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Abstract

Background: Dysregulation of genetic factors such as microRNAs (miRNAs) and mRNAs has been widely shown to
be associated with cancer progression and development. In particular, miRNAs and mRNAs cooperate to affect
biological processes, including tumorigenesis. The complexity of miRNA-mRNA interactions presents a major barrier
to identifying their co-regulatory roles and functional effects. Thus, by computationally modeling these complex
relationships, it may be possible to infer the gene interaction networks underlying complicated biological processes.

Results: We propose a data-driven, hypergraph structural method for constructing higher-order miRNA-mRNA
interaction networks from cancer genomic profiles. The proposed model explicitly characterizes higher-order
relationships among genetic factors, from which cooperative gene activities in biological processes may be identified.
The proposed model is learned by iteration of structure and parameter learning. The structure learning efficiently
constructs a hypergraph structure by generating putative hyperedges representing complex miRNA-mRNA modules. It
adopts an evolutionary method based on information-theoretic criteria. In the parameter learning phase, the
constructed hypergraph is refined by updating the hyperedge weights using the gradient descent method. From the
model, we produce biologically relevant higher-order interaction networks showing the properties of primary and
metastatic prostate cancer, as candidates of potential miRNA-mRNA regulatory circuits.

Conclusions: Our approach focuses on potential cancer-specific interactions reflecting higher-order relationships
between miRNAs and mRNAs from expression profiles. The constructed miRNA-mRNA interaction networks show
oncogenic or tumor suppression characteristics, which are known to be directly associated with prostate cancer
progression. Therefore, the hypergraph-based model can assist hypothesis formulation for the molecular pathogenesis
of cancer.

Keywords: miRNA-mRNA interaction networks, Hypergraph-based model, Higher-order gene modules,
Evolutionary learning, Cancer genomics data analysis
Background
Prostate cancer is a common disease in the male population,
induced by complex interactions among various genetic
factors [1]. As such, the pathological causes of this disease
are not easily identified. Recent human cancer studies
have demonstrated that most cancer regulations are
related to modular construction and combinatorial
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control by multiple genetic factors. This module-based
view of higher-order relationships can provide new insights
into the behavior of complex biological systems [2,3].
Recently, miRNAs have caused great excitement as

diagnostic and therapeutic signatures of prostate can-
cer [4-8]. They play important roles in cancer patho-
genesis, including disease onset, progression, and
metastasis, by regulating the stability and translation effi-
ciency of their target mRNAs. Thus, the functional rela-
tionships between miRNAs and mRNAs should be
elucidated to identify key transcriptional circuits involved
in cancer regulation. However, analyzing higher-order
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miRNA-mRNA relationships is rendered as a challenging
problem due to the complexity of their interactions.
Modern cancer research has progressed from identifying

biomarkers to systemically exploring gene interactions
[9-11]. Many studies have focused on the interaction of
genetic components at the systems level. Computational
methods, which analyze gene regulatory interactions on a
genome-wide scale from high-throughput biological data,
have flourished in recent decades [12-14]. In addition,
systems biology has proposed to build miRNA regulation
networks underlying the development of many human
diseases [15-17]. Moreover, miRNA regulatory mechanisms
are now thought to be inferable from miRNA-mRNA
interactions [18-20]. Several studies have attempted to
identify groups of coherent miRNAs and mRNAs that
cooperate in biological processes from heterogeneous
data sources via various computational approaches,
including probabilistic methods [21-28], rule-based
learning [29,30], matrix factorization [31], and statistical
methods [32-35]. These approaches have simplified
complex biological mechanisms by systematically analyzing
the relationships between genetic elements at the genome
level. Typically, however, bi-relationships between only two
factors are assumed in many previous studies [21,30-35].
Such restrictions are unsuitable for complex genetic
interactions because information is lost under the
assumption, and biological regulation is controlled
by the interaction of multiple genetic components.
Many studies have also investigated miRNA-mRNA
regulatory interactions using biological information,
especially miRNA-target information [21-25,29-33].
Biological information reduces the number of false
Figure 1 Overview of the hypergraph-based model for constructing h
cancer stage. Solid and dotted circles denote miRNAs and mRNAs, respec
conventional graph representation (two graphs in the right-bottom of the
mRNAs, respectively. Grey and white indicate respective high and low gen
positives, since it provides the predictive model with
prior knowledge. In contrast, unknown or hidden
interactions not involved in the prior knowledge may be
difficult to identify from this information. To avoid this
problem, some probabilistic models which infer miRNA-
mRNA modules from expression profiles only, without
relying on target information, have been proposed [26-28].
Bonnet’s model, called LeMoNe [26,27], consists of two
major steps; the generation of gene clusters based on a
feature-sample co-clustering method, and the inference of
regulatory modules from generated clusters and regulators
based on probabilistically optimized trees. In the clustering
approach of Bonnet’s method, gene regulatory modules
underlying a specific cancer stage are not easily identified.
Liu’s approach infers functional miRNA regulatory
modules using Correspondence Latent Dirichlet Allocation
(Corr-LDA) [28]. The Corr-LDA based model requires
discretized data. Since the Corr-LDA model infers
probability distributions from latent variables, moreover,
miRNAs can be annotated to any functional modules, while
mRNAs are restricted to the miRNA-inferred modules.
Here we introduce a data-driven model for identify-

ing cancer stage-specific interactions that reflects the
high-order relationships between miRNAs and mRNAs
(Figure 1). The proposed model is a hypergraph comprising
numerous hyperedges, representing the multi-variable
combinations corresponding to miRNAs and mRNAs.
Each hyperedge is formally defined as cancer-stage specific
statistical figures, and thus our model can deal with
real-valued data without discretization. The weight of a
hyperedge reflects the strength of the higher-order
dependency among the variables of the hyperedge.
igher-order miRNA-mRNA interaction networks at a specific
tively. Closed curves denote hyperedges (i.e. modules). In the
central box of the figure), ellipses and boxes denote miRNAs and
e expression levels.



