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Abstract

Background: As today, there are hundreds of targeted therapies for the treatment of cancer, many of which have
companion biomarkers that are in use to inform treatment decisions. If we would consider this whole arsenal of
targeted therapies as a treatment option for every patient, very soon we will reach a scenario where each patient is
positive for several markers suggesting their treatment with several targeted therapies. Given the documented side
effects of anticancer drugs, it is clear that such a strategy is unfeasible.

Results: Here, we propose a strategy that optimizes the design of combinatorial therapies to achieve the best
response rates with the minimal toxicity. In this methodology markers are assigned to drugs such that we achieve a
high overall response rate while using personalized combinations of minimal size. We tested this methodology in
an in silico cancer patient cohort, constructed from in vitro data for 714 cell lines and 138 drugs reported by the
Sanger Institute. Our analysis indicates that, even in the context of personalized medicine, combinations of three or
more drugs are required to achieve high response rates. Furthermore, patient-to-patient variations in
pharmacokinetics have a significant impact in the overall response rate. A 10 fold increase in the pharmacokinetics
variations resulted in a significant drop the overall response rate.

Conclusions: The design of optimal combinatorial therapy for anticancer treatment requires a transition from the
one-drug/one-biomarker approach to global strategies that simultaneously assign makers to a catalog of drugs. The
methodology reported here provides a framework to achieve this transition.
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Background
Personalized cancer therapy has been proposed as the next
battle in the war on cancer and targeted therapies as the
new warfare machinery [1]. Targeted therapies are designed
to treat cancers carrying specific molecular alterations. In
turn these molecular alterations can be used as companion
biomarkers to inform the decision of using, or not using,
the targeted therapy to treat a patient [2]. For example, in
the context of breast cancer, the level of the receptor tyro-
sine kinase HER2/neu is used to select trastuzumab
(Herceptin; Genentech) as adjuvant therapy [3].
By design, a targeted therapy is expected to be effective in

a subset of cancer patients (e.g., trastuzumab in HER2/neu
positive breast cancer patients). However, even within this
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subset, the long-term response may be reduced. Some pa-
tients may initially respond to the targeted therapy but later
on regress due to the occurrence of secondary molecular al-
terations. For example, in the context of melanoma, cancers
with the BRAF(V600E) mutation can be treated with
vemurafenib (Zelboraf, Plexxikon) resulting in outstanding
response [4]. However, in about one year most patients re-
gress due to upregulation of compensatory pathways [5,6].
The molecular background of a cancer can also modulate
the response to a targeted therapy, even when treatment is
suggested by the biomarker. For example, as a difference
with melanoma patients, colon cancer patients harbouring
the same BRAF(V600E) mutation show a very limited re-
sponse to vemurafenib [7]. One mechanism explaining this
difference is the feedback activation of EGFR upon treat-
ment with vemurafenib and the fact that EGFR levels are
higher in colon cancer than in melamoma cells [8].
Although targeted therapies may fail as single agents,

they can still be effective when used in combination with
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Figure 1 Optimization of personalized therapies. 1- We are
given as input a set of patients, Boolean vectors reporting the
markers status on each patient (X) and a set of drugs available for
treatment. 2- A Boolean vector reporting the markers that will be
used to inform treatment is specified for each drug (Y). 3- Drugs are
suggested for the treatment of each patient using a drug-to-sample
protocol depending on the sample and drug markers (fj(Xi,Yj)). In this
example a drug is suggested for the treatment of a patient
whenever they share at least one marker. 4- Finally, a sample
protocol is used to specify the treatment to each patient (g). In this
example the best treatment for each sample is selected. Finally, we
optimize the marker assignments to drugs (Yj), the drug-to-sample
protocols (fj(Xi,Yj)) and the sample protocol (g) to obtain the maximum
overall response rate, as represented in the figure by the arrow.
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other agents. Combinatorial therapy is a rational ap-
proach to overcome the failure of single drugs [9]. One
hypothesis is that one agent in the combination can
cover for the caveats of other agents, increasing the
response rate [10]. As for the case of single agents,
biomarkers can be used to inform the inclusion of
targeted therapies in a drug combination, which we name
personalized combinatorial therapy.
The shift from single drug targeted therapy to combina-

torial personalized therapies introduces a new challenge. As
today, there are hundreds of targeted therapies with their
associated biomarkers, some of which are already in use to
inform treatment decisions. If we would consider the whole
arsenal of targeted therapies as a treatment option for every
patient, very soon we will reach a scenario where each
patient is positive for several markers suggesting their
treatment with several targeted therapies [11]. Given
the documented side effects of anticancer drugs, it is
clear that such a strategy is unfeasible. A new strat-
egy is needed to optimize the design of combinatorial
therapies to achieve the best respond rates with the
minimal toxicity. In this work we introduce a methodology
to achieve this goal.

