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Abstract

Background: Analysis of genome-wide data is often carried out using standard methods such as differential
expression analysis, clustering analysis and heatmaps. Beyond that, differential correlation analysis was suggested to
identify changes in the correlation patterns between disease states. The detection of differential correlation is a
demanding task, as the number of entries in the gene-by-gene correlation matrix is large. Currently, there is no gold
standard for the detection of differential correlation and statistical validation.

Results: We developed two untargeted algorithms (DCloc and DCglob) that identify differential correlation
patterns by comparing the local or global topology of correlation networks. Construction of networks from correlation
structures requires fixing of a correlation threshold. Instead of a single cutoff, the algorithms systematically investigate
a series of correlation thresholds and permit to detect different kinds of correlation changes at the same level of
significance: strong changes of a few genes and moderate changes of many genes. Comparing the correlation
structure of 208 ER- breast carcinomas and 208 ER+ breast carcinomas, DCloc detected 770 differentially correlated
genes with a FDR of 12.8%, while DCglob detected 630 differentially correlated genes with a FDR of 12.1%. In
two-fold cross-validation, the reproducibility of the list of the top 5% differentially correlated genes in 140 ER- tumors
and in 140 ER+ tumors was 49% for DCloc and 33% for DCglob.

Conclusions: We developed two correlation network topology based algorithms for the detection of differential
correlations in different disease states. Clusters of differentially correlated genes could be interpreted biologically and
included the marker genes hydroxyprostaglandin dehydrogenase (PGDH) and acyl-CoA synthetase medium chain 1
(ACSM1) of invasive apocrine carcinomas that were differentially correlated, but not differentially expressed. Using
random subsampling and cross-validation, DCloc and DCglob were shown to identify specific and reproducible
lists of differentially correlated genes.
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Background
Over the last 15 years, global gene expression profiling
using microarrays has been established as a common tool
for disease research. With this approach, disease mecha-
nisms may be studied by comparative expression profiling
of disease and healthy tissues or two disease states A
and B. In recent years, this approach helped to discover
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prognostic markers and signatures and to identify tar-
get structures for drug intervention. Alterations of gene
regulation often result in up- or down-regulated genes.
Therefore, looking for differentially expressed genes using
statistical tests is one of the most common strategies for
the comparative analysis of microarray data [1].
However, this approach ignores the fact that most of the

biological processes require orchestrated action of many
genes. Therefore, gene correlation and co-expression have
been intensively studied since the early days of microar-
rays and the seminal work of Eisen et al. [2]. Today, hierar-
chical clustering and heatmaps are ubiquitous in studies of
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microarray data. Heatmaps usually serve as a tool for visu-
alization of the results. Clustering has also been shown to
be useful for the identification of disease subtypes, such
as, for instance, defining molecular subtypes of breast
cancer [3].
Complementary to differential expression analysis,

the study of differential correlation or differential co-
expression aims at a deeper understanding of the expres-
sion patterns in diseased tissues. As an example, a number
of downstream targets could be regulated by a master
gene, for example a transcription factor. In tissues where
the regulatory mechanism is functional, the module of the
target genes will be expressed in an ordered pattern. How-
ever, in diseased tissues where the regulatory mechanism
is dysfunctional, the expression of the gene module will
be unordered or random. Correlation changes of this kind
can be detected by differential correlation (DC) analysis,
but might be overlooked by differential expression (DE)
analysis.
The number of pairwise correlations in global expres-

sion data of human tissues is quadratic in the number
of genes and exceeds one million. Case-by-case testing
would lead to a multiple testing problem, connected with
searching for a few differentially correlated gene pairs
within a huge number of unregulated correlations. There-
fore, it should bemore efficient not to study each gene pair
separately, but to take into account the overall structure
of correlations. Shortly after the microarray technology
became common, algorithms for the detection of dif-
ferential co-expression and differential correlation were
developed [4-6]. Meanwhile, a multitude of algorithms
were published [7] that can be divided into targeted,
semi-targeted and untargeted approaches [8].
In targeted approaches, predefined gene modules are

analyzed for correlation changes between the two dis-
ease states. Frequent choices for the modules are Gene
Ontology (GO) categories, Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways, or clusters from addi-
tional external expression data sets. For example, in gene
set co-expression analysis (GSCA) a dispersion index is
calculated for each of the modules and the significance
is assessed using a permutation test [9]. In [10], a differ-
ence network framework is developed and a test statistics
is defined by averaging over the edge weights between
members of the modules. In another kind of targeted
approach, the analysis of correlations is restricted to a pre-
defined network, for example to the human interactome
[11]. In [12], the expression pattern of breast cancer on
the interactome network was analyzed and it was shown
that the metastatic cancer phenotype is characterized by
an increase of randomness of the local information flux
patterns.
In semi-targeted approaches, modules in one of the

disease states are defined using clustering, and these

modules are investigated for correlation in the other dis-
ease state. The differential clustering algorithm (DCA)
starts with clustering of the tissues in the reference dis-
ease state and proceeds with reordering the genes in
the reference clusters according to the correlations in
the second disease state [13]. CoXpress starts with
hierarchical clustering of the reference samples and pro-
ceeds with a resampling-based approach to find those
modules that are co-expressed in one state, but not in the
other [14].
Untargeted approaches do not depend on externally