Table 1 Parameter settings for experiments

Parameters Values Parameters Values

# of miRNA 3 # of mRNA 5

# of modules variable β in (5) 1.0

Epochs of structure
learning

100 Epochs of parameter
learning

20

η in (10) 1.0 κ in (11) 1.0

γ in (13) 1.0 Rmax , Rmin 0.9, 0.5
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Therefore, each hyperedge potentially behaves as a gene
module. The model explicitly constructs a complex inter-
action network from many such gene modules. The model
is learned by finding a highly-discriminate hypergraph
structure from expression profiles using data relevant to a
certain stage of prostate cancer.
The learning process involves the iteration of two learning

phases; structure and parameter. The structure learning
phase constructs a hypergraph of putative hyperedges for
discovering potential gene interactions, from a huge
feature space represented by the combinations of many
miRNAs and mRNAs. Because the miRNA-mRNA inter-
actions are intractably complex, we adopt an evolutionary
strategy based on an information theoretic co-regulatory
measure, called mutual information. This strategy is used
to select genetic variables for generating hyperedges. During
the parameter learning phase, the hypergraph is refined
by updating the weights of the hyperedges (representing
higher-order miRNA-mRNA modules). To this end, we
employ a gradient descent method similar to the
back-propagation algorithm for learning artificial neural
networks. The learned model is then converted into a
network structure reflecting the cooperative higher-order
gene activities by connecting the extracted hyperedges.
Data-driven learning allows the model to build new
miRNA-mRNA interaction networks which display the
hidden properties of primary and metastatic prostate
cancers from a given dataset, which are not known a priori.
We construct cancer stage-specific miRNA-mRNA inter-

action networks reflecting their higher-order relationships
using the MSKCC Prostate Oncogenome Project dataset
[36] from the model. We demonstrate that the proposed
model can build several biologically significant miRNA-
mRNA interaction networks, including potential modules
associated with primary and metastatic prostate cancer.
Moreover, cancer-related miRNAs and genes dominate the
identified interactions. Some of these interactions, such as
hsa-miR-1, hsa-miR-133a, hsa-miR-143, hsa-miR-145,
hsa-miR-221, hsa-miR-222, act as hubs in the constructed
networks. We also confirm the biological relevance of the
constructed networks through literature review and func-
tional analysis.

Results
Data and experimental settings
In this study, miRNA and mRNA expression profiles
obtained from the MSKCC Prostate Oncogenome Project
[36] were matched at three stages of prostate cancer. The
dataset contains 373 miRNAs and 19,780 mRNAs from
27 normal, 98 primary and 13 metastatic stages. During
preprocessing, sample-wise and feature-wise normalization
was conducted, and miRNAs and mRNAs were separately
normalized. The experimental parameter settings are listed
in Table 1. The parameters are those yielding optimal
performance in empirical experiments. A hypergraph
can include hyperedges with different number of genetic
variables but we fixed the number of variables for all
hyperedges of a hypergraph in this study.

Classification performance
Classification performance was evaluated using three
standard classification models; support vector machines
(SVMs) with the 2nd polynomial kernel and sequential
minimal optimization (SMO), k-th nearest neighbor
classifiers (k-NNs), and naïve Bayes classifiers (NBs)
implemented in Weka [37]. The MATLB algorithms
lasso and elastic net (α=0.5) were also used. All results
were averaged over 10 experiments. Figure 2 presents
the classification accuracy of our model compared to
other models. As revealed by the p-values of the t-test, the
proposed hypergraph-based model competes on-par with
SVMs and outperforms the k-NN, NB and Lasso-based
methods. In addition, by comparing the results of 3–5 HG
(a hypergraph model whose hyperedges consist of three
miRNAs and five mRNAs) and 1–1 HG, we observe
that higher-order relationships are more important for
discriminating cancer stages than pair-wise relationships
between a single miRNA and mRNA.

Model evaluation
The proposed hypergraph-based learning method is evalu-
ated on simulation data for verifying whether the method
finds true solutions. The data consist of 500 instances with
7 variables whose mean is zero and the class label of each
instance is determined as follows:

xi∼N 0; 1ð Þ; 1≤ i≤ 7

c nð Þ ¼
1; if x2 > 2 ∧ x3 > 2 ∧ x4 > 2
2; if x5 < −2 ∧ x6 < −2 ∧ x7 < −2
3; otherwise

;

8<
: ð1Þ

where xi and c(n) denote the i-th random variable and the
class label of the n-th instance. Table 2 illustrates the clas-
sification accuracy and predefined modules in the learned
model. The accuracy is averaged after 10 experiments by
10-fold cross validation, and each hypergraph includes 20
hyperedges with four variables. In Table 2, Module 1 and
2 means the number of case when there exist hyperedges



Figure 2 Boxplots of classification accuracy on the test set.
m-n HG denotes the hypergraph-based model whose all
hyperedges embody m miRNAs and n mRNAs. All results are
averaged after 10 runs by 10-fold cross validation. P-values are
calculated using t-test of our model and other models.
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involving a predefined-set 1 (x2, x3, x4) and 2 (x5, x6, x7) in
a learned hypergraph. Because we conducted 10-fold cross
validation, the maximum values of Module 1 and 2 are
ten. Therefore, we indicate that our method can find true
solutions from small combinatorial spaces, considering
the accuracy and the number of found variable modules.
Figure 3 presents two learning curves under various

conditions of the structure (a) and the parameter (b)
learning phases. As the measure for structure learning,
we used mean multivariate mutual information (MMI)
of all hyperedges in the model because the goal of the
structure learning is to find the significant higher-order
cancer-specific gene interaction modules, and an MMI is
the measure reflecting the strength of interactions
among genetic factors in the hyperedges considering the
stage of cancer. On the other hand, classification accur-
acy is used as the measure for the parameter learning
phase since the weight for each cancer stage is updated
to minimize the error in the phase. Figure 3(a) presents
the increase of mean MMI under various Rmin which is
the minimum ratio of the hyperedges replaced in the
iteration, and plays a role of the structure learning rate.
We indicate that too large an Rmin causes low MMI by re-
placing too many hyperedges and too small an Rmin leads
slow increase of the MMI from Figure 3(a). Figure 3(b)
presents similar results to (a) with respect to the effect of
learning rate γ.
Moreover, Figure 4 shows the classification accuracy

according to the number of genetic factors in the
hyperedges. The classification accuracy is the best
Table 2 Verification result on the simulation dataset

