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Abstract

Background: The aerobic energy metabolism of cardiac muscle cells is of major importance for the contractile
function of the heart. Because energy metabolism is very heterogeneously distributed in heart tissue, especially
during coronary disease, a method to quantify metabolic fluxes in small tissue samples is desirable. Taking tissue
biopsies after infusion of substrates labeled with stable carbon isotopes makes this possible in animal experiments.
However, the appreciable noise level in NMR spectra of extracted tissue samples makes computational estimation
of metabolic fluxes challenging and a good method to define confidence regions was not yet available.

Results: Here we present a computational analysis method for nuclear magnetic resonance (NMR) measurements
of tricarboxylic acid (TCA) cycle metabolites. The method was validated using measurements on extracts of single
tissue biopsies taken from porcine heart in vivo. Isotopic enrichment of glutamate was measured by NMR
spectroscopy in tissue samples taken at a single time point after the timed infusion of 13C labeled substrates for the
TCA cycle. The NMR intensities for glutamate were analyzed with a computational model describing carbon
transitions in the TCA cycle and carbon exchange with amino acids. The model dynamics depended on five flux
parameters, which were optimized to fit the NMR measurements. To determine confidence regions for the
estimated fluxes, we used the Metropolis-Hastings algorithm for Markov chain Monte Carlo (MCMC) sampling to
generate extensive ensembles of feasible flux combinations that describe the data within measurement precision
limits. To validate our method, we compared myocardial oxygen consumption calculated from the TCA cycle flux
with in vivo blood gas measurements for 38 hearts under several experimental conditions, e.g. during coronary
artery narrowing.

Conclusions: Despite the appreciable NMR noise level, the oxygen consumption in the tissue samples, estimated
from the NMR spectra, correlates with blood-gas oxygen uptake measurements for the whole heart. The MCMC
method provides confidence regions for the estimated metabolic fluxes in single cardiac biopsies, taking the
quantified measurement noise level and the nonlinear dependencies between parameters fully into account.
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Background
Metabolic fluxes in animal tissues can be identified by
measuring the incorporation of stable isotopes in intra-
cellular metabolite pools. To quantify metabolic fluxes,
isotope label incorporation is usually measured at several
time points [1], among others in heart tissue [2–4]. Het-
erogeneity of metabolism inside the heart often con-
founds time series of small tissue samples, therefore a
single time point protocol to quantify metabolic fluxes
has been developed [5,6]. Such single time point mea-
surements in individual samples allow to define spatial
profiles of metabolic fluxes in heterogeneous organs [7].
The incorporation of stable isotopes (e.g. 13C) in meta-

bolic intermediates can be detected by nuclear magnetic
resonance (NMR) spectroscopy or mass spectrometry
(MS). The data is then analyzed with computational
methods that require (i) detailed mathematical models
of carbon transitions between the metabolites in the sys-
tem and (ii) sophisticated optimization procedures for
estimating the flux parameters. In the past, we have de-
veloped a bioinformatics method to estimate metabolic
fluxes in aerobic metabolism from very noisy NMR mea-
surements resulting from the Labelling with Isotope for
a Pre-Steady-State Snapshot (LIPSSS) protocol [8]. For
LIPSSS, isotope labeled substrate for a metabolic path-
way is infused for a short, definite period of time, and
the metabolism is stopped before a steady state of label
incorporation is reached. Finally, pathway metabolites
are extracted and measured. Although the original com-
putational analysis method [8] explores parameter space
extensively to avoid local minima, only a rough estimate
of parameter confidence regions was obtained by assum-
ing local linearity. Here we introduce a Markov chain
Monte Carlo (MCMC) parameter estimation strategy
which allows a full description of the confidence regions
of the estimated metabolic fluxes, including correlations
and nonlinear dependencies between parameter estimates.
Brown et al. [9] and Gutenkunst et al. [10] sampled en-

