimated by fitting the model equations to
experimentally obtained metabolite time course data [25].
These parameters are used to estimate the effects of en-
zyme activity increases and decreases on the corresponding
reaction flux capacity distributions. The flux capacity distri-
butions for the adipocyte model are estimated from steady
state metabolic flux data obtained in previous studies [27].
Additional details of the model including reaction defini-
tions are provided as Additional file 1. The test objective is
the synthesis of a recombinant protein product, a thera-
peutic antibody.
We first estimate the steady state flux values of a nominal

reference state and the corresponding capacity distribu-
tions. The reference state fluxes (SSU, SSL) are estimated
through a linear programming formulation that maximizes/
minimizes each reaction flux subject to
SV ¼ 0; 0≤vj≤vj;max; vj
¼ vmeas

j ; j∈MeasuredData ð21Þ

where vj,max is the maximal velocity of reaction j and
MeasuredData is a set of measured exchange flux values
for glucose, glutamine, glycine, glutamate and ammonia.
The maximal velocities (vj,max) are reported in [25] for only
16 of the 47 reactions in the model that explicitly defined
with rate expressions. To calculate the vj,max values for the
remaining reactions, we solve a series of flux maximization
problems subject to the 16 pre-defined maximum veloci-
ties. The capacities reflecting up/down-regulations of en-
zyme activities Capuj =Cap

d
j are obtained by multiplying the

maximum velocities with the assumed enzyme activity dis-
tributions:

Capu=dj ¼ vj;maxNu=d μ; σ2
� � ð22Þ

We compare the intervention sets obtained from
CCOpt with ε = 0.1 and ε = 0.25 (representing two choices
of conservative and relaxed confidence levels respectively)
and those from DetOpt, and evaluate the intervention sets
using Monte Carlo simulations (MCEval). In Figure 3, the
intervention sets (U for the up-regulation set) identified
by each optimization method are shown above their corre-
sponding optimal target flux values. Empty sets represent
no identified interventions. For L = 1, DetOpt and CCOpt
at ε = 0.1 and ε = 0.25 all select reaction 17, which is the
lumped antibody synthesis reaction. For L = 2, CCOpt
adds reaction 13 to form an intervention set of {13, 17}.
Up-regulating reaction 13 increases the synthesis of cyst-
eine, which could be a limiting reactant. As reported in
[28], one of the rate-limiting steps of antibody production
in CHO cells is the folding and assembly of polypeptides
in the endoplasmic reticulum, which requires cysteine res-
idues. For L = 3, CCOpt further adds reaction 1, which
lumps together several steps in glycolysis. Up-regulating
the flux through glycolysis increase the supply of pyruvate
for oxidation in the tricarboxylic acid (TCA) cycle, which
in turn could provide additional energy for antibody syn-
thesis [29]. For L = 4, CCOpt adds reaction 2, which acts
to balance the cytosolic redox by oxidizing NADH and
possibly relieves feedback inhibition of glycolysis.
Compared to CCOpt, DetOpt predicts smaller maximal

antibody synthesis rates (~1000 nmol/106cells/day) due to
the conservative choice of reaction flux capacities. The
maximal synthesis rate predicted using CCOpt is more
than twice the flux predicted by DetOpt (~2200 nmol/
106cells/day). The intervention set identified by DetOpt
consists of only a single reaction even when the maximal
number allowed interventions is raised, indicating that the
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Figure 3 Maximum antibody production rate and intervention sets obtained by CCOpt and DetOpt using the CHO cell model. The
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CCOpt with, ε = 0.25, CCOpt with ε = 0.1, and DetOpt are shown as blue and red circles and black triangles, respectively. Set U refers to the
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rows and columns corresponding to different caps on the number of interventions (L) and different optimization methods/settings, respectively.
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deterministic method does not fully utilize the degree of
freedom available in the problem.
Figure 4 shows the distribution of maximum antibody