Models SVM DT kNN HG Module 1 Module 2

Accuracy 0.956 0.886 0.93 0.956 10 10

±SD ±0.002 ±0.004 ±0.006 ±0.003 - -
when a hypergraph consists of hyperedges with three
miRNAs and five mRNAs. We indicate that small
number of genetic variables show worse performance
because various processes of prostate cancer is influenced
on the complex interactions among many features. Fur-
thermore, the accuracy of the hypergraphs including
hyperedges with more than ten genetic variables is low
since the models consist of too specific information and
thus have the low generalization property.
Table 3 and Figure 5 show that the proposed learning

method can stably extract significant genetic factors
despite its random selection approach. We define a
measure as the number of appearance of a gene in the
model, A(xi), for verifying the stability of the model as
follows:

A xið Þ ¼
X100
m¼1

δ xi;Hmð Þ;

δ xi;Hmð Þ ¼ 0 if xi is not involved in Hm

1 otherwise
;

�
ð2Þ

where xi denotes the i-th miRNA or mRNA, and Hm is
the m-th learned model. δ(xi,Hm) is an indicator function
and it returns one when xi appears at least once in Hm,
otherwise zero. The proposed method is compared to
randomly generated hypergraphs each comprising 200
hyperedges involving three miRNAs and five mRNAs.
The results are derived from 100 models learned by 10
experiments of 10-fold cross validations, and 100 randomly
generated hypergraphs. According to Figure 5(a), our
method extracts significant miRNAs only, while almost
all of the miRNAs are involved in random graphs.
Moreover, whereas the learning method selects several
significant mRNAs, all mRNAs appear at low frequency
in the random graphs, as shown to Figure 5(b). The
stability and reproducibility of the proposed model is
evident from the high-frequency occurrence of high
ranked miRNAs and mRNAs, indicating that certain
genes persist in the models. Table 3 lists the miRNAs
and mRNAs that appear frequently and rarely in 100
learned models and in randomly generated graphs. Given
that several key genes decisively affect a specific cancer,
we posit that the proposed model consistently selects
essential factors, in contrast to a random selection.

Constructed higher-order miRNA-mRNA interaction
networks in prostate cancer
The miRNA-mRNA interaction network constructed from
the proposed model is illustrated in Figure 6(a) and (b) for
primary and metastatic prostate cancer respectively [38].
The constructed interaction networks comprise putative
miRNA-mRNA modules associated with each stage of



Figure 3 Learning curves in the structure and the parameter learning phases. As the performance measure, we used mean multivariate
mutual information (MMI) of all hyperedges in the model for the structure learning and accuracy on 10 fold cross validation for the parameter
learning. Rmax is fixed as 0.9 in (a) and γ is a learning rate for the parameter learning in (b). All results are averaged on 10 experiments of 10-
fold cross validation.

Kim et al. BMC Systems Biology 2013, 7:47 Page 5 of 16
http://www.biomedcentral.com/1752-0509/7/47
prostate cancer, and reflect their higher-order relation-
ships. The primary prostate cancer network includes 67
miRNAs and 233 mRNAs, while the metastatic prostate
cancer network involves 65 miRNAs and 180 mRNAs.
Many of the miRNAs in the constructed networks

have been significantly associated with prostate cancer
Figure 4 Classification accuracy according to the number of
miRNA and mRNA in the hyperedges. The classification accuracy
is the best when a hypergraph consists of hyperedges with three
miRNAs and five mRNAs. All results are averaged on 10 experiments
of 10- fold cross validation.
in the literature, and are thus termed prostate cancer-
related miRNAs [39]. In addition, many of the genes in
the constructed networks overlap with cancer-related
genes, including transcription factors. To confirm this
finding, we compiled a list of 496 oncogenes and 874
tumor suppressor genes from the Cancer Genes of
Memorial Sloan-Kettering Cancer Center [40] and 1476
human transcription factors [41]. We investigated cancer
gene enrichment in the constructed interaction networks
by hypergeometric test. As shown in Figure 7, most of the
significant genes (p-value close to 0) in the constructed
networks are overrepresented in the compiled list. This
result unambiguously demonstrates that our model can
build interaction networks of genetic factors associated
with cancer processes.
Interestingly, the enriched hyperedges, and the expres-

sion levels of the miRNAs and mRNAs, differ considerably
between the primary and metastatic networks. Up- and
down-expressed miRNAs and genes are determined by
their means at each stage. The red boxed miRNAs and
genes are known to be associated with the various stages
of prostate cancer [4-8,42,43]. The triangles rectangles,
diamonds and circles denote miRNAs, oncogenes/ tumor
suppressor genes, transcription factors, and other genes in
the network, respectively.
Functional analysis of the constructed interaction networks
The constructed miRNA-mRNA interaction networks
were validated by functional analyses based on a literature
review and gene set analysis. As mentioned above, many
of the miRNAs and mRNAs involved in the identified
interactions are known indicators of prostate cancer [4-8].
In addition, the mRNAs comprise a portion of their



Table 3 Frequently and rarely appearing miRNAs and mRNAs in the 100 learned models