sembles of parameter sets for systems biology models with
MCMC. Correlations between model parameters were
taken into account and confidence bounds for parameters
and model predictions were defined [9,10]. Monte Carlo
methods have previously been applied to metabolic flux
analysis (MFA) in order to handle inaccuracies in data and
model [11]. Sensitivity analysis by Monte Carlo sampling
is also implemented in a 13C MFA analysis software pack-
age [12]. In 13C MFA, MCMC sampling has been used for
uncertainty analysis [13,14], for flux estimation with noisy
data [15], and for in silico experimental design to
determine optimal substrate labeling protocols [16].
Antoniewicz et al. proposed a different approach of deter-
mining confidence bounds on fluxes by calculating the
agreement between model and experiment data as a func-
tion of the flux of interest [17].
We developed and applied an MCMC procedure to es-
timate the TCA cycle flux, carbon substrate uptake, and
oxygen consumption from NMR spectra of 13C enriched
glutamate sampled at a single time point. For the com-
putational analysis, we expanded the R-package FluxEs
[8]. This analysis was applied to cardiac tissue biopsies
flash-frozen 5.5 minutes following 13C acetate infusion
in porcine hearts in vivo. The method was validated ex-
perimentally for a range of cardiac stress conditions.
Our first goal was therefore to determine the uncertainty
in the estimation of metabolic flux parameters based on
the quantified uncertainty in the NMR measurements
and in the prior knowledge. The second goal was to
validate the computational estimations in experiments
in vivo.

Methods
Ethical statement
The study was approved by the Advisory Board for the
Use of Experimental Animals of the Vrije Universiteit
Amsterdam. The procedure is in accordance with the
American Physiological Society “Guiding Principles in
the Care and Use of Animals,” which state that muscle
relaxants may be used in conjunction with drugs known
to produce adequate anesthesia.

Experimental strategy
In this study the metabolic flux in the TCA cycle was
measured in tissue biopsies taken from cardiac tissue via
the LIPSSS experimental protocol which consists of a
brief, timed infusion of 13C labeled acetate in the left an-
terior descending (LAD) coronary artery of anesthetized
pigs [18]. We began with unlabeled acetate which was
infused for 30 minutes, in order to establish a stationary
metabolic state, followed by [2-13C] acetate for 4 mi-
nutes and [1,2-13C] acetate for 1.5 minutes. After exactly
5.5 minutes of 13C enriched acetate infusion, metabolism
was arrested by freeze-clamping part of the left ventricu-
lar wall of the heart before the isotopic steady state was
reached. Biopsies from different regions of this part of
the left ventricular wall were cut from the tissue slab
after freeze-drying, and divided into approximately nine
samples per heart with around 0.1 g dry mass per sam-
ple. After extraction with perchloric acid, the 13C NMR
multiplets of glutamate were measured. 13C-NMR spec-
tra were obtained at 100.62 MHz and analyzed with the
MRUI/AMARES software package (more information
about tissue preparation, NMR measurement and the
package can be found in reference [18]).
Up to nine separate multiplet intensities were detected

for glutamate. For independent testing of the LIPSSS
method and the associated parameter estimation proce-
dures, “gold standard” myocardial oxygen uptake was
calculated from blood flow, hemoglobin content and
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blood-gas measurements taken before and during acet-
ate infusion [18]. Note that these classic oxygen uptake
measurements are entirely independent of the LIPSSS
method. We analyzed data from LIPSSS samples taken
from N = 38 porcine hearts divided into 6 different ex-
perimental groups: (i) basal state of the heart (control
group, n = 7), two groups with constriction (see below
for method) of the coronary vessels to reduce blood flow
((ii) mild stenosis group, n = 7 and (iii) a moderate sten-
osis group, n = 6), (iv) peripheral venous infusion of
dobutamine to induce cardiac stress (dobutamine group,
n = 6) or (v) infusion of adenosine for cardiovascular
dilatation (adenosine group, n = 4) and (vi) finally, a
combination of stenosis and adenosine administration
(stenosis + adenosine group, n = 8). In the mild and
moderate stenosis groups, LAD blood pressure was ad-
justed with an occluder to amount to about 70 and 35
mmHg downstream of the occluder, respectively. In the
adenosine and stenosis + adenosine groups, adenosine
was infused into the LAD at a rate of 100 μg/kg/min. In
the stenosis + adenosine group coronary blood pressure
was reduced to about 45 mmHg. In the dobutamine
group, dobutamine was infused at a rate of 10 μg/kg/min.
Note that the dobutamine group initially contained 8
hearts from which two were excluded from further ana-
lysis, due to a low mean arterial blood pressure and insuf-
ficient NMR signal for parameter estimation (see [8]),
respectively.