defined modules or modules defined by clustering of
a reference data set. Therefore, untargeted algorithms
are capable of detecting DC in more general situa-
tions where differential regulation neither occurs within
predefined external nor internal modules. Many of the
untargeted approaches start with constructing correlation
(or interaction) networks of each of the disease states
and proceed with identification of differentially correlated
subnetworks [15-18]. The recently published DICER algo-
rithm [19] is able to address two different scenarios of
DC: differentially correlated clusters, but also differen-
tially correlated meta-modules. Here, a meta-module is
defined as a pair of gene sets with genes inside the sets
being correlated in both disease states, but with differing
correlations between the gene sets.
Transformation of a correlation structure into a network

requires fixing of a threshold. Whenever a correlation
exceeds the threshold, the corresponding two network
nodes are joined. A novelty of the current study is to
investigate changes in network topology, but at the same
time to evaluate a series of correlation thresholds that
comprehensively cover the range of correlations in the
data. In this way, different kinds of correlation changes
can be detected at the same level of significance: strong
changes of a few genes, but also moderate changes of
many genes.
We designed two untargeted algorithms that numer-

ically quantify the DC of each gene. Each algorithm
delivers an ordered gene list according to the strength
of DC between the two disease states. The first algo-
rithm aims at the detection of global changes of the
network topology (DCglob), the second at the detection
of local changes (DCloc). The workflow of the algorithms
is shown in Figure 1. In a first step, correlation net-
works are constructed for disease states A and B. Second,
the DC of each of the genes is calculated as global or
local topological change between the networks. Third, the
analysis is repeated for 100 (or 200) correlation thresh-
olds and the results are averaged. Finally, ranked lists
of differentially correlated genes are obtained for both
algorithms. False discovery rates (FDR) for the result-
ing gene lists are estimated using a random subsampling
method.
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Figure 1Workflow of the algorithms for detection of
differentially correlated genes. In the first step, the gene
correlation matrix is calculated for each of the disease conditions. In
the second step, correlation networks are constructed for a fixed
correlation threshold. Two genes are connected with an edge
whenever the Pearson correlation exceeds this threshold. The
differences in local (algorithm DCloc) or global (algorithm DCglob)
topology of the networks are analyzed. Step two is repeated for a
series of thresholds (typically 100) such that a good coverage of the
correlations in the data set is obtained. The series of thresholds is
chosen as equidistant sequence of Fisher-transformed correlations. In
the third step, the results for the thresholds are averaged and a
measure of differential correlation is calculated for each of the genes.
After choosing a cutoff point for the measure of differential
correlation, a list of genes with higher correlation in condition A and a
list of genes with higher correlation in condition B are obtained.

Worldwide, breast cancer is classified into molecular
subtypes based on estrogen receptor (ER) and HER2
status. Determination of themolecular subtype is essential
to tailor adjuvant treatment and to estimate of the risk of
recurrence after surgery. In the last decade, DE between
molecular subtypes of breast cancer was extensively
investigated [20-22]. However, the literature on DC anal-
ysis of breast cancer is limited and includes a de-novo
partitioning method [23] and a targeted analysis of KEGG
pathways [24]. Therefore, we tested the new developed
untargeted algorithms in a large gene expression data set
of 208 ER-, 208 ER+, 208 HER2- and 208 HER2+ breast
carcinomas.

Methods
The algorithms DCglob and DCloc (Additional file 1)
were implemented using the statistical programming lan-
guage R [25]. While the global algorithm focuses on com-
parison of the connected components of the networks,
the local algorithm compares the next neighbors of the
gene under consideration. The general workflow of the
algorithms is illustrated in Figure 1.

Computing time
Calculations were done on a Linux computer including
16 GB RAM and an Intel Core i7-2600 processor, 3.40
GHz. In the first step, the gene correlation matrix was
calculated and used as input for both of the algorithms.
Because this calculation did not significantly contribute,
the computing time was independent of the number of
samples. The time to calculate the strength of differential
correlation for 12703 genes was 52 minutes for DCglob
(200 thresholds) and 69 minutes for DCloc (100 thresh-
olds). Including FDR calculation by subsampling analysis
(100 subsamples), the calculation time was 88 hours for
DCglob and 116 hours for DCloc.

Global topology algorithm
Step 1 The algorithm compares gene expression data of
n samples in disease condition A with gene expression
data of n samples in disease condition B. First, the cor-
relation matrix Cq comprising the Pearson correlations
cqij = cor(genei, genej) of all pairs of genes is calculated for
both disease conditions q = A,B. The Fisher-transformed

correlation matrix zqij = 1
2 · log 1+cqij

1−cqij
is the starting point

for all further calculations.

Step 2 Correlation networks are computed for a com-
prehensive series of correlation thresholds. In the breast
cancer data set, the highest correlation between genes is
c = 0.985 and corresponds to a Fisher-transformed value
of z = 2.5. Therefore, we choose the set of thresholds T
to be the series of 200 equidistant values between 0 and
2.5. For each threshold t ∈ T , we obtain correlation net-
worksNt

A andNt
B corresponding to the disease conditions

A and B.

Step 3 The decomposition of the networks Nt
A and Nt

B
into connected components is computed and all con-
nected components containing 3 or more genes are
selected. We restricted to clusters of 3 or more genes,
because this is the minimum number where the network
topology comes into play. Changes of pairwise correla-
tions could be more effectively studied using a direct
approach. Formally, let {At

1, . . . ,A
t
k} and {Bt

1, . . . ,B
t
l }

denote the sets of these connected components in Nt
A

and Nt
B respectively. After these preparations, we remove
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the genes that are contained in a connected component
for both networks Nt

A and Nt
B from the set of all genes

G, yielding G̃t := G \ ⋃
1≤i≤k,1≤j≤l(At

i ∩ Bt
j ). Then, we

build subnetworks Ñt
A resp. Ñt

B of Nt
A resp. Nt

B induced
by the genes in G̃t and compute the sets Ãt and B̃t of
genes that are contained in connected components of Ñt

A
and Ñt

B with cardinality greater or equal 3. Because we
removed the genes that are contained in correlation clus-
ters for both disease conditions, the remaining genes that
are in correlation clusters for one of the disease conditions
are considered as differentially correlated for correlation
threshold t.
To summarize the information about differential cor-

relation for all thresholds, we define indicator functions
IAj , IBj : T → {0, 1} for every gj ∈ G by

IAj (t) =
{
1, if gj ∈ Ãt

0, else and IBj (t) =
{
1, if gj ∈ B̃t

0, else .