Our method Random Our method Random

Frequent # of Frequent # of Rare # of Rare # of

miRNAs appearances miRNAs appearances miRNAs appearances miRNAs appearances

miR-1 100/100 miR-152 97/100 miR-95 0/100 miR-30a 58/100

miR-100 100/100 miR-1 95/100 miR-937 0/100 miR-134 60/100

miR-133a 100/100 miR-486-5p 95/100 miR-933 0/100 miR-106a 60/100

miR-143 100/100 miR-199b-5p 94/100 miR-887 0/100 miR-362-5p 63/100

miR-145 100/100 miR-377 94/100 miR-744 0/100 miR-200b 63/100

Our method Random

Frequent # of Frequent # of Frequent # of Frequent # of

mRNAs appearances mRNAs appearances mRNAs appearances mRNAs appearances

ACTA2 67/100 ILK 60/100 AIPL1 10/100 CACNA1D 9/100

SVIL 64/100 CSRP1 59/100 CBY3 10/100 CDC25C 9/100

ACTN1 63/100 TPM1 59/100 SHKBP1 10/100 DHRS7C 9/100

CAV1 63/100 FRMD6 58/100 ADCY5 9/100 FAT3 9/100

CCND2 60/100 LOC645954 58/100 C17orf58 9/100 FOXN3 9/100
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predicted target genes [44], some of which have been
experimentally validated. In particular, several miRNAs
are known as ‘oncomiRs’ which function as oncogenes or
tumor suppressors, including has-miR-1, -133a, -143, -145,
-221, and −222 [45-48]. Many hyperedges in the constructed
networks contain the above miRNAs as their components;
these particular miRNAs also act as hubs in the networks.
Especially, hsa-miR-143 and hsa-miR-145 play a

crucial role in metastatic prostate cancer, and are rec-
ognized as a clinicopathological signature of prostate
cancer [47]. Interaction modules involving hsa-miR
-143 and −145 occupy a large portion of the networks
constructed by our model. In addtion, the identified inter-
actions in metastatic prostate cancer contain several
Figure 5 Reproducibility of decisive miRNAs (a) and mRNAs (b) influe
selecting miRNAs and genes, while another 100 hypergraphs are generated
validation). Each hypergraph includes 200 hyperedges consisting of three m
of miRNAs or mRNAs, and y-axis is the number of miRNA or mRNA appear
experimentally confirmed targets of hsa-miR-143 and
−145, including CLINT1, CDKN1A, IRS1, MAPK7,
PPM1D and SOD2. Furthermore, hsa-miR-143 and −145
are expressed at low levels in the metastatic network, as
has been experimentally validated [7].
Moreover, hsa-miR-200c emerges as a distinct miRNA

in the network of primary prostate cancer. According
to several studies, hsa-miR-200c overexpression inhibits
metastasis prostate cancer, while aberrant regulation
triggers the invasion and migration of prostate cancer
at the post-transcriptional level [49].
Our model identified several transcription factors asso-

ciated with prostate cancer metastasis, such as ETS2,
HOXC4, STAT3, STAT5B, SOX4 and ZEB2. Among
ncing on classification. 100 hypergraphs are generated by randomly
by our learning method (10 experiments with 10-fold cross
iRNAs and five mRNAs. The x-axis denotes the rank of the appearance

ances. Both axes are log-scaled.



Figure 6 Constructed (a) primary prostate cancer-specific and (b) metastatic prostate cancer-specific miRNA-mRNA interaction
networks. The primary-specific network includes 67 miRNAs and 233 mRNAs, while the metastatic network involves 65 miRNAs and 180 mRNAs.
Both networks include 500 bi-relational edges which are selected based on their summed weight (among all edges converted from 20000
hyperedges of 100 hypergraphs). Up- and down-expressed miRNAs and genes are determined by the mean of each stage class. The red boxed
miRNAs and genes have been reported to be associated with the particular stage of prostate cancer. The triangles, rectangles, diamonds and
circles denote miRNAs, oncogenes or tumor suppressor genes, transcription factors, and other genes in the network, respectively.
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these, SOX4, STAT3 and STAT5B are known regulators
of metastatic prostate cancer through the regulation of
genes involved in miRNA processing, transcriptional regu-
lation, and developmental pathways [50-52]. Indeed,
SOX4 is directly regulated by hsa-miR-335 in cancer pro-
gression [50], while hsa-miR-125b coordinates STAT3
regulation in the proliferation of tumor cells [51,53].
Figure 7 The miRNAs and mRNAs in the constructed networks
are enriched in cancer-related genes with a significant p-value.
Interactions involving hsa-miR-29b/MMP2 and hsa-
miR-335/SOX4 appear concurrently in the constructed
metastatic network (Table 4). This finding is consistent
with previous studies, in which-miR-29b and −335 were
found to suppress tumor metastasis and migration by
regulating MMP2 and SOX4, respectively [42,54]. Inter-
estingly, both of these interactions involve hsa-miR-143,
which is closely linked to prostate cancer progression.
Furthermore, the well-known cancer-associated genetic
factors MMP2 and SOX4 co-emerged in the identified
interactions. Although the interactions identified by our
model have not been previously reported, they clearly
reflect higher-order relationships between miRNAs and
mRNAs. As such, they may signify unknown regulatory
circuits in prostate cancer development and progression.
This result suggests the utility of the proposed model in
identifying undiscovered miRNA-mRNA interactions.
To confirm the biological relevance of the constructed

interaction networks, we analyzed the functional correla-
tions among the network genes by canonical pathway ana-
lysis [55]. The significant (low p-value) results of the
analysis for the primary and metastatic prostate cancer net-
works are summarized in Table 5. Many of the enriched
pathways are closely associated with prostate tumorigenesis
and metastasis. In particular, the β-catenin degradation
pathway, the Wnt/β-catenin pathway and the Wnt



Table 4 Examples of modules (hyperedges) in primary and metastatic prostate cancer

miRNAs [exp. levels: up (+), down (−)] mRNAs [exp. levels: up (+), down (−)]