Anesthesia and animal experimental procedures
In all groups, sedation was performed with ketamine 15
mg/kg and midazolam 1 mg/kg intramuscularly, and
anesthesia was maintained by continuous infusion of
sufentanil (4 μg/kg/hr), midazolam (0.5 mg/kg/hr), and
pancuronium (0.2 mg/kg/hr). The trachea was intubated
and the lungs were ventilated with a mixture of 60%
oxygen/40% air. Fluid-filled catheters were introduced
and hemodynamic parameters collected as previously
described (see [18]). A continuous infusion of lidocaine
was started to help prevent cardiac arrhythmias (9 mg/
kg/hr, with an initial bolus injection of 50 mg). Five cm
H2O of positive end-expiratory pressure (PEEP) was ap-
plied before opening the thorax. The thorax was opened
via a midsternal incision and the heart exposed by open-
ing the pericardium. The left hemiazygos vein was tied
off to prevent mixing of noncoronary venous blood with
coronary venous blood. The LAD was dissected free
over a distance of about 2 cm and was catheterized with
a 24G catheter. In the stenosis and adenosine + stenosis
groups, a custom-made adjustable aluminium occluder
was placed around the artery, and LAD pressure was
measured.
After finishing instrumentation the animal was allowed

to stabilize for at least 15 minutes, the first batch of
microspheres (labeled with 141Ce or 103Ru, in random
order) was injected into the left atrium for baseline
blood flow measurements. The intervention was
performed and 30 minutes later a second batch of mi-
crospheres was injected for final blood flow measure-
ments. Throughout the procedure hemodynamic data
were recorded continuously.
Experimental procedures have been described more

extensively previously [7,18].

Computational model
The NMR measured enrichment of glutamate with iso-
topes was analyzed with a computational model. The
model of carbon transitions in the TCA cycle used in
this study was described previously in detail [5,6,8] and
is therefore only described here in brief. The model con-
tains ten metabolite pools, consisting of metabolites
which contain 2–6 carbon atoms, and 50 transitions of
carbon atoms between the metabolites (Figure 1). Iso-
topically labeled substrate enters the system via the acet-
ate pool. Acetate is then converted into acetyl coenzyme
A (acetyl-CoA), which then enters the TCA cycle. Since
acetyl-CoA can also be formed from endogenous un-
labeled substrates such as glucose, glycogen, or fatty
acids, a diluting pool was introduced to account for dilu-
tion of the labeled acetate. The intermediates of the
TCA cycle are represented by the 6-carbon metabolite
pool labeled as citrate (which also comprises cis-
aconitate and isocitrate), α-ketoglutarate, succinate (in-
cluding succinyl-CoA) and oxaloacetate (representing a
4-carbon metabolite pool which also comprises malate
and fumarate). Glutamate and aspartate are amino acids
synthesized by transamination from α-ketoglutarate and
oxaloacetate, respectively. The replenishment of TCA
cycle intermediates was modeled by an anaplerotic influx
connected to succinate. Malloy et al. have given detailed
descriptions of the equations for anaplerosis [3,19]. The
metabolite concentrations were given as fixed parame-
ters in the calculations: the glutamate pool size was mea-
sured by biochemical assay in each sample [18],
because sensitivity analysis showed that results are sen-
sitive to its value. However, the same sensitivity analysis
showed that the metabolite pool concentrations of cit-
rate, α-ketoglutarate, oxaloacetate and aspartate had lit-
tle effect on the results and these concentrations were
taken from previous studies [6,18]. All metabolite con-
centration parameters were therefore fixed and all flux
parameters estimated during the Markov chain Monte
Carlo procedure (see below). More information about
the model and a listing of all model equations can be
found in Additional file 1.
The dynamic behavior of the model is affected by five

system parameters (Figure 1). The flux parameters JTCA
and Jexch, were expressed in μmol/(min*g dry weight [dw])