Results and discussion
The shift from single drug targeted therapy to personal-
ized combinatorial therapies introduces a new challenge.
We need to define a protocol to design the personalized
combinations given a catalog of drugs, a catalog of
markers and the status of those markers in the patient’s
cancer. To formally address this problem we introduce
the scheme depicted in Figure 1. We are given as input a
cohort of patients together with the status of m markers
in those patients. To be more precise, the markers status
of each patient is represented by a barcode or Boolean
vector Xi=(xi1,…,xim), where xil=1 when marker l is ob-
served in patient i and 0 otherwise. We are also given as
input a set of drugs that are available for anticancer
treatment. In the context of personalized medicine we
would like to assign markers to a drug to identify the pa-
tient subpopulation with the best response rates. Again,
to be precise, the marker assignment to each drug is
represented by a barcode or Boolean vector Yj=(yj1,…,
yjm), where yjl=1 if marker l is used to inform the treat-
ment with drug j and 0 otherwise. A drug-to-sample
protocol fj(Xi,Yj) is used to inform the treatment options,
where fj(Xi,Yj)=1 indicates to consider drug j as a treat-
ment option for sample i and fj(Xi,Yj)=0 otherwise. For ex-
ample, Figure 1 illustrates the protocol where fj(Xi,Yj)=1 if
the sample and the drug share a marker in common. Once
the treatment options are determined for each sample, we
then apply a patient protocol g to choose the personalized
therapies for each patient. For example, Figure 1 illustrates
the protocol g indicating the treatment with the drug with
highest expected response rate among the treatment
options identified for each patient (gbest,1). Another possibil-
ity is to treat with the c drugs with the higher response
rates among those suggested for each patient (gbest,c).
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The current approach to targeted therapies is to assign
markers to drugs based either on the target for which
the drug was developed or some preliminary study
suggesting an increase response rate in patients having
the marker. We take a more general approach where the
markers are assigned to drugs to maximize the response
rate to therapy. To this end, we define the following
optimization problem:
Find the drug marker assignments Yj, the drug-to-sample

protocols fj and sample protocol g that maximize the over-
all response rate O.

Response model
To calculate O we require the probability that each pa-
tient responds to a drug when the drug is used as a sin-
gle agent and some quantification of drug interactions.
In the simplest scenario where there are no drug interac-
tions, the probability Pi that a patient responds to is per-
sonalized therapy is given by the probability that it
responds to at least one of the drugs on its personalized
combination

Pi ¼ 1−
Yd
j¼1

1−pij
� �eij ð1Þ

where eij=1 if drug j is included in the personalized ther-
apy of patient i and pij is the probability that patient i re-
sponds to drug j when the latter is used as a single
agent. When interactions are present we can improve on
(Eq. 1) after adding correction terms accounting for
two-drug interactions and so on

Pi ¼ 1−e

Xd
j¼1

eij ln 1−pij
� �

þ
Xd−1
j¼1

Xd
k¼jþ1

eijeik J jk þ⋯

ð2Þ
In this equation values of Jjk<0 will result in response

rates higher than what expected if the drugs do not
interact (synergy) while values of Jjk>0 will result in re-
sponse rates lower than what expected if the drugs do
not interact (antagonism). We note that antagonism
could take place at the level of pharmacodynamics (an-
tagonism at the cellular level) or at the level of pharma-
cokinetics (antagonism at the drug metabolism level)
and the latter may result in increased toxicity.
The average of Pi across samples defines the overall

response rate O of the personalized combinatorial
therapies

O ¼ 1
s

Xs

i¼1

Pi ð3Þ

We are aware of documented examples of drug inter-
actions in the context of cancer treatment [12].
However, for most combinations we do not have a quan-
titative estimate of how these interactions affect the re-
sponse rate. For the purpose of illustrating our
methodology, we will use the non-interacting drugs ap-
proximation (Eq. 1) in our simulations.