As an example, IAj (t) = 1 indicates that gene j is member
of a connected component in the network Nt

A but not in
the network Nt

B.

Step 4 Finally, genes that aremembers of connected com-
ponents in only one of the networks over a large range of
correlation thresholds are selected. To this end, an inter-
val of maximal length [a, b] is chosen such that Iqj (t) = 1
for all t ∈ [a, b]∩T . Thus, the interval contains as series
of threshold values for which a gene is correlated in one
of the networks, but not in both networks. The interval
length b−a is converted to a p-value using Steiger’s test for
the comparison of correlation coefficients [26] and used
to measure the strength of differential correlation. A list
of differentially correlated genes includes all genes with
p-values p < S below a threshold S.

Local topology algorithm
Step 1 This step is identical to Step 1 performed for
DCglob.

Step 2 We choose the set of thresholds T to be the series
of 100 equidistant values between 0 and 2.5. Let Nt

A and
Nt
B denote the correlation networks constructed for each

threshold t ∈ T . For a given gene i, let Vi,t
A resp. Vi,t

B be the
set of neighbors of this gene inNt

A resp.Nt
B. We define the

topological dissimilarity between the two networks in the
neighborhood of gene i as:

dti := 1 − |Vi,t
A ∩ Vi,t

B |
|Vi,t

A ∪ Vi,t
B | .

In this definition, the number of common next neigh-
bors in both networks is divided by the total number of

next neighbors. To focus on changes that affect correlation
clusters of at least 3 genes, we set dti := 0 if |Vi,t

A ∪Vi,t
B | < 3.

Step 3 Finally, the value of differential correlation for
each gene is computed by averaging the topological dis-
similarity over the thresholds under consideration,

di := 1
#T

·
∑
t∈T

dti .

Thus, we obtain a value in [0,1], which represents the
strength of differential correlation for each gene. A list of
differentially correlated genes includes all genes with d> s
above a threshold s.

Estimation of false discovery rates
Statistical evaluation of the algorithms was performed
by a repeated random subsampling analysis. We wanted
to falsify the null hypothesis that both patients groups
exhibit the same gene correlation structure. Therefore, we
randomly subsampled arbitrary breast cancer patients to
generate the null distribution. This procedure mixes ER+
and ER- patients (as well as HER2+ and HER2- patients)
and therefore is appropriate to assess the significance of
differential correlations between the ER+ and ER- subtype
(as well as the HER2+ and HER2- subtype). Then, we
compared the number of differentially correlated genes
between breast cancer subtypes nAB to the number of dif-
ferentially correlated genes between randomly sampled
sets of breast cancer n0.
In detail, we estimated the expected number of differen-

tially correlated genes under the null hypothesis from 100
random subsamples.We obtained (mean values with stan-
dard errors) n0 = 76 ± 6 and 38 ± 4 for DCglob (cutoff
p = 0.1, 0.05) and n0 = 99±8 and 10±1 for DCloc (cutoff
d = 0.25, 0.3). Thus, 100 repetitions were enough for pre-
cise estimation of n0. A confidence interval was estimated
from the 5% and the 95% percentile of the distribution of
n0. Finally, for each correlation threshold t, we estimated

FDR(t) = π0nAB(t)
n̄0(t)

≈ nAB(t)
n̄0(t)

,

wherein π0 denotes the proportion of not differentially
correlated genes. This is a standard method for estimat-
ing the FDR from a subsampling or permutation analysis,
see for example [27]. For breast cancer, the number of
differentially correlated genes turned out to be small com-
pared to the total number of genes. Therefore, slightly
overestimating the FDR, we used the approximation
π0 = 1.

Dataset
We generated a large gene expression data set of breast
cancer (1317 samples) by fusion of publicly available
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microarray data sets. Raw data of GSE1456, GSE2034,
GSE4922, GSE6532, GSE7390 and GSE11121 with respec-
tively 159, 286, 327, 578, 198 and 200 samples were
downloaded from the Gene Expression Omnibus (GEO)
website [28]. All the samples were analyzed using
the Affymetrix Human Genome U133A microarray. As
remarked in [29] some of the samples were contained in
two or more data sets. Thus, we removed 431 samples and
ended up with a breast cancer gene expression data set
of 1317 unique samples. The raw data were preprocessed
using the mas5 protocol as implemented in the R package
affy [30] and transformed to log2 scale. All samples con-
sisted of surgical collected fresh-frozen tissue of primary
tumors without neoadjuvant treatment.
A large number of genes was represented by more

than one microarray probe. In this case, we selected the
probe with the highest expression level resulting in a gene
expression data set of 12703 unique genes. Immunohis-
tochemistry (IHC) and in situ hybridization (ISH) where
necessary are the gold standard for the determination of
the ER and HER2 status. However, immunohistochemical
data of ER and HER2 protein expression were not avail-
able for all samples. Hence, ER and HER2 classification
was performed using the expression level of the estrogen
receptor 1 gene (probe 205225_at) and the HER2 gene
(probe 216836_s_at) from themicroarray data (Additional
file 2). A high concordance between RNA based determi-
nation of ER and HER2 states and the IHC based standard
method was demonstrated before [22,31]. A value of 10
was chosen as threshold for the ER status and a value of
12 as threshold for the HER2 status.