Primary prostate cancer

hsa-miR-330-3p(−) hsa-miR-133b(+) hsa-miR-222(−) MAP1B(−) WWC3(−) CAV1(−) DHX35(−) TSHZ3(−)

hsa-miR-143(+) hsa-miR-502-5p(−) hsa-miR-548c-3p(+) ZZEF1(−) C20orf194(−) TSPYL2(−) MBD3(+) GPR132(+)

hsa-miR-19a(+) hsa-miR-133a(+) hsa-miR-153(+) BMPR1B(+) WWC3(−) PCBP4(−) TCEAL4(−) CUL4A(+)

hsa-miR-130a(+) hsa-miR-375(+) hsa-miR-19a(+) RAP1A(−) CYLD(−) SNORA71D(+) NDUFA6(−) RGS9BP(−)

hsa-miR-221(−) hsa-miR-106b(+) hsa-miR-222(−) ARSJ(−) SSPN(−) C3orf58(+) PTGDS(−) RARB(−)

hsa-miR-130a(+) hsa-miR-133a(+) hsa-miR-19a(+) VNN1(−) FGF5(+) ELOVL7(+) PHPT1(−) RND3(−)

hsa-miR-133a(+) hsa-miR-222(−) hsa-miR-130a(+) C10orf137(+) FAM108C1(+) SCRIB(+) PRKAR1A(−) MOXD1(−)

hsa-miR-130a(+) hsa-miR-149*(−) hsa-miR-26a(+) RASEF(+) TPM1(−) CRB2(−) TMEM132A(+) LIX1L(−)

hsa-miR-133b(+) hsa-miR-23b(+) hsa-miR-106b(+) PFAS(+) UNC5C(−) HLF(−) PSEN1(+) EZH2(+)

hsa-miR-145(+) hsa-miR-200c(+) hsa-miR-23b(+) TTC23(−) PARM1 (−) TOPORS(+) NEBL(−) RCAN2(−)

Metastatic prostate cancer

hsa-miR-221(−) hsa-miR-29b(−) hsa-miR-143(−) SOX4(+) MMP2(−) RASEF(−) SOD2(−) SCN9A(+)

hsa-miR-29b(−) hsa-miR-335(−) hsa-miR-143(−) SOX4(+) MPPED1(+) ERBB3(+) HOXC4(+) SMTN(−)

hsa-miR-143(−) hsa-miR-22*(−) hsa-miR-23b(−) CDKN1A(−) HMGA1(+) PELO(−) RAB17(+) TMEM150(+)

hsa-miR-125b(−) hsa-miR-616(+) hsa-miR-143(−) TSPYL2(−) ERBB3(+) ACAD8(−) PHF15(+) TMEM16G(−)

hsa-miR-19a(−) hsa-miR-141(+) hsa-miR-145(−) PCDH20(+) DNAJC3(−) STAT3(−) ZNF385(+) ACTA2(−)

hsa-miR-133b(−) hsa-miR-145(−) hsa-miR-218(−) IRF2(−) TCF4(−) STAT5B(−) RAB2B(−) WFDC1(−)

hsa-miR-143(−) hsa-miR-145(−) hsa-miR-222(−) ITGA5(−) MAPK7(+) MAP3K2(−) RAB34(−) S100A1(+)

hsa-miR-143(−) hsa-miR-145(−) hsa-miR-214(−) FEM1A(+) ITGA5(−) NAGPA(+) C1orf142(+) ERAS(+)

hsa-miR-143(−) hsa-miR-193b(−) hsa-miR-145(−) CLINT1(−) GJA1(−) MAPK7(+) RARRES2(−) IL28A(+)

hsa-miR-221(−) hsa-miR-1(−) hsa-miR-133b(−) TPM1(−) NDFIP2(−) RAD17(−) VPS28(+) INPPd5E(+)

miRNAs and their predicted targets are given in bold font. The underlined genes are the cancer genes archived in the Memorial Sloan-Kettering Cancer Center.
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canonical pathway are associated with Wnt signaling,
which regulates many genes implicated in prostate cancer.
These pathways were identified as significant in the
primary prostate cancer network. Deregulation of the
Wnt-related pathway reportedly affects prostate cell prolif-
eration and differentiation [56]. Moreover, the annotated
genes in the constructed network, such as APC, AXIN1,
AKT2, CCND2, CAV1, TLE2 and TCF4, are essential regu-
latory components of these pathways in prostate cancer.
ErbB-related pathways were identified in the metastatic
network, including the ErbB network pathway, ErbB4 path-
way, Her2 pathway, ErbB2/ErbB3 signaling pathway and
the EGFR pathway, which are implicated in prostate cancer
progression and metastasis [43,57]. The FOXM1 pathway
also regulates tumor metastasis (including that of prostate
cancer) by stimulating the expression of several genes in-
volved in the proliferation of tumor cells and cell cycle pro-
gression [58]. The top-ranked pathway in the metastatic
network is the MYC activation pathway. MYC reportedly
promotes the metastatic phenotype by altering the epigen-
etic landscape of cancer cells, and is overexpressed in
~75% of advanced prostate cancer patients [43]. Thus, the
MYC pathway is a putative key feature of metastatic pro-
gression [59].
Discussion
The proposed hypergraph-based model characterizes
higher-order interactions among heterogeneous genetic
factors from archived data. Human cancers are typically
caused by the modular control of multiple genetic factors.
By analyzing gene relationships at higher-order levels,
thus, we can better understand the behavior of complex
cancer mechanisms. Moreover, the cooperative activities
and the combinatorial regulations governed by miRNAs
and mRNAs are largely unknown. We have demonstrated
that higher-order relationships discriminate between specific
cancer stages more precisely than pair-wise analyzes of
single miRNA and mRNA interactions. From this view-
point, we can construct a more complete interaction
network consisting of putative biologically significant
miRNA-mRNA modules.
In addition, our method focuses on discovering potential

interactions in unknown miRNA-mRNA regulatory circuits
related to specific cancer stages without the known
biological information [60,61]. The proposed model
finds statistically significant gene modules from given
expression profiles using a data-driven approach with
co-regulatory measure (mutual information). However, a
similar hypergraph structure could be readily constructed



Table 5 Canonical pathway analysis of the constructed
interaction networks in primary and metastatic prostate
cancer

Canonical pathway analysis p-value
(<0.05)