Response-by-marker approximation
In the clinical practice we cannot test the response of
each cancer patient to each approved anticancer drug.
However, we can estimate the response rate to a drug
depending on the present/absence of the markers
assigned to that drug. For example, let us consider the
case where Kj markers are used to inform the treatment
with drug j. The patients are divided into 2Kj groups de-
pending on the status of those markers. We can conduct
a clinical trial to estimate the response rate q(j,s) of drug
j for each group of patients. Once the q(j,s) are known,
we can estimate the response rate to any patient. To be
more precise we enumerate the patient groups using the
index

sj xð Þ ¼
XKj

k¼1

xlk2
k−1 ð4Þ

where lj1 ;…; ljKj

� �
is the list of markers assigned to drug

j and xl is the status of the l-th marker. Using this nota-
tion we obtain the response by-marker approximation

�pij ¼ q j; sj Xið Þ� � ð5Þ
In short, the probability that a given patient i responds

to a given drug j is approximated by the estimated frac-
tion of patients that responds to that drug within the
group of patients having the same status as patient i for
the markers assigned to drug j.

Finding the optimal personalized combinations
We need some procedure to find the optimal treatment
combinations. In the Methods section we report a simu-
lated annealing algorithm that performs an exploration
of the space of markers assigned to drugs and drug-to-
sample protocols with a gradual increased bias towards
improvements on the overall response rate. Although
this algorithm may not find the optimal solution, it can
provide a good approximation to hard computational
problems [13].

Updating the drug-to-sample protocols
During the optimization procedure we need to explore
different marker assignments to drugs and different
choices of drug-to-sample protocols. To this end we
need some precise representation of the Boolean func-
tions and the transformations among them. The drug-
to-sample protocols are represented by a Boolean function
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fj(Xi,Yj) that returns 0 (do not suggest) or 1 (suggest) de-
pending on the status of the markers assigned to the drug
on a given sample. For computational convenience it is

easier to write the Boolean functions as f j Xi;Y j
� � ¼ f j

Xil1 ;…;XilKj

� �
, where Kj is the number of markers

assigned to drug j, lj1;…lKj is the list of markers assigned
to drug j and fj is a Boolean function of Kj inputs. Given K
markers there are 2k possible input states (x1,…,xk), which

can be enumerated as follows: a xð Þ ¼
XK
k¼1

xk2
k−1. For each

of these input states we can set the output oa to 0 or 1.
We can enumerate the Boolean functions with K inputs

using the mapping b oð Þ ¼
X2K−1
a¼0

oa2
a−1 . Therefore, we can

represent every Boolean function with two indexes (K,b),
the first one denoting the number of inputs and the sec-
ond one the specific Boolean function with K-inputs.
Figure 2a and b show all Boolean functions with one

(1,b) and two (2,b) inputs, respectively. Each Boolean
function is represented by a truth-table where for each
Figure 2 Boolean functions and operations among them. a) Boolean f
considered because the output is independent of the input. b) Boolean fun
considered because the output is independent of at least one input. c) An
(2,2), which can be either result into function (1,0) or (1,1). Since function (1
example but removing the left marker (A). e) All mappings from (2,b) to (1,
to (1,b’) following removal of the left marker. e) All mappings from (1,b) to
chosen the reverse of the right-marker removal (panel e) as the mapping f
imput the output 0 or 1 is specified. The letters A and B
are used to denote the inputs and the b index of each
function is indicated on the upper raw of the truth-table.
We note that functions where the output is independent
of at least one input are not considered, because they
can be reduced to a simpler function. For example func-
tion (1,0) (Figure 2a) is equivalent to have no markers
assigned and function (2,3) (Figure 2b) is equivalent to
(1,1) (Figure 2a) after removing the marker B.
To explore different Boolean functions we change