production rates obtained using MCEval for the interven-
tion sets reported in Figure 3. In all cases, the maximum
flux predicted by DetOpt falls outside the probable (5th to
95th percentile) range calculated by MCEval, whereas the
maximal flux predicted by CCOpt falls within this range.
When only one intervention is allowed (L = 1), the se-
lected reaction is the same for CCOpt and DetOpt. How-
ever, the flux predicted by CCOpt is higher, and is also
more reliable in a probabilistic sense. When the degree of
freedom is higher (L = 2, 3 and 4), and different interven-
tion sets are selected, MCEval calculates higher probable
ranges for the intervention sets identified by CCOpt com-
pared to DetOpt. For example, for L = 4, the probable
range for CCOpt lies between 1805 and 2870 nmol/
106cells/day whereas both the 5th and 95th percentile
values for DetOpt are at 1079.
Figure 5 shows the distribution of solutions resulting

from 106 iterations of the Monte Carlo optimization
method (MCOpt). MCOpt generates the same solution as
CCOpt and DetOpt for L = 1 and CCOpt for L = 2. For
L = 3, MCOpt identifies four sets of interventions: {1, 13,
17}, {5, 13, 17}, {13, 17}, and {17}. The first set is dominant
at a frequency of 99.86%, and matches the CCOpt
freq=100%
U={17}

freq≈100%
U={13,17}

freq≈99.9%
U={1,13,17}

1000 2000 3000

freq≈99.7%
U={1,2,13,17}

1000 2

L=1

L=2

L=3

L=4

Figure 5 Monte Carlo sampling based optimization (MCOpt) of antibo
MCOpt calculated distribution of target flux values, with the rows and colu
(L) and different intervention sets, respectively. For L = 1 or 2, MCOpt ident
antibody production rate in units of nmol/106cells/day. The dashed lines de
intervention set as a fraction of the total pool of MCOpt solutions for a giv
solution. For L = 4, the trend is the same as L = 3, with
one dominant solution (frequency > 99%) that matches
the corresponding CCOpt solution. This set also corre-
sponds to the highest predicted target flux among all
intervention sets comprising four reactions.
In the case of L = 4, the aggregate effect of uncertain-

ties in flux capacities is to result in a normally distrib-
uted target flux. However, this is not the case for L < 4,
where the dominant target flux values generated by
MCOpt distribute narrowly with nearly zero spread.
Moreover, the mean target flux values rise only incre-
mentally from L = 1 to 3, suggesting that the probabilis-
tic outcomes accumulate at the lower bound of the
probable range due to one or more bottlenecks in the
network that are not relieved until all 4 reaction flux
capacity modifications are introduced.
Similar to the CCOpt and DetOpt solutions, the

MCOpt solutions are evaluated using MCEval (Figure 6).
The MCEval results for L = 1 and 2 are identical to the
MCOpt results for L = 1 and 2 shown in Figure 5, re-
spectively. For L = 3, MCOpt generates two sets of inter-
ventions, where one dominant set is identified with
99.9% frequency. Results of MCEval confirm that this
solution ({1, 13, 17}) indeed has a higher probable target
flux value. A similar trend is observed for L = 4. The set
with the highest probable target flux values is identical
freq=0.1%
U={13,17}

000 3000

freq=0.2%
U={4,13,14,17}

1000 2000 3000

freq=0.1%
U={13,17}

dy production using the CHO cell model. Each panel shows a
mns corresponding to different caps on the number of interventions
ified only one intervention set. The x-axis represents the maximum
note the 5th and 95th percentile values. The selection frequency of an
en L is shown as a percentile value at the top of each panel.
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to the CCOpt solution and the dominant (most fre-
quently identified) MCOpt solution. The probable
ranges (5th and 95th percentile values) calculated by
MCEval for the MCOpt intervention sets {1, 2, 13, 17},
{4, 13, 14, 17} and {13, 17} are (1805, 2870), (1375, 1389)
and (1175, 1175) nmol/106cells/day, respectively. The
MCEval simulations produce a normal distribution of
target fluxes only for the solution {1, 2, 13, 17}, presum-
ably because only this set of interventions sufficiently re-
lieves the flux capacity bottlenecks in the network. The
results of these evaluations indicate that CCOpt and
MCOpt essentially identify the same best intervention
sets, where CCOpt arrives at the results without requir-
ing the sampling run-time cost of MCOpt.