Primary prostate cancer

Pathways in cancer 1.70e-03

Rb1 pathway 5.95e-03

Retinoic acid pathway 6.61e-03

Aurora A pathway 7.44e-03

Beta-catenin degradation pathway 9.95e-03

Wnt/beta-catenin pathway 1.03e-02

Wnt canonical signaling pathway 1.34e-02

Met pathway (signaling of HGF receptor) 1.39e-02

P38-alpha/beta downstream pathway 1.52e-02

Beta-catenin nuclear pathway 1.58e-02

Aurora B pathway 1.66e-02

EPHB forward pathway 1.81e-02

IFN-gamma pathway 1.81e-02

P53 hypoxia pathway 1.97e-02

MYC repress pathway 2.15e-02

Progesterone mediated oocyte maturation 2.19e-02

Rac CycD pathway (Ras and Rho protein on G1/S
transition)

2.73e-02

PLK1 pathway 2.88e-02

IL-6 (interleukin-6) pathway 3.08e-02

FGFR2C ligand binding and activation 3.58e-02

Cell cycle 4.43e-02

PDGFR-beta signaling pathway 4.59e-02

Metastatic prostate cancer

MYC activate pathway 1.41e-04

ErbB network pathway 2.78e-03

KIT receptor signaling pathway 3.28e-03

IL-10 pathway 4.40e-03

Pathways in cancer 4.76e-03

ErbB4 pathway 6.12e-03

Her2 pathway (ErbB2 in signal transduction and
oncology)

8.51e-03

Yap1 and Wwtr1/Taz stimulated gene expression 1.09e-02

Smooth Muscle Contraction 1.22e-02

Barrestin pathway 1.53e-02

IL-6 signaling pathway 1.85e-02

STAT3 pathway 1.85e-02

IL-2/STAT5 pathway 2.00e-02

RAS pathway 2.00e-02

ErbB2/ErbB3 signaling pathway 2.19e-02

Syndecan4 pathway 2.38e-02

PPAR-alpha pathway 2.61e-02

Table 5 Canonical pathway analysis of the constructed
interaction networks in primary and metastatic prostate
cancer (Continued)

Integrin signaling pathway 3.72e-02

Rela pathway 3.78e-02

HDAC class I pathway 3.94e-02

FOXM1 pathway 4.24e-02

IL-7 pathway 4.23e-02

EGFR pathway 4.70e-02
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from other types of quantitative biological information,
such as miRNA-target information and gene sequence
similarity values. Furthermore, the hypergraph-based
model more flexibly represents miRNA-RNA interactions
than other methods (which assume that the expression
states of miRNAs and mRNAs are linearly proportional
to each other), because it isolates significant modules
from the statistical co-expressed pattern among genes at
a higher-order level.
The proposed hypergraph-based model is similar to

Bonnet’s et al. [26,27] and Li et al. [28], where higher-order
relationships governed by miRNA-mRNA interactions are
inferred solely from expression profiles. Bonnet’s method
is based on a clustering approach, it cannot readily infer
gene regulatory modules at a specific cancer stage. In
contrast to Bonnet’s method, our method explicitly con-
siders the sample status, (the primary or metastatic state
of prostate cancer), from which it constructs cancer stage-
specific networks. Liu’s approach is based on Corr-LDA,
which requires that data are discretized. By contrast, our
method uses intact real-valued data, thus preventing the
information loss caused by the discretization.
Furthermore, the proposed model finds the true solu-

tion in a small subset of the features, because the problem
space is small enough to search exhaustively. Also, unlike
other models, our model can efficiently handle the very
high-dimensional data required for complex higher-order
interactions among features. However, the limitation of
the proposed hypergraph-based model emerges at small
sample sizes. If the data are few, the reliability of the mean
and covariance defined in a hyperedge is reduced.

Conclusions
We have proposed a hypergraph-based model consisting of
higher-order miRNA-mRNA modules, which allows the
construction of biologically meaningful interaction networks
associated with specific cancer stages. For identifying poten-
tial significant interactions and refining model performance,
we introduced a two-phase learning approach comprising
structure and parameter learning. Finally, we constructed
cancer stage-specific interaction networks reflecting higher-
order miRNA and mRNA relationships by converting the
hypergraph structure into an ordinary graph.
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We constructed higher-order miRNA-mRNA interaction
networks associated with the specific stage of prostate
cancer from a matched dataset using the proposed model.
The performance of the proposed model is similar to that
of SVMs and superior to other classification models
(outperforming them by approximately 6–10%). More im-
portantly, our model can construct carcinogenic miRNA-
hubbed networks that characterize primary and metastatic
prostate cancer. Furthermore, we demonstrated that a large
proportion of the miRNAs and mRNAs identified in the
constructed interaction networks are indeed involved in
prostate cancer progression and development. The pro-
posed hypergraph-based model therefore presents as an al-
ternative method for discovering potential gene regulatory
circuits. Such discoveries will greatly assist our understand-
ing of cancer pathogenesis.
Methods
Hypergraph-based models
A hypergraph-based model characterizes complex inter-
actions among many genetic factors using hypergraph
structures. A hypergraph generalizes the edge concept
to a hyperedge by which more than two variables can be
connected simultaneously [62,63]. As such, it is suitable for
representing higher-order relationships among heteroge-
neous features (e.g. miRNAs and mRNAs). In our model, a
hyperedge contains two or more variables corresponding to
miRNAs and mRNAs, weighted by the strength of the
higher-order dependency among its elements for each class
(where the class denotes a specific cancer stage). Thus,
each hyperedge implies a set of miRNA-mRNA modules
associated with a certain stage of cancer. The proposed
Figure 8 Biological meaning of mean and variance used in representing a
between low and high discriminative genetic factors. A gene is low-discriminative
large (where n, p, and m denote normal, primary, and metastatic stage, respective
involving two genetic factors. By comparing the discriminative capability of each
model therefore facilitates the construction of higher-order
miRNA-mRNA interaction networks among a population
of candidate gene modules related to a specific cancer stage.
A hypergraph-based model H is formally defined as a

triple H = (X, Z, E) where X, Z, and E denote the sets
of miRNAs, mRNAs, and hyperedges, respectively. A
hyperedge is represented by a set of statistical values,
including mean and covariance for the class label corre-
sponding to a cancer stage. The mean gene expression
values differ widely among the class labels, implying that
gene expression depends on cancer progression, as
shown in Figure 8. The hyperedge approach enhances
the discriminative capability by combining miRNAs and
mRNAs (Figure 8). Given an expression dataset with N

instances D ¼ d nð Þ
n oN

n¼1
¼ x nð Þ; z nð Þ; y nð Þ� �N

n¼1 , where x(n)

and z(n) are real-valued vectors of miRNA and mRNA
expressions in the n-th instance, and y is an element of a
cancer stage set Y, the i-th hyperedge ei contains the mean
vectors and the covariance of its miRNAs and mRNAs for
the given cancer stage:

ei ¼
eijy¼y1
…
eijy¼y Yj j

8<
:

9=
; ¼

μi;Σið Þjy¼y1
…

μi;Σið Þjy¼y Yj j

8<
:

9=
;; ð3Þ

μi ¼ μxi1;…; μxil; μ
z
i1;…; μzim

� �
and l þm ¼ eij j ð4Þ

where μxij and μzik denote the means calculated from the

expression profiles of the j-th miRNA and the k-th mRNA,
respectively, in the i-th hyperedge (whose elements com-
prise l miRNA and m mRNAs). l and m are called the
hyperedge. Panels (a) and (b) illustrate how the means and variances differ
when the means are similar at each disease stage but the variances are
ly). Panel (c) illustrates the enhanced discriminative capability of a hyperedge
miRNA or mRNA, the discrimination capability of the hyperedge is enhanced.
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degrees of miRNA and mRNA of the hyperedge, respect-
ively. By the definition of a hyperedge, each hyperedge has
|Y| mean vector /covariance pairs, and |Y| weights. The
hypergraph-based model is considered as a population of
hyperedges. Given a gene expression profile (x, z), the
cancer stage of the profile is classified as y*, for which the
summation of the expected values (the products of the
hyperedge weight and the probability of (x, z) matching
the hyperedge), is highest among the elements of Y. “(x, z)
matches ei|y”means that (x, z) has similar expression values
to ones of the i-th hyperedge with respect to the genetic
variables involved in ei|y at cancer stage y, and we introduce
a Gaussian kernel into the hyperedge to calculate the
matching probability of (x, z) and ei|y, P(u=1|x, z, ei|y). The
matching probability is calculated by the normalized
subdimensional distance between ei|y and (x, z):

P u ¼ 1 x; z; eijyÞ ¼ exp −βd x; z; eijy
� �� �

;
��� ð5Þ

d x; z; eijy
� � ¼ 1

eij j
Xl
j¼1

xij−μxij
� 	2

σxijjy
� 	2 þ

Xm
k¼1

zik−μzik
� �2

σzikjy
� 	2

8><
>:

9>=
>;

1
2

;

ð6Þ
where u=1 denotes that (x, z) matches ei|y , σ ij yxj and σ ij yzj
are the standard deviations of xij and zik (the j-th miRNA
and k-th mRNA, respectively) in the i-th hyperedge for a
given y, and β is a constant for adjusting the probability.
Larger β implies smaller matching probability, and
therefore a smaller number of hyperedges influence on
classifying the data. Specifically, the cancer stage y* of (x, z)
is computed as follows:

Calculate cy ', the sum of the expected values for
each y ' in Y over all hyperedges of H:

cy 0 ¼
XHj j

i¼1

w eijy¼y 0
� �

P u ¼ 1 x; z; eijy¼y 0 Þ;���
ð7Þ

where |H| denotes the number of hyperedges and w(ei|y)
is the weight of ei|y, explained in the next subsection.

Predict the cancer stage as y*:

y� ¼ argmax
y 0∈Y

cy 0 : ð8Þ

In terms of distance-based connectionist models, our
model is related to radial basis function networks
(RBFNs) [64]. Whereas RBFNs use kernelized distance
for all variables, the proposed hypergraph model uses the
probability derived from the subdimensional distance on
the projected space corresponding to each hyperedge.
Unlike RBFNs, therefore, the hypergraph-based model can
detect embedded subpatterns reflecting higher-order rela-
tionships among the components. Because these embed-
ded subpatterns influence the classification, we can
intuitively analyze the complex interactions of genetic fac-
tors that contribute to classifying a specific cancer stage.

Learning hypergraph-based models
The proposed model learns by finding a hypergraph struc-
ture with high discriminative capability at a specific cancer
stage. This is achieved by maximizing the conditional like-
lihood for a model H and the gene expression profiles and
a log function is adopted for convenience. To minimize the
error of classifying the cancer stage, ED,H , the log condi-
tional likelihood is maximized by least mean square criteria
using (7) and a sigmoidal function:

H� ¼ argmax
H

log
YN
n¼1

p y nð Þjx nð Þ; z nð Þ;H
� 	

¼ argmax
H

XN
n¼1

log p y nð Þjx nð Þ; z nð Þ;H
� 	

≡ argmax
H

XN
n¼1

δ y nð Þ; y
0
H

� 	

¼ argmin
H

ED;H ≈ argmin
H

XN
n¼1

X
y0∈Y

� δ y nð Þ; y 0
� 	

−P y 0jx nð Þ; z nð Þ;H
� 	� 	2

ð9Þ

s.t.