Visualization and functional analysis
Heatmaps were generated using the R function heatmap.
Hierarchical clustering was executed using the average
linkage method with Pearson correlations as similarity
measure. Prior to the analysis, the expression level of
each gene was centered to mean 0 and standard devia-
tion 1. Construction and analysis of networks was car-
ried out using the R package igraph [32]. Visualization
of the networks was realized using Cytoscape [33].
Gene enrichment analysis was executed using DAVID
[34,35] with the genes represented by the microarray as
background.

Results
Two algorithms were developed for the detection of dif-
ferential correlation in different disease states (Figure 1).
The algorithms are based on the detection of either global
(DCglob) or local (DCloc) changes in the topology of the
correlation network. Both algorithms include the analysis
of correlation networks corresponding to a series of cor-
relation thresholds that covers the range of correlations in
the data.

Identification of differentially correlated genes
We investigated the differential correlation in the molec-
ular subtypes of breast cancer. To this end, six microarray
data sets were downloaded fromGEO [28] and joined into
a large gene expression cohort of 1317 tumor samples. We
divided the microarray cohort into molecular subtypes by
the status of estrogen receptor (ER) and HER2. The preva-
lence of the molecular subtypes in the gene expression
cohort was similar to their prevalence in a large popula-
tion of Californian women (Table 1). The gene expression
cohort included 208 HER2+ samples. To obtain compara-
ble results, we worked with the same number of tumors
in each of the molecular subgroups and compared 208
ER+ tumors with 208 ER- tumors and 208 HER2+ with
208 HER2- tumors. These subsamples were randomly
drawn.
The genes were ranked according to the strength of

differential correlation p (DCglob) and d (DCloc), see
Additional files 3 and 4. The statistic p can be interpreted
as the significance of the range of correlations, where the
gene under consideration takes part in a change of global
topology. The statistic d can be interpreted as topologi-
cal dissimilarity of the networks in the neighborhood of
the gene under consideration. Stronger differential corre-
lation corresponds to lower p, but higher d.
Lists of differentially correlated genes were gener-

ated by choosing thresholds for the two statistics
(Table 2). For each of the gene lists, the false discovery
rate (FDR) was estimated using a random subsam-
pling method. Using DCglob, 630 differentially corre-
lated genes (FDR = 12.1%) were detected between ER
subtypes and 804 (FDR = 9.5%) between HER2 sub-
types. Using DCloc, 770 differentially correlated genes
(FDR = 12.8%) were detected between ER subtypes and
1027 (FDR = 9.6%) between HER2 subtypes. Lower
FDRs can be obtained by using more stringent cutoffs
(Table 2).

Table 1 Distribution of ER and HER2 status

Microarray cohort Californian population [36]

Total 1317 (100%) 100%

ER+ 1035 (78.6%) 79.4%

ER- 282 (21.4%) 20.6%

HER2+ 208 (15.8%) 21.7%

HER2- 1109 (84.2%) 78.3%

ER+/HER2+ 120 (9.1%) 14.6%

ER+/HER2- 915 (69.5%) 64.8%

ER-/HER2+ 88 (6.7%) 7.1%

ER-/HER2- 194 (14.7%) 13.5%

Distribution of ER and HER2 status in the microarray cohort and in a large
Californian population of 67698 breast cancer patients.
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Table 2 Numbers of detected genes by DCglob and by
DCloc

Algorithm Threshold ER HER2

Genes FDR Genes FDR

DCglob p < 0.1 630 12.1% 804 9.5%

p < 0.05 420 8.9% 544 6.9%

DCloc d > 0.25 770 12.8% 1027 9.6%

d > 0.3 185 5.4% 238 4.2%

Number of detected genes after choosing the cutoff points p = 0.1, 0.05
(DCglob) and d = 0.25, 0.3 (DCloc). FDRs were estimated using a repeated
random subsampling method.

Variation of the cutoff parameters
Figure 2 shows the number of differentially correlated
genes in dependence of the strength of differential cor-
relation. The number of differentially correlated genes
between randomly subsampled groups of breast cancer
tissue is shown as baseline. Indeed, there were signif-
icantly more differentially correlated genes between
molecular subtypes of breast cancer than between ran-
dom samples of breast cancer. ROC curves show the
number of differentially correlated genes in dependence
of the FDR (Figure 2C). Over a large range of FDRs, the
number of differentially correlated genes between the
HER2+ and the HER2- subtype was higher than the num-
ber of differentially correlated genes between the ER+ and
the ER- subtype. Furthermore, the number of differen-
tially correlated genes detected by DCloc for a fixed FDR
value was higher than the number of differentially corre-
lated genes detected by DCglob for both of the subtype
comparisons.

Differential correlation vs. differential expression
We looked for differential expression between the breast
cancer subtypes using the standard approach of Welch’s
test. After using the Benjamini-Hochberg (BH) method
for multiple testing correction and a FDR of 5%, 55% of
all genes were differentially expressed between ER+ and
ER-, and 31% were significantly differentially expressed
betweenHER2+ andHER2-. Among the differentially cor-
related genes identified by DCglob (p < 0.1), 76% were
differentially expressed between ER+ and ER- and 48%
were differentially expressed between HER2+ and HER2-.
For DCloc (d > 0.25), the percentages were similar (73%
and 47%). Thus, DC analysis provided additional infor-
mation beyond DE analysis. As an example, the marker
genes for the invasive apocrine subtype of breast cancer
acyl-CoA synthetase medium chain 1 (ACSM1) and
hydroxyprostaglandin dehydrogenase (PGDH) exhibit
strong differential correlation (DCglob p = 8.0E-05 and
p = 0.0004; DCloc d = 0.26 and d = 0.27), but they
would not be detected in a differential expression analysis
(p = 0.21 and p = 0.55 after Benjamini-Hochberg
correction).