Figure 1 Computational model of carbon transitions in the TCA cycle. The numbered circles connected in a string represent single carbon
atoms of the corresponding metabolite. Fluxes between carbon atoms of the metabolite pools are indicated by arrows. Blue and red dotted
arrows stand for carbon atoms entering and leaving the system, respectively. Green dashed arrows indicate bidirectional exchange fluxes of
carbon atoms with amino acids. The parameters determining the conversion rate are shown next to the arrows. Note that there are two possible
transitions between α-ketoglutarate and succinate, indicated by arrows of different grey shade. The figure was adapted from Binsl et al. [8].
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and represent reaction fluxes through the TCA cycle and
exchange reactions with amino acids, respectively. The dy-
namics of incorporation of 13C label from acetate into the
acetyl-CoA pool depends on transport in the blood ves-
sels, permeation of the cell membrane, the flux of the con-
version of acetate into acetyl-CoA, the flux of acetyl-CoA
into the TCA cycle and the acetate and acetyl-CoA pool
sizes. Fortunately, the time course of incorporation of 13C
label into the acetate pool is almost mono-exponential
[20] and can be represented by a single time constant
which we term Ttrans. We incorporated this efficient way
to represent acetyl-CoA dynamics into our model [6]. The
two parameters Pdil and Panap account for the degree of di-
lution of labeled acetate and the rate of anaplerosis relative
to TCA cycle flux, respectively. Both are flux parameters
which are expressed as fractions of JTCA. JTCA and Pdil de-
scribe energy and substrate turnover which are our targets
to measure and are therefore labeled “primary parame-
ters”. On the other hand, Jexch, Ttrans and Panap are
constrained during parameter estimation by Bayesian
priors (see below) and because they are not our primary
target parameters they are termed “auxiliary parameters”
which are allowed to vary to determine the uncertainty
which they cause in the primary parameters, The LIPSSS
estimate for myocardial oxygen consumption is calculated
from the primary parameters, (see Eq. 5 below). Note that
primary and auxiliary parameters are estimated together
in the same procedure.

Matching model simulations to NMR measurements
The computational model described above accounts for
all possible carbon isotope labeling states (isotopomers)
of each of the metabolites. The system is described by
132 ordinary differential equations (ODEs) to calculate
the rate of change of each isotopomer over time. For in-
stance, the metabolite glutamate, which contains 5 car-
bons, is represented by 25 = 32 ODEs. The isotopomer
composition is expressed as fractions of the metabolite
concentration of the corresponding pool. Thus, at each
time point, the sum of all isotopomer fractions in a pool
is 1. All ODEs are then integrated over time to yield the
simulated isotopomer fractions. For comparison with the
13C NMR measurements (mexp), simulated NMR multi-
plet intensities (msim) were calculated from the simu-
lated isotopomer fractions for the time point at which
the sample was taken in the experiment [8]. To this end
all isotopomers contributing to a particular NMR inten-
sity were added. The simulated multiplet intensities are
dependent on the values of the five model parameters.
To quantify the agreement between model simulation
and experimental data we define a least-squares cost
function C as a function of the parameter vector θ, in
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which the squared residuals for all multiplets are
weighted by their standard deviations and summed.
Additionally, we include Bayesian prior terms in the cost
function which reflect prior knowledge on auxiliary par-
ameter values (see below):

C θð Þ ¼ 1
2

X
i∈multiplets

mi;sim−mi;exp

σ i;exp

� �2

þ
X
j∈θ

prior θj
� �

ð1Þ
The σi,exp represents the measurement error of the

NMR intensity. This cost function is used for the
optimization procedures. It is also used as the argument
of the normal probability distribution used for the
MCMC procedure (see below). The cost function inte-
grates data measured directly in the experiment with
literature information incorporated in the priors on par-
ameter values.