the function, add a new marker or remove one marker.
When changing a Boolean function, (K,b)→(K,b’), a
new function is selected at random among all consid-
ered Boolean functions with the same number of in-
puts. When removing a marker, (K,b)→(K-1,b’), if the
drug has one marker then we remove it, the drug will
have no markers assigned and, therefore, it will not be
considered for the treatment of any patient. If the drug
has two markers assigned then we remove one of the
two markers and use the transformations illustrated in
Figure 2c and d. For example, in Figure 2c we start
with the function (2,2) and remove the B (right) input.
For this function the output is always 0 when the A
unctions with one input. Functions with a dashed line are not
ctions with two inputs. Functions with a dashed line are not
example showing the removal of the right marker (B) from function
,0) is excluded then the function (1,1) is always chosen. d) Same
b’) following removal of the right (B) marker. f) All mappings from (2,b)
(2,b’) following the addition of a marker. For simplicity, we have
or the marker addition.
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(left) input is 1 but the output can be 0 or 1 when the
A input is 0. Therefore, (2,2) can be mapped to (1,0) or
(1,1) after removing the B input. Since the output of
(1,0) is independent of the input state it is not consid-
ered. A similar reasoning can be applied to obtain the
mappings for function (2,2) when removing the A marker
instead (Figure 2d). Applying this approach to every (2,b)
function we obtain the mappings in Figure 2e and f. Fi-
nally, if a marker is added, (K,b)→(K+1,b’), then we use
the mappings in Figure 2g, which are the reverse of (K-1,
b’)→(K,b) removing the A (left) input. In all cases, when
more that one choice is available we choose one of them
with equal probability.
Case study
To test our methodology we investigate an in silico case
study where we can actually quantify the response of
each sample to each drug. The in silico case study is
based on in vitro growth inhibition data reported by the
Sanger Institute [14]. In the Sanger screen 714 cell lines
were tested for their responses against 138 drugs. For
several sample-drug pairs the natural logarithm of the
drug concentration to achieve a 50% growth inhibition
relative to untreated controls (logIC50) was reported.
The logIC50 data is missing for 26,031 drug-cell line
pairs, representing 20% of all drug-sample pairs. The
missing logIC50 data was imputed using the weighted
average approach described in the Methods section. The
Pearson Correlation Coefficient (PCC) between the im-
puted and actual log50s, when the latter were available,
was 0.89 (Figure 3).
Figure 3 Comparison between the imputed and reported
logIC50 data. The solid line represents the case when the imputed
and reported values coincide.
For each cell line the cancer subtype and the status of 47
cancer related genes was also reported, including somatic
mutations and copy number alterations. We use as markers
the observation of a specific cancer type (e.g., breast can-
cer), somatic mutations (e.g., TP53:wild-type, TP53:R175H,
TP53:R248Q, etc.), and copy number alterations (gene:-,
gene:0, gene:+ for deletion, normal and amplification, re-
spectively). This procedure resulted in 921 markers. Among
those, we retained 181 markers that are observed in at least
10 cell lines.
To each cell line we associate a sample that is fully

composed of that cell line. We assume that different
drugs are used at different treatment doses because they
are active at different concentration ranges. The mean
logIC50 of a drug across cancer cell lines is a good esti-
mate of the typical concentration for the drug activity in
this in vitro setting. Thus, for each drug we set the treat-
ment log-concentration yj=mean(logIC50)j+logh, where
h represents the fold change in the dose. Values of h
below 1 represent low dose therapy, while those above 1
represent high dose therapy. In average, cancer cells
have IC50s that are about 2 fold lower than those of nor-
mal cells [15]. Based on this we assume that the highest
tolerated dose is h=2, and that is the dose used for
treatment.
We assume that due to variations in drug delivery the

actual log-dose reaching the cancer cells, denoted by Zj,
is different from yj. Pharmacokinetic variables generally
follow a normal distribution after a log-transformation
[16] and, therefore, we assume that Zj (the log-dose) is a
random variable following a normal distribution, with
mean yj and variance σ. Here σ models variations associ-
ated with drug pharmacokinetics in patients. Pharmaco-
kinetic parameters characterizing the steady state plasma
drug concentrations and drug clearance rates can vary as
much as 2–10 fold [17,18]. To model such variations we
will use σ=1,10.
We define a response as the achievement of at least

50% growth inhibition. In this case a sample responds to
a drug if Zj>logIC50ij and does not respond otherwise.
Under these assumptions, the probability pij that sample
i responds to drug j is given by

pij ¼
1
2
erfc

logIC50ij−mean logIC50ð Þj− loghffiffiffi
2

p
σ

� �
ð6Þ

where erfc(x) is the complementary error function.
When the cell line logIC50ij is much higher than the
treatment dose reaching the cancer cells (logIC50ij-
yj>>σ) then pij≈0. In contrast, when the cell line
logIC50ij is much lower than the treatment dose
reaching the cancer cells (logIC50ij-yj<<σ) then pij≈1.
To test a more realistic scenario, we are not going to

use the response probabilities in (Eq. 6). Instead, we are



Vazquez BMC Systems Biology 2013, 7:31 Page 6 of 11
http://www.biomedcentral.com/1752-0509/7/31
going to use the response by-marker approximation in
(Eq. 5). To this end, given a drug and its assigned
markers, we divide the cell lines into groups depending
on the status of those markers, and estimate the re-
sponse probability of q(j,s) as the average of pij over all
cell lines in that group. To avoid biases from small
group sizes, we set q(j,s)=0 for any group with less than
10 samples.
We do not have an estimate of the possible interac-

tions between the 138 drugs in this in silico study. We
assume that the drugs do not interact and we approxi-
mate the response to a personalized drug combination
by (Eq. 1), but replacing pij by the response by-marker
approximation (Eq. 5).
In the optimization problem defined above we could