Functional analysis of the differentially correlated genes
We performed a gene enrichment analysis using the bioin-
formatics tool DAVID [34,35]. We separately submitted
the differentially correlated genes between ER+ and ER-,
and HER2+ and HER2- (p < 0.1 for DCglob, d > 0.25
for DCloc) and identified many overrepresented terms.
The most important results are presented in Table 3 for
ER, and in Table 4 for HER2. First, there was a signifi-
cant enrichment in cell cycle genes, which was particu-
larly pronounced in the analysis comparing HER2+ and

Figure 2 Dependence of the resulting gene list on the cutoff point. (A) Algorithm DCglob: Number of detected genes in dependence of the
cutoff point for the change of global network topology. The parameter p is connected with the length of the interval where the change of
correlation is stable. Additionally, the mean number of detected genes comparing 100 pairs of breast cancer random subsamples including a 90%
confidence interval is shown. (B) Algorithm DCloc: Number of detected genes in dependence of the cutoff point for the changes of local network
topology. The parameter d can be interpreted as proportion of correlated genes that are not shared by condition A and B. Similarly, the number of
detected genes comparing 100 pairs of breast cancer random subsamples including a 90% confidence interval is shown. (C) Comparison of
DCglob and DCloc: The number of detected genes in dependence of the FDR.
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Table 3 Gene enrichment analysis (ER+ vs. ER-)

Category Catalog DCloc DCglob

N p N p

Extracellular matrix GOTERM_CC_FAT 60 9.6E-13 29 2.8E-01

Cell adhesion GOTERM_BP_FAT 80 2.0E-07 43 5.5E-01

Cell cycle GOTERM_BP_FAT 79 2.2E-05 63 3.7E-03

Immune response GOTERM_BP_FAT 70 6.4E-05 n.s.

Growth factor binding GOTERM_MF_FAT 22 1.5E-04 n.s.

Organelle fission GOTERM_BP_FAT 30 1.6E-03 24 4.2E-02

ECM-receptor interaction KEGG_PATHWAY 18 3.9E-03 n.s.

Ribosome KEGG_PATHWAY 18 5.5E-03 n.s.

Oxidoreductase SP_PIR_KEYWORDS 42 8.3E-02 42 2.2E-02

The table shows the most significantly enriched biological themes in the lists of
770 (DCloc) and 630 (DCglob) DC genes. For each functional category, the
number of genes in the category (N) and the significance of enrichment
(Benjamini-Hochberg corrected p-value) are shown. Some of the findings of
DCglob are not significant (n.s.).

HER2- breast cancer (p < 6.8E-13). Genes related to the
immune response were also enriched. Next, genes asso-
ciated with the extracellular matrix (p < 9.6E-13) were
enriched in the differentially correlated genes between
ER+ and ER-. Genes associated with the ribosome and
oxidative phosphorylation were enriched in the differen-
tially correlated genes betweenHER2 subtypes. In general,
the set of genes identified by DCloc contained more sig-
nificantly overrepresented terms than the set of genes
identified by DCglob.

Heatmap analysis
For each of the subtype comparisons, we generated sep-
arate lists of genes that showed a stronger correlation in
one of the subtypes compared to the complementary sub-
type (for example ER- compared to ER+). The resulting
four gene lists (ER-, ER+, HER2- and HER2+ subtype)
were subjected to hierarchical clustering and heatmap
analysis (Figure 3, Additional file 5). The left part of the
figures shows a heatmap of the subtype under investiga-
tion. Clusters of genes with Pearson correlation greater
than 0.4 are marked by colored bars. The right part of

Table 4 Gene enrichment analysis (HER2+ vs. HER2-)