Adipocyte model
In the second case study using the adipocyte model [26],
we maximize the production of tripalmitoylglycerol as a
representative triacylglycerol (TAG) in adipocyte lipid
droplets [30]. This model includes 66 irreversible reac-
tions and 38 metabolites. The details of the model are
provided as Additional file 1. Unlike the CHO cell case
study, we did not use vj,max values to estimate the flux
capacities and reference state fluxes. Instead, the refer-
ence state flux values are calculated by maximizing each
reaction subject to a set of measured untreated control
data reported in [27]. To estimate the flux capacity dis-
tributions, enzyme control flux (ECF) analysis [22] is
used, where the analysis calculates the impact of a
change in an enzyme’s activity on the steady state flux
distribution of the metabolic network. The first step in
calculating the distributions is to generate all elementary
modes (EMs). For the base adipocyte model, 16,818 EMs
were identified using efmtool [31]. In the second step,
EM coefficients (EMCs) are calculated through an itera-
tive process. The third step is to estimate the EMCs for
U={1,13,17}

1000 2000 3000

U={1,2,13,17}

1000 2

L=3

L=4

Figure 6 Monte Carlo sampling based flux balance analysis (FBA) sim
CHO cell model. Each panel shows a Monte Carlo distribution of FBA opti
different caps on the number of interventions (L) and different intervention
represents the maximum antibody production rate in units of nmol/106cells
The dashed lines denote the 5th and 95th percentile values. A single dashe
a change in enzyme activity. An increase or decrease in
enzyme activity is modeled by a normal distribution Nu

(μ, σ2) or Nd(μ, σ
2) as described in Methods (Computing

capacity distributions). The fourth step is to calculate
the flux distributions using the adjusted EMC vectors.
Since the enzyme activity change is described by a distri-
bution, multiple flux distributions are calculated. For
each reaction in the network, the reaction flux capacity
is the set to the maximal flux value of the reaction from
the flux distributions. Repeating the third and fourth
steps for all reactions generates a statistical distribution
of flux capacities for the network. The maximum TG
production rate and intervention sets obtained from
CCOpt and DetOpt are shown in Figure 7. For both
CCOpt and DetOpt, the maximal predicted target flux
increases with the number of allowed interventions. As
was the case for the CHO cell model, CCOpt predicts a
larger maximal flux and generates a more diverse set of
solutions compared to DetOpt. In general, DetOpt un-
derutilizes the degrees of freedom available at larger L
values. For example, the DetOpt solution comprises only
2 interventions when up to 3 interventions are allowed,
whereas the CCOpt solution utilizes all 3 allowed inter-
ventions. A second general trend is that the smaller sets
of interventions are subsets of the larger sets. An inter-
esting observation is that a single intervention (L = 1)
yields no change in the predicted maximal flux. This is
expected, as reactions 17 and 24 are in series, and both
are required for TG synthesis. A change in one without
a change in the other merely shifts the limiting capacity
to the unchanged reaction.
Reaction 17 is a part of the TCA cycle. Reactions 24 and

26 are palmitate biosynthesis and tripalmitoylglycerol bio-
synthesis, respectively. All three reactions directly impact
synthesis of TG, which is formed from esterification of
palmitate with glycerol phosphate, with the latter derived
U={13,17}