Priors on parameter values
The main objective of this study was to estimate JTCA
and Pdil, the two primary parameters which define aer-
obic and substrate metabolism and allow the calculation
of oxygen consumption in the sample immediately be-
fore metabolic arrest. The three remaining parameters
Ttrans, Panap, and Jexch are not our target parameters and
cannot be determined with great precision. However,
these auxiliary parameters are taken into account to
evaluate their effect on the estimation of the primary pa-
rameters. To improve the estimation and to help avoid
local minima in parameter space with physiologically im-
plausible values of the auxiliary parameters, a priori in-
formation for such parameters (θi) can be directly
entered into the cost function by adding a prior term to
the cost function in Equation 1 for the deviation from a
certain reference value θi

*

prior θið Þ ¼ 1
2

lnθi− lnθ�i
σ lnθi

� �2

ð2Þ

where σ lnθi is the standard deviation for the auxiliary
parameter in log-space. The advantage of logarithmic
parameters is that the parameter values with a Gaussian
prior distribution are positive and dimensionless. Note
that the prior probability in Equation 2 does not include
the normalization factor for the lognormal distribution
of 1

σ
ffiffiffiffi
2π

p . Normalization was not necessary because our

method applied the Metropolis-Hastings algorithm
which uses the ratios of probabilities.
In previous studies, the value of Ttrans had been esti-

mated to be 0.202 min which is compatible with the
time constant of the enrichment of acetyl-CoA with
radioactive label [6,8]. We constrain Ttrans around this
prior value with σ lnθi set to 0.336, a high value used in a
previous study for unreported experimental errors [21].
This is slightly higher than the value for the standard de-
viation of these parameters determined in simulations by
Binsl et al. [8]. The central 95% region of the prior for
Ttrans lies between 0.202/1.96 and 0.202 *1.96 min, since
σ lnθi = 0.336 = 1/4*(ln(θi * 1.96)-ln(θi/1.96)), (see [21]).
The accurate quantification of the exchange flux Jexch

between α-amino and α-keto acids was found to be chal-
lenging [2,22]. A previous analysis of the model used in
this study revealed a low sensitivity of estimations of
JTCA to variations of Jexch in the physiological range from
5–60 μmol/(min*gdw) [6]. Reported values of exchange
flux in the literature vary substantially. Some report high
values for the exchange flux (e.g. 13-fold the flux of JTCA
[20]). Several other studies report Jexch to be approxi-
mately equal to JTCA [23,24]. To address this issue, we
set a prior on Jexch relative to the value of JTCA. Instead
of calculating the prior cost directly from Jexch, it is
therefore determined by entering the ratio θi = Jexch/
JTCA into Equation 2. The reference value θi

* for the ratio
is set to 1, based on values for Jexch/ JTCA reported by
Nuutinen et al. [23] and Yu et al. [24].
Because of the large spread of values found in the litera-

ture (see above), we assumed a high standard deviation for
the ratio Jexch/ JTCA and set σ lnθi to 1/4*(ln(θi * 15)-ln
(θi/15)) = 1.345, with θi = 1. It is thereby ensured that
Jexch lies with 95% probability between JTCA/15 and
JTCA*15.
For the parameter Panap, the anaplerotic flux relative to

the TCA cycle flux, most of the values found in litera-
ture were smaller than 1 and the highest experimental
value found was reported to be 1 ± 0.3 [25,26]. Hence
the prior cost for Panap was set to be uniform for values
of Panap between 0 and 1 combined with a half-normal
distribution which had a standard deviation of 0.3 taken
from Lloyd et al. [26] for the values above 1:

prior Panap
� � ¼

(
− ln c1ð Þ; j0≤Panap≤1

− lnðN μ ¼ 1; σ ¼ 0:3ð Þ � c2Þ; jPanap > 1

)

ð3Þ

with c1 ¼ 1− 0:5
0:5þ 1ffiffiffiffiffiffi

2πσ2
p and c2 ¼ 1

0:5þ 1ffiffiffiffiffiffi
2πσ2

p . The normalization

constants c1 and c2 ensure that the probability density
function of the prior is continuous and that its integral
is equal to one. N denotes the normal distribution. The
probability density functions for prior(Ttrans), prior
(Jexch), and prior(Panap) are shown in Figure 2 (solid
lines).