Category Catalog DCloc DCglob

N p N p

Translational elongation GOTERM_BP_FAT 57 1.5E-32 14 3.1E-01

Ribonucleoprotein SP_PIR_KEYWORDS 83 7.1E-31 46 1.2E-09

Ribosome KEGG_PATHWAY 55 4.0E-30 14 1.8E-01

Acetylation SP_PIR_KEYWORDS 303 8.5E-20 276 2.3E-28

Mitotic cell cycle GOTERM_BP_FAT 77 6.8E-13 65 7.8E-12

Regulation of ubiquitin-protein GOTERM_BP_FAT 27 3.3E-09 17 6.5E-04

ligase activity during

mitotic cell cycle

Immune response GOTERM_BP_FAT 98 1.0E-08 n.s

Oxidative phosphorylation KEGG_PATHWAY 28 1.7E-04 30 4.5E-08

Mitochondrion GOTERM_CC_FAT 93 4.0E-01 106 6.6E-07

Proteasomal ubiquitin-depend- GOTERM_BP_FAT 27 2.7E-06 20 8.4E-04

ent protein catabolic process

Mitochondrial membrane part GOTERM_CC_FAT 26 1.3E-04 25 4.5E-06

MHC protein complex GOTERM_CC_FAT 13 3.5E-04 7 1.7E-01

Growth factor binding GOTERM_MF_FAT 22 8.5E-03 n.s

NADH dehydrogenase activity GOTERM_MF_FAT 10 7.6E-02 11 2.4E-03

ATP synthesis coupled GOTERM_BP_FAT 12 2.7E-02 12 5.9E-03

electron transport

Anti-apoptosis GOTERM_BP_FAT 30 5.0E-02 n.s

The table shows the most significantly enriched biological themes in the lists of 1027 (DCloc) and 804 (DCglob) DC genes. For each functional category, the number
of genes in the category (N) and the significance of enrichment (Benjamini-Hochberg corrected p-value) are shown. Some of the findings of DCglob are not
significant (n.s.).
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Figure 3 Heatmaps of genes with higher correlation in ER- tumors compared to ER+ tumors. (A) Algorithm DCglob: Heatmap of 254
differentially correlated genes (p < 0.05) in ER- breast cancer (left panel) and in ER+ breast cancer (right panel). Color bars visualize the gene cluster
structure in ER- breast cancer and its disorganization in ER+ breast cancer. Seven clusters of genes were identified by cutting the correlation tree at a
Pearson correlation of 0.4. (B) Algorithm DCloc: Heatmap of 81 differentially correlated genes (d > 0.3) in ER- breast cancer (left panel) and in ER+
breast cancer (right panel). Color bars as in panel (A).

the figures shows a heatmap of the complementary sub-
type. The rearrangement of the colored bars shows the
change of the correlation pattern between the subtype
under investigation and the complementary subtype.
We analyzed the correlation structure of the differ-

entially correlated genes that showed higher correlation
in ER- breast cancer compared to ER+ breast cancer in
more detail (Figure 3). Within the differentially corre-
lated genes detected by DCglob, seven clusters (colored
bars) were identified by cutting the clustering tree at a
Pearson correlation of 0.4. There was a significant over-
lap between the genes in clusters and marker genes of

breast cancer subtypes that were described before, see
Table 5.
Cluster 1 (orange) included ACSM1 and PGDH, two

genes that were described asmarkers for invasive apocrine
carcinomas (IACs), a subgroup of ER- breast cancer
recently studied by Celis et al. [37,38]. It was enriched
with other markers of IAC (Table 5). Cluster 2 (dark-blue)
consisted of genes that are up-regulated in HER2+ breast
cancer, including ERBB2, GRB7, STARD3 and PSMD3
that are located in the HER2 amplicon [39]. It was signifi-
cantly enriched for genes of the HER2 amplicon (Table 5).
Cluster 3 (red) was highly enriched with marker genes for
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Table 5 Marker gene enrichment analysis

Cluster Marker gene Marker gene #C #M #(C ∩ M) p

description reference

1 IAC Celis et al. [37] 11 32 5 3.3E-11

2 HER2+ Staaf et al. [39] 12 15 4 6.2E-10

3 AR responsive Doane et al. [40] 47 70 19 5.2E-32

5 FOXC1 subtype Ray et al. [41] 13 17 3 5.6E-07

Analysis of the genes identified by DCglob that showed higher correlation in ER- compared to ER+ breast cancer. The gene clusters (C) were compared to lists of
marker genes (M) from the literature. Let #C denote the number of genes in the clusters, #M the number of marker genes and #(C ∩ M) the number of genes in the
intersection. The significance of enrichment was assessed using Fisher’s exact test. IAC invasive apocrine carcinomas, AR androgen receptor.

the androgen-responsive subgroup of ER- breast cancer
described by Doane et al. [40]. Cluster 4 (blue-green) con-
tained some cell cycle genes (CDC16, TFDP1). Cluster 5
(light-blue) contained FOXC1, a gene with regulatory and
prognostic relevance in triple-negative breast cancer [41].
Cluster 6 (green) contained many genes that are related
to ATPase activity (ATP5J, DHX15, CCT8, PSMC6 and
ATP5O). Finally, Cluster 7 (purple) contained genes cod-
ing for keratins (KRT18, KRT19, KRT7, KRT8), claudins
(CLDN3, CLDN4) and CD24. While part of the correla-
tions in Cluster 2 (HER2), Cluster 4 and Cluster 6 (ATPase
activity) are preserved in ER+ breast cancer, Cluster 1
(IAC markers), Cluster 3 (AR signaling) and Cluster 5 are
completely rearranged in ER+ breast cancer.
DCloc identified only two different clusters. Among

others, Cluster 1 (light-blue) contains genes related to
the immune response (PTPRC, SIT1, CXCL13, FAIM3,
IFI35). Like the third cluster identified by DCglob, the
second cluster includes AR and FOXA1. Among the 25
genes present in this cluster, 18 are also present in Clus-
ter 3 of the DCglob analysis. The two clusters identified
by DCloc are not completely disarranged in the ER+
subtype, but the correlation between the genes in the
clusters is much weaker in the ER+ compared to the
ER- subtype.

Network analysis
Networks were constructed for the correlation thresh-
old 0.5 (Figure 4, Additional file 5). There are two major
connected components identified by DCglob comparing
ER- and ER+ breast cancer. The structure of the genes
in these clusters is fundamentally different between the
ER subtypes. There were also two clusters identified by
DCloc. Although the overall structure is less disorganized
between the subtypes, the number of edges in the ER-
network is higher than those in the ER+ network.