000 3000

U={4,13,14,17}

1000 2000 3000

U={13,17}

ulations identified by MCOpt for antibody production using the
mized target flux values, with the rows and columns corresponding to
sets, respectively. Results are shown only for L = 3 and 4. The x-axis
/day. The y-axis represents the sampled frequency of an FBA solution.
d line indicates that these two percentile values are the same.
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from glycerone phosphate. Previous reports [32], including
our own work [27], have shown that the addition of long-
chain fatty acids stimulates cellular TG accumulation. At
first glance, the intervention targets selected by CCOpt
appear trivially intuitive. However, other, equally intuitive
alternatives also exist, which were not selected. For ex-
ample, another intuitive intervention to increase net TG
accumulation is to down-regulate lipolysis (reaction 27).
This intervention was not selected, because the reference
(unmodified) state lower bound for reaction 27 is already
U={17,24}

13 13.5 14

U={17,24}

13 1

U={17,24,26}

L=2

L=3

DetOpt CCOp

Figure 8 Monte Carlo sampling based flux balance analysis (FBA) sim
for tripalmitoylglycerol production using the adipocyte model. Each p
values, with the rows and columns corresponding to different caps on the
settings, respectively. Results are shown only for L = 2 and 3, as setting L =
represents the maximum production rate in units of mmol/g-DNA/2 days. T
dashed lines denote the 5th and 95th percentile values. The solid lines indic
zero, and a further reduction would have no impact on
TG production. In this regard, the optimization results
depend not only on the model, but also on the observed
reference state.
As was the case for the CHO cell model, the results of

CCOpt more closely match the results of MCEval simula-
tions compared to DetOpt (Figure 8). Since neither
DetOpt nor CCOpt identified any solutions for L = 1,
MCEval simulations are not shown. For L = 2 and 3, the
maximal fluxes predicted by DetOpt (13mmol/g-DNA/
U={17,24} U={17,24}

3.5 14 13 13.5 14

U={17,24,26}

t, ε=0.1 CCOpt, ε=0.25

ulations of the intervention sets identified by CCOpt and DetOpt
anel shows a Monte Carlo distribution of FBA optimized target flux
number of interventions (L) and different optimization methods/
1 failed to produce any solutions (empty sets in Figure 7). The x-axis
he y-axis represents the sampled frequency of an FBA solution. The
ate the maximum production rates obtained using CCOpt or DetOpt.
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2 days, shown as solid lines) lie at the lower end of the dis-
tributions generated by MCEval. In contrast, the maximal
fluxes predicted by CCOpt consistently fall in the probable
(5th-95th percentile) range (shown as dashed lines) of the
MCEval distributions. For L = 3, the 95th percentile value
obtained from MCEval simulations of the CCOpt inter-
vention set is significantly larger than the 95th percentile
value obtained from MCEval simulations of the DetOpt
intervention set. Additionally, the flux values predicted by
CCOpt with and are both in the probable range as calcu-
lated by MCEval.
Applying MCOpt to the adipocyte model generates one

solution for L = 1 and 2 and two solutions for L = 3
(Figure 9). The solutions with the highest frequency are
identical to the CCOpt solutions. These solutions are {},
{17, 24} and {17, 24, 26} for L = 1, 2, and 3, respectively,
and occur with 100%, 100% and 89.2% frequency. Of the
two MCOpt solutions for L = 3, the dominant solution has
the higher probable target flux values, which is consistent
with the results of MCEval simulations (Figure 10).

Computational complexity and scalability of methods
Our optimization problems (CCOpt, MCOpt and DetOpt)
are formulated as mixed integer linear programming
freq=100%