attempt to optimize the marker assignments to drugs,
the drug-to-sample protocols fj(Xi,Yj) and the sample
protocol g. However, to reduce the computational com-
plexity of the problem, we will impose the sample proto-
col gbest,c, assign at most two markers to each drug and
optimize over marker assignments to drugs and the
drug-to-sample protocols.
Using the simulated-annealing algorithm we obtained

the optimal personalized therapies for the in silico co-
hort. In general we have no way to warranty that the
simulated-annealing algorithm did not get stuck at a
local minimum, precluding it from finding the optimal
solution. However, by starting at different initial assign-
ments of markers/Boolean-functions and monitoring the
improvement on the solutions found we can get an idea
of how close we are from the optimal solution. Figure 4
Figure 4 Convergence of the simulated-annealing algorithm for
the in silico study. The overall response rate (as estimated with the
by-marker approximation, O*) as a function of the number of initial
conditions tried.
shows the highest overall response rate (as estimated
with the by-marker approximation, O*) as more initial
conditions were tested. There are no significant im-
provements between a 100 and 1,000 initial condi-
tions indicating that the simulating-annealing
algorithm is close to the optimal solution.
We note that in this study we count with the actual

response probability of each cell line to each drug.
Therefore, we can use as input the optimal personalized
combinations obtained by using the response by-marker
approximation (Eq. 5) and then calculate the overall re-
sponse rate using the original cell line response rates
(Eq. 6).
When the pharmacokinetic variations are small (σ=1),

the predicted overall response rate is as high as 90% when
treating with personalized therapies using one drug alone.
Then it increases towards 100% as we move to personal-
ized combinations using more drugs (Figure 5a). However,
a 10-fold increase in the pharmacokinetic variations
(σ=10) results in a drop of the overall response rate to
about 60% when treating with one drug alone (Figure 5a).
This observation indicates that the success of personalized
therapy will also depend on the magnitude of pharmacoki-
netic variations and on our ability to personalize the drug
dosage for each patient to counteract those pharmacoki-
netic variations.
We note that not all drugs are included in the treat-

ment of at least one sample, resulting in a smaller effect-
ive drug catalog (Figure 5b). For all the maximum
combination sizes tested, less than 80 out of 138 (58%)
of the drugs are needed. Furthermore, beyond personal-
ized combinations of three drugs, we observe a decrease
in the number of needed drugs as we increased the max-
imum allowed combination size (Figure 5b). This obser-
vation suggests that the need for only 58% of the drugs
will hold for larger combination sizes. We note that the
decrease of the needed drugs is unexpected. For ex-
ample, if the response rates were independent identically
distributed random variables then the probability that a
drug is selected for the treatment of a samples is c/d, the
probability that a drug is selected for the treatment of at
least one sample is 1-(1-c/d)s and the average number of
drugs used for the treatment of at least one sample is
d* = d[1 − (1 − c/d)s]. Therefore, for independent identi-
cally distributed response rates d* increases monoton-
ically with increased the combination size c. The
departure from this expectation in Figure 5b could be
due to the existence of correlations in the response
rates of different drugs when treating different cells
lines. Furthermore, we cannot exclude that for large c
the simulated-annealing algorithm gets trapped in local
optima and that for the actual global optimal d* does
increases with increasing c. In any event this discrep-
ancy should motivate future work to obtain theoretical



Figure 5 Predictions of the in silico study. Model predictions as a function of the maximum combination size allowed for two values of the
pharmacokinetic variations parameter σ. a) The overall response rate. b) Number of drugs used for the treatment of at least one sample.

Vazquez BMC Systems Biology 2013, 7:31 Page 7 of 11
http://www.biomedcentral.com/1752-0509/7/31
estimates for d* based on the patterns of correlations
between the response rates and the ability of the
simulating-annealing algorithm to reach the global
optimum.
In Table 1 we report the effective drug catalog for the

small pharmacokinetic variations case (σ=1) and maximum
combination size c=3 drugs. In addition, we report whether
those drugs were included in the catalogs for c=1 and 2,
showing the percent of samples treated when included and
(−) otherwise. Most drugs in the c=3 catalog are also in-
cluded in the c=1 and 2 catalogs, indicating that there is a
core set of drugs that is relevant independent of the max-
imum combination size allowed. The percentage of sam-
ples treated with a given drug in the catalog increases from
c=1 to 3. This effect can be explained by the fact that, as
we allow combinations of more drugs, a drug can be in-
cluded in personalized combinations as a second or third
choice.
We note that in some instances the marker assigned