Reproducibility analysis
In a two-fold cross-validation approach, we analyzed the
reproducibility of the detections of the topological algo-
rithms. To this end, we randomly drew 10, 20, . . . , 140 ER-
tumors and 10, 20, . . . , 140 ER+ tumors from the study

cohort to form training data sets. Then, we randomly
drew independent validation data sets of the same sizes.
Figure 5A shows a moderate, but highly significant corre-
lation of the statistics p (DCglob) between training and
validation data sets of 140 samples (Spearman R = 0.30).
Figure 5B shows a strong and highly significant correla-
tion of the statistics d (DCloc) between the same data sets
(Spearman R = 0.68).
Further, we investigated the reproducibility of lists

of differentially correlated genes in dependence of the
sample size. When comparing the list of the top 5%
genes in the training data set to the list of the top
5% genes in the validation data set, the reproducibility
raised up to 33% for DCglob and to 49% for DCloc
(Figure 5C). When relaxing the reproducibility condition
to the list of the top 20% genes in the validation set,
this percentage reached 64% for DCglob and 80% for
DCloc (Figure 5D).

Discussion and conclusions
We developed two novel algorithms for the detection of
differential correlation (DC) in high-dimensional molecu-
lar data. Both approaches are untargeted in the sense that
they do not depend on predefined gene modules and start
with mapping of the correlation structures to networks.
DCglob analyzes global changes of network topology,
while DCloc analyzes local changes of the network topol-
ogy. An innovative ingredient of the algorithms is the
analysis of a series of networks that are constructed from
a series of correlation thresholds. Therefore, detection of
different kinds of correlation changes (strong changes of a
few genes or moderate changes of many genes) is feasible.
As default setting, the networks are constructed from an
equidistant (after Fisher-transformation) series of 100 cor-
relation thresholds between 0 and themaximal correlation
in the data set. For the global algorithm, we increased the
number of thresholds to 200 to achieve a more precise
ranking of the genes. Using 200 instead of 100 thresholds
did not significantly change the lists of DC genes. For both
algorithms, a statistic for the strength of DC (p or d) is
calculated as average of topological changes over all corre-
lation thresholds. Using averaging asmethod for summary
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Figure 4 Correlation networks of genes with higher correlation in ER- tumors compared to ER+ tumors. (A) Algorithm DCglob, p < 0.05:
Correlation networks in ER- breast cancer (left panel) and ER+ breast cancer (right panel). In this case, almost all the subnetworks present in ER-
breast cancer are disorganized in ER+ breast cancer. Genes are connected by an edge if their Pearson correlation is larger than 0.5. The size of nodes
in both networks is proportional to the degree of nodes in the network of ER- breast cancer. (B) Algorithm DCloc, d > 0.3: Correlation networks in
ER- breast cancer (left panel) and ER+ breast cancer (right panel).

ensures that changes at different correlation thresholds
are taken into account with equal weight. This i appropri-
ate in a situation without prior knowledge on the strength
and biological relevance of correlation changes.
An essential part of the analysis is to work with two

equal-sized sample groups that are compared for differen-
tial correlations. The number of available HER2+ samples
was 208 and therefore we randomly drew 208 ER+, 208
ER- and 208 HER2- samples for analysis. Unequal samples
size would lead to a different sensitivity and/or specificity

for the detection of correlations and therefore would
lead to false positive discoveries in the DC analysis. We
therefore recommend to work with equal-sized sample
groups.
The results of DCloc and DCglob were consistent:

Pearson correlations between −p and d were strong and
highly significant (p < 2E-16) for the analysis of estrogen
receptor status (R = 0.59) and the analysis of HER2 sta-
tus (R = 0.64). Extensive subsampling analysis was carried
out to demonstrate the significance of the findings, and
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Figure 5 Analysis of reproducibility of the detections of the topological algorithms. The reproducibility of the DC analysis of ER- and ER+
breast cancer subtypes is analyzed in two-fold cross-validation. (A) Reproducibility of the score p (DCglob) calculated in a training set (n = 140)
and in an independent validation set (n = 140). Lines mark the threshold (p = 0.05) for the detection of differential correlation. (B) Reproducibility
of the score d (DCloc) calculated in a training set (n = 140) and in an independent validation set (n = 140). Lines mark the threshold (d = 0.3) for
the detection of differential correlation. (C) Reproducibility analysis of the lists of differentially correlated genes. A series of training and independent
validation sets of equal size is randomly drawn from the 1035 ER+ and the 282 ER- patients. A gene detected among the top 5% differentially
correlated genes in the training set is considered as validated, if it is among the top 5% DC genes in the validation set. (D) As C, but a gene is
considered as validated, if it is among the top 20% differentially correlated genes in the validation set.

to estimate FDRs associated with the lists of differentially
correlated genes. Both algorithms detected a significant
number of differentially correlated genes in molecular
subtypes of breast cancer compared with the null model.
In the analysis of breast cancer subtypes, DCloc turned
out to be more sensitive than DCglob (Figure 2C). This
was in line with a higher number of significantly enriched
functional categories for DCloc(Table 3). Additionally,
the performance of DCloc was considerable better than
DCglob in terms of reproducibility when analyzing two
independent breast cancer data sets (Figure 5). Assum-
ing that 1/3 of the detected genes should reproduce in
two-fold cross-validation, 90 patients in each group were
appropriate for DCloc and 130 patients in each group
were appropriate for DCglob. However, the results of
the global algorithm were more easily interpretable in the
heatmap analysis (Figure 3).