Parameter estimation and sampling of parameter
ensembles
In biological models, usually many different combina-
tions of parameters can describe the experimental data
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Figure 2 Posterior distributions for the parameter ensemble (corresponding to 35000 parameter sets) for one tissue sample of the
control group. The probability density functions of the priors for the auxiliary parameters Jexch, Ttrans and Panap are plotted with solid lines. On
top of each plot, ensemble mean, standard deviation, median (x̃) and best fit value are reported. Note that the probability density functions are
scaled to the observed frequencies on the histogram.
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[10]. To address this, we decided to not merely rely on a
single best-fit of the model parameters to the NMR data
for fixed values of the auxiliary parameters, but instead,
we systematically generated ensembles of model parame-
ters that fit the data with reasonable precision. This ap-
proach clarifies how well the primary parameters are
defined by the data despite uncertainty in the NMR in-
tensities and auxiliary parameters. Through the use of
an MCMC approach, confidence bounds can be set on
the estimated parameter values. Sampling is based on
Bayesian inference of a posterior parameter distribution

Pr θ DÞ ¼ Pr D θÞ � Pr θð Þjðjð ð4Þ

where Pr(D|θ) is the probability of a parameter vector θ
to describe the given data D and Pr(θ) is the prior prob-
ability of the parameters (see above). The right-hand side
of Equation 4 is equal to e−C(θ) where the cost function
of Equation 1 (which includes the priors of Equations 2
and 3) is used. The probability functions were not all
normalized because this was not necessary for the
MCMC procedure which relies on the ratios of probabil-
ities rather than absolute values. Note that the cost func-
tion (Equations 1, 2, 3) forms the basis of a probability
function (Equation 4) that defined the ensemble of esti-
mated parameter values.
In order to estimate the model parameters and to

quantify the uncertainty of the estimated values, we
sampled an ensemble of parameter sets which could de-
scribe the available NMR data by performing a random
walk through the parameter space through the applica-
tion of the Metropolis-Hastings algorithm. The starting
point of the random walk was an optimized set of
parameters, which had been obtained by a grid
optimization strategy introduced by Binsl et al. [8]. The
grid optimization was designed to cope with a shallow
basin shaped by the cost function in order to avoid
optimization towards local minima. The procedure cov-
ered the 5-dimensional parameter space by a grid so as
to find the best starting point for optimization. The sec-
ond phase of optimization starting at this grid point was
then performed using the Nelder & Mead simplex algo-
rithm, and in the third phase we used the Metropolis-
Hastings algorithm to sample a parameter ensemble
with its probability density proportional to a probability
function based on the cost function C(θ) of Equation 1
entered in Equation 4.

Quality criteria for flux estimations in NMR samples
In many of the available in vivo samples, NMR peak in-
tensities are low and often below the threshold of ob-
servability, i.e. often six or seven of the nine multiplets
of glutamate are not discernible from noise and were
assigned an intensity of zero. In some of these low inten-
sity samples, Monte Carlo sampling leads to very large
ensemble standard deviations of the estimated primary
parameters. We excluded such samples which did not
yield reliable estimates for JTCA. The exclusion criterion
was that the standard deviation of JTCA in the posterior
parameter ensemble exceeded 10 μmol/(min*gdw).

Software package FluxEs
The analysis was performed using the R package FluxEs
introduced by Binsl et al. [8]. In order to process param-
eter ensembles, a Monte Carlo module was added to the
software. This module uses the AMCMC algorithm
implemented within the package spBayes [27,28]. The
AMCMC algorithm is a Metropolis-Hastings variant
which automatically adapts the proposal step size for the
sampled parameters in the random walk. This leads to
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quicker convergence to a posterior distribution. For the
primary parameters, the time constant of the autocorrel-
ation function of the sampled ensemble was calculated
in order to inspect whether the algorithm converged to
a stationary distribution. For samples with a high auto-
correlation time in the primary parameters, we visually
inspected the parameter trace.
A single model simulation run takes approximately

0.26 seconds on a computer with 2.26 GHz clock fre-
quency. The grid optimization for a single sample took
on average 115 minutes, the subsequent sampling with
the adaptive Metropolis-Hastings algorithm took on
average 540 minutes per sample.
The calculations for all samples were performed in

parallel on the Lisa computer cluster system at SARA
Computing and Networking Services (www.sara.nl). All
code required for the analysis and part of the experi-
mental data can be found in Additional file 2.