to a drug coincides with what expected given the known
drug target (Table 1, Markers and Target columns). For
example, the marker TP53:wt (i.e., TP53 wild-type) is
suggested to inform the treatment with nutlin-3a. This
makes sense because nutlin-3a releases TP53 from the
inhibition by its negative regulator MDM2 and the out-
come of nutlin-3a treatment is modulated by the TP53
status [19]. In another case, the marker BRAF:V600E is
assigned to the BRAF inhibitor PLX4720 [20]. The
marker KRAS:G12D is assigned to another BRAF inhibi-
tor, AZ628, which still makes sense because KRAS is just
upstream of BRAF in the RAS/RAF/MAPK/ERK signal-
ing pathway [21]. In another case, the marker ERBB2:0
(i.e., normal ERBB2 copy number) and the Boolean func-
tion (1,1) (i.e., suggest in the absence of the marker) are
assigned to the ERBB2/EGFR inhibitor BIBW2992,
which again makes sense since ERBB2 inhibitors are
expected to be more effective in the presence of ERBB2
amplifications [22]. However, in most instances the rela-
tion between the assigned marker/Boolean-function and
the known target is not obvious. The best example is the
assignment of a tissue type as a marker, rather than the
status of the gene coding for the target or another gene
in the same pathway.

Conclusions
We have proposed a methodology that optimizes the as-
signment of companion biomarkers to drugs to achieve
the highest possible response rate with the minimal tox-
icity. The outcome of our methodology is an optimal
drug catalog, the assignment of optimal biomarkers to
each drug and a treatment decision protocol where a
drug is used to treat a patient when the latter is positive
for the drug companion biomarker. The application of
the treatment decision protocol for every drug in the
catalog results in optimal personalized combinatorial
therapies for every patient.
An interest future direction is the investigation of the

impact of drug interactions. We expect that the
optimization approach will favor drugs that synergize with
many other drugs in the catalog relative to those that do
not interact or antagonize with other drugs in the catalog.
At the end, the interplay between manifesting a high re-
sponse rate in a group of patients and the degree of syn-
ergy (or absence of antagonism) with other drugs in the
catalog will determine the suitability of a given drug for its
use in personalized combinations. The challenge will be to
estimate of the degree of synergy/antagonism between
current anticancer drugs.
Our methodology is entirely based on estimated re-

sponse rates given a marker. The latter can be estimated



Table 1 The catalog of drugs in the optimized personalized combinatorial therapies

% of samples treated K f Markers Target

c 1 2 3 3 3 3 3

Embelin 0.7 5.9 31.5 2 13 lung: small_cell_carcinoma,TP53:wt XIAP

Nutlin-3a 4.1 8.0 24.5 2 11 TP53:wt,RB1:wt MDM2

Bicalutamide 1.3 3.9 21.4 2 11 ALK:wt,KRAS:0 Androgen receptor (ANDR)

XMD8-85 1.0 5.7 19.5 2 9 CDKN2A:wt,malignant_melanoma ERK5 (MK07)

Shikonin 1.7 1.7 11.8 1 2 TP53:wt unknown

NVP-BEZ235 0.6 - 8.0 2 4 PTEN:wt,EZH2:wt PI3K (Class 1) and mTORC1/2

CI-1040 1.8 3.8 7.6 2 6 malignant_melanoma,TP53:p.R273H MEK1/2

EHT 1864 1.1 3.5 7.1 1 2 lung: small_cell_carcinoma Rac GTPases

BMS-754807 - 4.1 7.0 2 14 neuroblastoma,KRAS:p.G12V IGF1R

PLX4720 0.8 3.5 6.9 2 13 BRAF:p.V600E,MSH2:wt BRAF

BX-795 0.7 5.7 6.3 2 14 glioma,KRAS:+ TBK1, PDK1, IKK, AURKB/C

AKT inhibitor VIII 2.4 5.6 6.3 2 9 lung: NSCLC: adenocarcinoma,EGFR:wt AKT1/2

AZD6482 3.8 6.2 6.3 1 2 glioma PI3Kb (P3C2B)