U={}

freq=100%
U={17,24}

13 13.5 14

freq=89.2%
U={17,24,26}

L=1

L=2

L=3

Figure 9 Monte Carlo sampling based optimization (MCOpt) of tripalm
panel shows a MCOpt calculated distribution of target flux values, with the
interventions (L) and different intervention sets, respectively. For L = 1 or 2,
maximum TG synthesis rate. The dashed lines denote the 5th and 95th perc
fraction of the total pool of MCOpt solutions for a given L is shown as a pe
(MILP). A MILP problem requires a subset of variables to
take on integer values, while the other variables can take
on non-integer values. This problem is NP-hard [33], and
thus it is unlikely that there exists an efficient (polynomial-
time in the size of the model) algorithm to obtain a globally
optimal solution. In the present study, we implemented
our optimization methods (CCOpt, MCOpt and DetOpt)
using the GNU Linear Programming Kit (GLPK) [34] in
MATLAB. The runtime of our computational experiments
solving the MILP problems was on the order of a few
seconds on a Core i5 2.53 GHz CPU.
In addition to the scalability issue inherent to MILP

problems, another computational challenge lies in estimat-
ing the flux capacity distributions. For the stoichiometric
model of this study, we used enzyme control flux analysis
(ECF) [22] to obtain these distributions. The ECF method
in turn relies on elementary mode (EM) analysis, which
can be applied to metabolic models comprising < ~100 re-
actions, but remains intractable for genome-scale models.
An alternative strategy is to model the fold-change in flux
capacity, i.e. enzyme activity, resulting from a gene expres-
sion modification using a probability distribution, e.g. a
normal distribution. This strategy requires knowledge of
maximal enzyme velocities (vmax). If these parameters are
13 13.5 14

freq=10.7%
U={17,24}

itoylglycerol (TG) synthesis using the adipocyte model. Each
rows and columns corresponding to different caps on the number of
MCOpt identified only one intervention set. The x-axis represents the
entile values. The selection frequency of an intervention set as a
rcentile value at the top of each panel.
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not known, they may be estimated from FBA, which has
been demonstrated on genome-scale models.
These types of limitations, while not trivial, are compar-

able to other computational strain design methods. For ex-
ample, bi-level optimization, used in OptKnock [4], is also
NP-hard [35], and thus can be intractable for large-scale
problems. As an NP-hard problem, the runtime grows
exponentially with the number of allowed reaction modifi-
cations [5]. Methods that rely on EM analysis [14-16,36]
face a similar limitation as our capacity estimation prob-
lem, as the analysis is generally only practical for small to
mid-scale models. Methods based on local search [5] or
metaheuristics [13,37] are computationally less prohibitive
than MILP, and likely offer the best alternative for large-
scale problems. On the other hand, these methods cannot
guarantee global solution optimality, and may arrive at
solutions that are far from exact.

Conclusions
This study investigates three distinct ways of capturing un-
certainty about parameter values when formulating an
optimization problem with the objective of identifying tar-
gets for enzyme activity adjustments that maximize the
production of a desired molecule. The three approaches
are chance-constrained programming (CCOpt), Monte
Carlo sampling-based solution of the uncertain problem
(MCOpt), and deterministic optimization based on worst-
case assumptions (DetOpt). Evaluation of the approaches
for two test cases (CHO cell and adipocyte models) using
Monte Carlo simulations (MCEval) shows that a more so-
phisticated probabilistic approach such as CCOpt has sev-
eral advantages compared to a conservative conventional
approach like DetOpt. Chance-constrained programming
explores a larger portion of the solution space and is able
to find a more diverse set of options. Additionally, CCOpt
consistently outperforms DetOpt in terms of predicting the
more likely maximum of the objective function value.
Comparisons of the intervention sets from CCOpt and
DetOpt using MCEval shows that the maximal fluxes pre-
dicted by CCOpt was always in the probable (5th-95th
percentile) range calculated by MCEval, whereas the
maximal fluxes predicted by DetOpt typically lies outside
of this range. When compared to the sampling-based
optimization approach (MCOpt), CCOpt consistently finds
the solution most frequently selected by MCOpt, but at a
fraction of the computational cost (seconds vs. days).
The CCOpt formulation can be readily extended to cap-

ture other types of uncertainties, such as biological vari-
ability in measured data and cell transfection efficiency,
making CCOpt an effective technique for probabilistic
strain optimization.

Additional file

Additional file 1: Detailed models of CHO cell and adipocyte.
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