Results
Monte-Carlo sampling
We estimated the TCA cycle flux from the NMR peaks
of glutamate for 347 tissue samples from 38 hearts. Ap-
plying the exclusion criterion described above we re-
moved 85 low-quality samples - leaving 262 samples for
further analysis. For each sample, an ensemble of 35,000
parameter sets was generated with the Metropolis-
Hastings algorithm. Although convergence was not the
first criterion for sample rejection, all ensemble esti-
mates with a high autocorrelation time constant were
rejected according to the quality criterion.
An example of a parameter ensemble for one single

sample of the control group is given in Figure 2. For
Ttrans, Jexch, and Panap, the probability density functions
of the prior distributions are plotted together with the
histograms of the posterior distributions. The posterior
distributions for these auxiliary parameters are very
broad and relatively close to their corresponding prior
distributions. In this way the MCMC ensemble method
allowed defining the uncertainty in the primary parame-
ters taking into account the large spread in auxiliary pa-
rameters. Despite the broad distribution of the auxiliary
parameters, the estimates for JTCA and Pdil form rela-
tively well-defined peaks and their standard deviations
are relatively low.
For the primary parameters we can thus provide point

estimates for each sample. To determine which measure
best reflects the true value of a parameter, we conducted
a simulation experiment in which multiple sets of artifi-
cial NMR multiplets were generated by model simula-
tion and subsequent addition of Gaussian random
measurement noise. The parameters were then re-
estimated and we compared the estimates from the best
fit after grid optimization (i.e. the fit with the lowest cost
function value and therefore the highest likelihood, see
Equation 4) and the mean, median, and mode of the
Monte Carlo ensemble with the “true” parameter values
from the initial simulation. Regarding the primary pa-
rameters, the best fit gave the most reliable point esti-
mate. Below, we therefore report the best fit values for
the primary parameters.

Validation by estimation of myocardial oxygen
consumption
In order to validate our flux estimation method we com-
pared the LIPSSS estimated myocardial oxygen con-
sumption (MVO2, expressed in μmol/(min*gdw)) with
independent “gold standard” measurements. The “gold
standard” was determined by blood-gas oxygen and
blood flow measurements and the LIPSSS estimated
oxygen consumption was calculated from the parameter
estimates of the model [18]. The MVO2 for a single sam-
ple is determined from the primary LIPSSS flux parame-
ters by stoichiometric biochemical relations and can be
calculated as follows [8,29]:

MVOsample
2 ¼ 2þ Pdilð Þ � JTCA ð5Þ

The MVO2 determined from blood-gas measurements
reflects the oxygen consumption of the entire heart.
When averaging the samples taken for LIPSSS measure-
ments to estimate oxygen consumption for the entire
heart (MVOheart

2 ), individual sample sizes were taken
into account. As in Binsl et al., the contributions of the
individual samples were weighted by the dry weight
wsample for each sample [8].

MVOheart
2 ¼

X
wsample �MVOsample

2X
wsample

ð6Þ

For all six experimental groups, the comparison of
MVO2 estimated with the LIPSSS method (from the
model parameters Pdil and JTCA) with the “gold stand-
ard” oxygen measurements is shown in Figure 3. One
heart from the stenosis + adenosine group was excluded
from the analysis since none of its samples satisfied the
quality criterion.
For all groups, LIPSSS MVO2 correlated with blood-gas

MVO2 relatively well. For the control group oxygen con-
sumption measured by the two methods corresponded,
but for the ischemic conditions (stenosis with and without
adenosine), oxygen consumption tended to be lower for
the LIPSSS method. We calculated Pearson correlation
coefficients of 0.49 for control (n = 7, p = 0.26), 0.69 for
mild stenosis (n = 7, p = 0.09), 0.66 for moderate stenosis
(n = 6, p = 0.15), 0.99 for dobutamine (n = 6, p = 0.0003),
0.71 for adenosine (n = 4, p = 0.29), and 0.87 for the sten-
osis + adenosine group (n = 7, p = 0.01). The Pearson