P y 0jx; z;Hð Þ ¼ 1þ exp cy 0−
1
Yj j ⋅
X
y∈Y

cy

 !( )−1

where (x(n), z(n)) denotes the n-th miRNA-mRNA
expression and y(n) is the cancer stage of the example. y

0
H

is the label predicted by H and δ(y(n), y
0
H ) is an indicator

function, equal to 1 if y(n) equals y
0
H , and 0 otherwise. To

enhance the classification accuracy, it is essential that the
population comprises hyperedges with high discriminative
capability, and the hyperedge weights must be refined to
minimize (9) in the generated hypergraph.
To meet these requirements, the learning iterates two

phases: structure learning and parameter learning. The
structure learning constructs a hypergraph from
hyperedges that identify potential miRNA-mRNA mod-
ules. The weights of the hyperedges are updated to
minimize the classification error of the generated gene
module population during the parameter learning phase.
Because the hypergraph-based model represents a huge
combinatorial feature space (size 2|x|+|z|) of many
miRNAs and mRNAs, exhaustively searching for the
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optimal population is infeasible. Instead we adopt an
evolutionary learning method based on information-
theoretic criteria to generate putative hyperedges for the
structure learning.
We assume that a hyperedge consisting of strongly

interactive miRNAs and mRNAs is highly discriminative
for classification in this study. Mutual information is
used as a co-regulatory measuring criterion for effi-
ciently selecting genes for hyperedge generation. Mutual
information (MI) is an information-theoretic measure
that specifies the degree of conditional independency
between two random variables. When a genetic factor
more strongly determines the cancer stage, the MI
between the gene and the cancer stage is increased. A
hyperedge is generated by probabilistically selecting
miRNAs and mRNAs, and the MI between each gene
and the class label determines the probability of
Figure 9 Algorithm for learning the hypergraph-based model.
selecting the genes. The probability PI(Xi) of selecting
the i-th gene Xi is defined such that miRNAs or mRNAs
with high MI are selected more frequently:

PI Xið Þ ¼ I Xi;Yð Þf gηX
Xi ∈X

I Xi;Yð Þf gη ; ð10Þ

where I(Xi; Y) denotes the MI between the i-th genetic
factor and the cancer stage, and η is a nonnegative con-
stant that regularizes the influence of MIs on the gene
selection. When η is zero, all variables may be selected
with equal probability. Once the hyperedges have been
generated, the mean vectors and covariance of the
hyperedges are calculated from the training dataset. To
identify putative strongly-interacting miRNA-mRNA
modules, the initial weight of the i-th hyperedge is
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computed using the variances of each genetic factor and
the multivariate MI [65] among all variables, including
the class label involved in the hyperedge. A gene with a
particular mean expression value but small variance
likely possesses higher discriminative capability than
one with larger variance. Moreover, by the definition of
MI, large multivariate MI implies more relationships
among the genes. Thus the initial weight of a hyperedge
is defined as

w0 eijy
� � ¼ κ ⋅ I eið Þ þ

X
xij ∈ ei

1
σ2ijjy

; ð11Þ

s.t.

I eið Þ ¼ I Xi1;; ::;Xik ;Y
� �

¼ I Xi1;; ::;Xik
� �

−I Xi1;; ::;Xik
� jYÞ

¼ I Xi1;; ::;Xik
� �

−EY I Xi1;; ::;Xik
� �� ��Y Þ;

where k is the number of variables of ei and κ denotes
the ratio of the variance to MI.
In the parameter learning phase, the weights of the

hyperedges are updated using the gradient descent
method for all training data. The aim is to minimize the
Figure 10 Procedure of converting a hypergraph to cancer stage-spe
prostate cancer, respectively.
error in terms of the classification probability in (9) and
the matching probability in (5):

wt eijy
� � ¼ Δwt;ijy þ wt−1 eijy

� �
; ð12Þ

Δwt;ijy ¼ γ

t
P yjx; z;Hð Þ 1−P yjx; z;Hð Þð Þ

� δ ~y; yð Þ−P yjx; z;Hð Þð Þ⋅P u ¼ 1 x; z; eijyÞ;
���

ð13Þ
where ~y is the real cancer stage of a miRNA-mRNA
expression sample, and t and γ denote the epoch number
in the parameter learning and the parameter learning rate,
respectively. The epoch is the number of weight updates
for the built hypergraph during parameter learning, and γ
controls the extent of weight change during parameter
learning. Thus, the weight becomes high when the
hyperedge consists of miRNAs and mRNAs with strong
higher-order interactions and when the variances of the
gene variables are small at all cancer stages. Following
parameter learning, low weighted hyperedges are removed
from the population, and the next structure learning step is
performed. To prevent the removal of highly discriminating
cific interaction networks. ‘P’ and ‘M’ denote metastatic and primary
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hyperedges, the number of replaced hyperedges decreases
to a specific value as the iterations proceed, as follows:

Rt ¼ Rmax−Rmin

exp tð Þ þ Rmin; ð14Þ

where t is the iteration number of the structure learning
phase, and Rmax and Rmin denote the maximum and
minimum number of replaced hyperedges, respectively.
Therefore, the number of replaced hyperedges consecutively
decreases as the structure learning proceeds, while
high-discriminative modules are preserved. The algorithm
for learning the hypergraph-based model is presented in
Figure 9.

Representing interaction networks from hypergraphs
We construct a higher-order miRNA-mRNA interaction
network at a specific cancer stage from the learned model.
When analyzing complex biological networks based on
graph mining, frequently occurring subgraphs in the
networks are generally regarded as important building
blocks which are merged to create the functional network
[66-69]. Since a high-weight hyperedge corresponds to a
significant subgraph reflecting a higher-order relation-
ship among genetic variables, the interaction network is
constructed by connecting cliques sharing common genes.
A hyperedge is assigned separate weights for each cancer
stage and it is merged into the graph of the highest
weighted cancer stage. Formally, a cancer-stage y ' and a
cancer stage-specific interaction network G|y ' =(V, E),
where V and E denote a vertex set and an edge set,
respectively, is constructed by merging the hyperedges
as follows (where y ' is the class label with the largest
weight value):

Gjy 0 ¼ Gjy 0 ∪Ci; ð15Þ

y 0 ¼ argmax
y∈Y

w eijy
� �� �

; ð16Þ

and Ci is a clique corresponding to the i-th hyperedge ei
(Figure 10). This dividing and remerging approach
enables the constructed interaction networks to be easy-
to-visualized without impairing the higher-order property
of the model since the weight of edges in the constructed
networks are derived from the hyperedge weights reflecting
the strength of the higher-order interaction.
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