RDEA119 3.9 7.4 6.0 2 13 malignant_melanoma,BRCA1:0 MEK1/2

MS-275 4.9 5.9 5.9 2 6 lung: small_cell_carcinoma,RB1:wt HDAC

BI-D1870 0.7 1.7 5.3 2 14 CCND1:0,MYCN:0 RSK1/2/3/5, PLK1, AURKB

MG-132 1.4 - 5.2 1 2 glioma Proteasome

FH535 1.5 3.6 5.0 2 14 breast,CCND1:+ unknown

Docetaxel 2.8 1.3 4.6 2 9 upper_aerodigestive_tract,EGFR:wt Microtubules

CGP-60474 - 2.8 4.3 1 2 CDKN2a(p14):p.? CDK1/2/5/7/9

AS601245 1.7 2.5 4.2 2 7 ovary,osteosarcoma JNK

NVP-TAE684 1.5 3.8 4.2 1 1 APC:wt,stomach ALK

Epothilone B 1.3 1.4 4.1 2 7 PIK3CA:p.E545K,TP53:p.R248W Microtubules

Camptothecin 2.9 3.8 4.1 2 7 AML,lymphoblastic T cell leukaemia TOP1

Vorinostat 4.1 5.7 4.1 1 2 MYCN:+ HDAC inhibitor Class I, IIa, IIb, IV

A-443654 1.4 3.6 4.1 1 1 SMAD4:wt AKT1/2/3

PD-0325901 1.1 2.1 3.9 2 11 large_intestine,VHL:0 MEK1/2

RO-3306 1.5 3.2 3.9 2 11 cervix,MYCL1:0 CDK1

17-AAG 2.2 2.2 3.8 2 6 STK11:wt,MET:0 HSP90

S-Trityl-L-cysteine 1.1 3.5 3.8 1 1 FBXW7:wt KIF11

ZM-447439 0.1 1.3 3.6 2 7 lung: NSCLC: large cell,RB1:- AURKB

Vinblastine 1.4 2.2 3.2 2 13 upper_aerodigestive_tract,IDH1:0 Microtubules

Paclitaxel 0.1 2.5 3.2 2 11 oesophagus,TSC1:wt Microtubules

AICAR 0.6 1.7 2.9 1 1 KDM6A:wt AMPK agonist

BIBW2992 1.4 2.2 2.9 1 1 ERBB2:0 EGFR, ERBB2

JNK-9L - - 2.7 1 2 AML JNK

BAY 61-3606 1.0 2.1 2.7 1 2 Ewings sarcoma SYK

AMG-706 - - 2.7 1 2 Ewings sarcoma VEGFR, RET, c-KIT, PDGFR

AZ628 - 2.2 2.5 2 9 KRAS:p.G12D,FGFR3:0 BRAF

BMS-536924 - 1.1 2.5 2 7 KRAS:+,MDM2:+ IGF1R

JW-7-52-1 1.1 1.7 2.5 1 2 stomach MTOR

Elesclomol 1.0 3.5 2.4 2 8 bladder,TSC1:wt HSP70

Pyrimethamine 0.8 3.5 2.4 1 2 pancreas Dihydrofolate reductase (DHFR)
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Table 1 The catalog of drugs in the optimized personalized combinatorial therapies (Continued)

KIN001-135 0.3 0.7 2.2 1 1 MET:+ IKKE

Dasatinib - - 2.0 2 13 Renal cell carcinoma,NRAS:0 ABL, SRC, KIT, PDGFR

ABT-888 1.5 2.5 1.7 2 11 lymphoid_neoplasm other,CDK4:0 PARP1/2

BI-2536 2.9 3.1 1.7 2 2 CDKN2A:p.0?,MYC:0 PLK1/2/3

IPA-3 - - 1.7 1 2 B cell lymphoma PAK

WO2009093972 1.5 2.0 1.7 1 2 soft tissue other PI3Kb

Methotrexate 1.7 4.2 1.5 2 8 lymphoblastic leukemia,GNAS:wt Dihydrofolate reductase (DHFR)

Roscovitine 0.1 3.1 1.5 1 2 Burkitt lymphoma CDKs

FTI-277 1.4 1.4 1.5 1 2 thyroid Farnesyl transferase (FNTA)