Gene enrichment analysis revealed significantly en-
riched terms within the lists of differentially correlated
genes. We tested heatmaps and networks as tools for visu-
alization and in-depth analysis of the correlation changes.
Clustering and heatmap analysis turned out to be partic-
ularly useful for a biological interpretation of the correla-
tion patterns. ER- tumors tend to be more aggressive and
are more difficult to treat than ER+ tumors. Therefore, we
analyzed the correlation patterns in ER- tumors in more
detail. Interestingly, among the clusters of genes detected
by DCglob, there weremany genes that could servemark-
ers for substratification of the ER- or the triple-negative
subtype (see Table 5).
We detected different types of changes in the corre-

lation patterns between ER+ and ER- breast cancer. For
example, the structure of the cluster associated with the
HER2 amplicon (Cluster 2) was relatively well preserved.
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However, there was a difference in correlation strength,
which can be possibly explained by the unequal distribu-
tion of the HER2 tumors between the ER+ and the ER-
subtype (see Table 1). In contrast, there were gene clusters
with strong correlation in ER- breast cancer and almost no
correlation in ER+ breast cancer (Clusters 1, 3 and 5).
As an example, the genes in Cluster 1 were strongly

correlated in ER- breast cancer, but most of them were
uncorrelated in ER+ breast cancer. In the marker gene
enrichment analysis, we found a highly significant overlap
between these genes and marker genes of invasive apoc-
rine carcinomas (IACs). In fact, the genes of Cluster 1
were highly expressed in a small subgroup of triple-
negative (ER- and HER2-) breast cancer (10 tumors), but
poorly expressed in the remaining ER- tumors and in all
ER+ tumors. The two major marker genes for IACs [37],
PGDH and ACSM1, were highly differentially correlated,
but not differentially expressed between the ER- and the
ER+ subtype.
Interestingly, the genes in Cluster 3 were highly

expressed in the ER-/HER2+ tumors and the IACs, but
not in the remaining triple-negative tumors. The marker
gene enrichment analysis demonstrated a highly signifi-
cant overlap of this cluster with AR signaling. TheAR gene
itself turned out to be considerably higher expressed in
ER+ tumors compared to ER- tumors (fold change = 3.01,
p = 1.2E-30). This result is in agreement with immuno-
histochemical data showing that the number of androgen
receptor positive tumors is larger in the ER+ subtype [42].
Further analysis showed that the expression of most of
the genes of the AR signaling cluster was high in the ER+
tumors, but variable in the ER- tumors. Thus, the low
correlation of the AR signaling genes in ER+ tumors is
a consequence of the missing variance of the pathway in
these tumors, where it is always highly expressed. These
observations suggest that AR signaling is always active in
ER+ tumors, while it is under regulation (active or inac-
tive) in ER- tumors. AR signaling based stratification is of
interest in the ER- subtype, but not in the ER+ subtype,
in line with a recent result that high AR protein expres-
sion was associated with better survival in triple-negative
breast cancer [42].
In summary, functionally relevant pathways (Table 3, 4

and 5) could be identified that show highly correlated
gene expression in one of the subtypes, but not in
the complementary subtype. Co-expression of a path-
way is likely to be a consequence of pathway regulation,
for example by transcription factors. A pathway highly
expressed in a cancer subtype is potentially support-
ing or even essential for the growth of tumors cells in
this kind of tumor. Thus, the clusters identified by DC
analysis can be beneficial for patient stratification and
can represent interesting targets for new therapies. In
this context we re-identified the HER2-amplicon that is

successfully targeted by trastuzumab or other anti-HER2
drugs [43].
These examples illustrate that DC analysis, in particular

network topology based approaches, can help to identify
biologically important gene clusters beyond the results
of conventional DE analysis. Using DCloc and DCglob,
we detected hundreds of differentially correlated genes in
the molecular subtypes of breast cancer, while keeping
the FDR under control. In a two-fold cross-validation
approach we showed that results of both algorithms were
reproducible in an independent data set.
Within the last decade, a multitude of methods and

algorithms were developed for the detection of differential
correlations. The algorithms address different biological
questions and it is difficult to decide which of the algo-
rithms works best in terms of power and of biological
interpretability. However, statistical properties like speci-
ficity and reproducibility could be evaluated in a com-
parable way for many of the algorithms. We believe that
statistical evaluation should be stronger emphasized in
future studies of differential correlations.

Additional files

Additional file 1: R code for calculation of differential correlations.
There are two functions that run independently of each other: DCglob
compares the global topology of correlation networks, while DCloc
compares the local topology of the correlation networks.

Additional file 2: Subtype classification by ER and HER2 expression.
(A) Expression level of ER (205225_at) in 1317 breast cancer samples. A
tumor was classified ER+ whenever the ER expression level was larger than
10.(B) Expression level of HER2 (216836_s_at). A tumor was classified
HER2+ whenever the expression level of HER2 was larger than 12.

Additional file 3: Differential correlation in ER+ and ER- breast
cancer. Table of the genes represented by the Affymetrix HG-U133A
microarray with the strength of differential correlation. All the results were
obtained comparing a set of 208 ER+ and 208 ER- tumors. For DCloc, the
sum of topological dissimilarities, the sum of the absolute values of
topological dissimilarities (d) and the mean number of neighbors in the
ER+ and the ER- network are shown. For DCglob, the stability of
differential correlation (p) and the subtype where the gene shows higher
correlation are shown. Finally, the table contains information on differential
expression (DE) between ER+ and ER- subtype.

Additional file 4: Differential correlation in HER2+ and HER2- breast
cancer. Table analogous to Additional File 2 for the comparison of 208
HER2+ breast cancer samples with 208 HER2- breast cancer samples.

Additional file 5: Heatmaps and networks of genes with high
correlation in ER+, HER2- and HER2+ tumors. Heatmaps and networks
analogous to those shown in Figure 3 and Figure 4 for the differentially
correlated genes that showed high correlation in ER+ tumors (p. 1-2),
HER2- tumors (p. 3-4), and HER2+ tumors (p. 5-6).
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