PAC-1 1.5 1.5 1.5 1 2 Burkitt lymphoma CASP3 activator

CCT018159 1.3 3.5 1.4 2 14 osteosarcoma,PTEN:0 HSP90

PF-4708671 0.7 0.8 1.4 2 13 Myeloma,BRCA1:wt p70 S6KA

TW 37 0.8 1.1 1.4 2 6 MLH1:wt,APC:0 BCL-2, BCL-XL

MK-2206 1.3 1.4 1.4 1 2 endometrium AKT1/2

JNK Inhibitor VIII - - 0.3 1 2 AML JNK

Obatoclax Mesylate - - 0.1 2 2 RB1:-,CDK6:+ BCL-2, BCL-XL, MCL-1

Drugs used for the treatment of at least one sample for maximum combination size c=3 and pharmacokinetic variations parameter σ=1. For each drug we report
the drug-name and the percentage of samples treated with that drug (%). In the cases where the drugs were also included in the c=2 and 3 catalogs, the
percentage of samples treated are reported as well. For the maximum combination size c=3 we also report the number of assigned markers Kj, the assigned drug-
to-sample protocol fj, the assigned markers, and the drug target.
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from clinical trails testing each anticancer drug as a sin-
gle agent, where all patients enrolled are tested for a set
of predefined biomarkers. Using this information we can
estimate the overall response rate given a marker, for
each of the markers considered. In second step, we
should select a cohort of patients where the status of all
these biomarkers has been determined. This cohort
could be, in principle, the union of all cohorts where the
drugs were tested as single agents. Using the mutation
status of each gene and the estimated response rates
given a marker we can estimate the response rate of
each patient in an approximate manner. With those esti-
mates at hand we can then apply the methodology intro-
duced here and make a prediction for the optimal drug
catalog, the assignment of optimal biomarkers to each
drug and a treatment decision protocol where a drug is
used to treat a patient when it is positive for the drug
marker. Finally, the predicted personalized combinatorial
therapy should be tested in a two arms clinical trial to
determine how it performs compared to the standard of
care.
The optimization scheme introduced here can be gen-

eralized in several directions. We can improve the re-
sponse rate calculation including drug interactions,
provided the direction and the magnitude of those inter-
actions is given. Our approach is also suitable for the in-
clusion of genetic markers affecting drug metabolism
[2]. These markers can be included in the optimization
scheme as well, provided we specify a model for their
impact on the response rate. Further generalizations are
also needed to model toxicity. However, these general-
izations will result in more complicated models with
more parameters, many of which will be difficult to
quantify. In the mean time, the simplifications intro-
duced here allow us to implement the personalized com-
binatorial therapies approach in the clinical context, by
routinely sequence a subset of genes on each patient en-
rolled in clinical trials.

Methods
Simulated annealing algorithm
The simulated-annealing algorithm aims to maximize the
overall response rate, or equivalently to minimize E=−sO,
where s is the number of samples. The algorithm starts
from no markers assigned to drugs (Yj=(0,…,0) for all
drugs) and explores random changes of the Yj and the
drug-to-sample protocols fj(X,Yj). At each step of the algo-
rithm, a drug j is selected and, for that drug, either a
marker is added or removed or a new drug-to-sample
protocol is selected. Changes are accepted when E de-
creases, and when E increases they are accepted with
probability exp(β(E0-E)), where E0 and E are calculated be-
fore and after the change, respectively, and β is the
“annealing” parameter. β is gradually increased such that,
as the algorithm proceeds, changes increasing E are more
likely to be rejected. The pseudocode for the simulated
annealing algorithm implementation for our specific
optimization problem is shown in Figure 6.



Figure 6 Pseudocode for the simulated-annealing algorithm.
*This step is introduced to avoid the accumulation of markers in
drugs that are not used for treatment.
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In our simulations we have chosen the parameters
T=10,000d, dt=d, β0=0 and dβ=0.01.
The simulated-annealing algorithm can get trapped in

drug marker assignments that are suboptimal. To overcome
this limitation we repeat the algorithm several times and
report the solution with minimum c. We did not observe
significant changes from a 100 to a 1,000 repetitions. The
results discussed below are obtained for 1,000 repetitions.

IC50 imputation
The missing logIC50 data was imputed using the
weighted average over samples with available data

logIC50Imputed
ij ¼

Xs

k¼1;k≠ijlogIC50kj≠NA
logIC50kje

−αsampledikj

Xs

k¼1;k≠ijlogIC50kj≠NA
e−αsampledikj

ð7Þ
where NA denotes missing value,

dikj ¼

Xd
l¼1 l≠jj jlogIC50il≠NAjlogIC50kl≠NA;

logIC50il−logIC50klð Þ2e−αdrugdjl

Xd
l¼1 l≠jj jlogIC50il≠NAjlogIC50kl≠NA;

e−αdrugdjl

ð8Þ
is a weighted distance between samples, and

djl ¼

Xs

i¼1 logIC50ij≠NAj jlogIC50il≠NA;
logIC50ij−logIC50il
� �2

Xs

i¼1 logIC50ij≠NAj jlogIC50il≠NA;
1

ð9Þ
is the Euclidean distance between drugs based on the
available data. The exploration of the parameters
(αsample, αdrug) in the range (1–22,1-22) resulted in Pearson
Correlation Coefficients (PCCs) between imputed and
actual logIC50s, when available, in the range 0.83-0.89,
with a maximum of 0.89 for (αsample = 20, αdrug = 3).
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