http://www.sara.nl
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correlation for all groups combined was 0.85 (n = 37,
p < 10-10). The dobutamine group showed higher oxygen
consumption than the other groups reflecting the in-
creased cardiac work load. It is important to note that the
small tissue biopsies used in the LIPSSS experiment only
covered a relatively small cardiac region, in contrast to the
physiological blood-gas measurements which covered the
entire left ventricle. Furthermore, the estimation of MVO2

from the parameters of the TCA cycle model only reflects
myocardial oxygen consumption linked to the TCA cycle
flux, disregarding other oxygen consuming reactions
which were covered by the blood-gas measurements. The
oxygen consumption measurements in a small ischemic
region dependent on a constricted coronary artery
would be very difficult to obtain with classic blood-gas
measurements.

Estimation of TCA cycle fluxes
LIPSSS-based estimates for the primary model parameters
under all experimental conditions are shown in Figure 4.
Estimates for JTCA in the control group averaged 7.04 ±
0.79 (mean ± SEM) μmol/(min*gdw). For mild and mod-
erate constriction of the coronary vessels, we estimated
JTCA to be 4.12 ± 0.49 and 2.99 ± 0.36 μmol/(min*gdw),
respectively.
Dobutamine infusion, which stimulates cardiac con-

traction, leads to a high average JTCA estimate of 11.18 ±
1.31 μmol/(min*gdw) of tissue. Estimations for the ad-
enosine group show no difference with the control con-
dition. The TCA cycle flux in the stenosis + adenosine
group is in between the mild and moderate stenosis
condition.
The relative contribution to the TCA cycle flux of sub-

strates other than labeled acetate, i.e. Pdil is higher in all
experimental groups compared with the baseline condi-
tion (see Figure 4). Low fractional acetate usage, i.e. high
dilution has been previously documented in experiments
with dobutamine [30].
The estimations of Ttrans for all the groups did not dif-

fer substantially from the prior value of 0.202 minutes
(data not shown). Ensembles for the auxiliary parameters
Jexch and Panap show large standard deviations. This indi-
cates that these parameters cannot be estimated properly
from the NMR data. Indeed, the experimental protocol
was optimized to estimate the primary parameters,
disregarding the auxiliary parameters. Nevertheless the
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effect of the potential spread in these auxiliary parame-
ters on the uncertainty limits of the primary parameters
was taken into account. Estimations of the auxiliary
model parameters are described in supplemental file 3.

Discussion
The fluxes of biochemical reactions linked to cardiac en-
ergy metabolism are of significant interest. Here we in-
vestigated a computational method to quantify fluxes in
the TCA cycle using NMR data from 13C labeling exper-
iments in porcine hearts. We took measurement error in
the data and uncertainty of model parameters directly
into account. To test the method, distinct 13C labeling
patterns (isotopomers) in glutamate were measured
under six different cardiac stress and control conditions.
The data were analyzed with a detailed model of carbon
transitions in the TCA cycle and two primary flux pa-
rameters of interest (reflecting total aerobic metabolism
and uptake of the labeled substrate) were estimated. Pos-
sible variation in three auxiliary parameters, taken from
experimental literature was included in the application
of Bayesian priors. To define the uncertainty in esti-
mated flux parameters from measurement error and un-
certainty in prior knowledge, we used an MCMC
method. As a result, we were able to derive estimates for
the TCA cycle fluxes under various experimental condi-
tions despite the high noise level in the available NMR
data. For validation, we compared blood-gas measure-
ments of myocardial oxygen consumption with oxygen
consumption calculated from our own parameter
estimates. The oxygen consumption estimated with our
model correlated with the classic physiological measure-
ments for the whole heart (Figure 3).
However, because the LIPSSS parameter estimates re-

lied on small samples obtained from the heart while the
blood gas measurements represented the oxygen con-
sumption for the whole heart, the LIPSSS estimates are
expected to deviate from the whole heart measurement.
The deviation may have a random component because
of the limited tissue sample size, and a systematic com-
ponent because of functional differences between re-
gions in the heart. The random component is expected
because heterogeneity of blood flow and metabolism has
been measured in heart muscle [18,31]. A systematic
component is expected especially in the stenosis groups,
because the LIPSSS NMR measurements are taken from
regions with lower oxygen consumption caused by low
perfusion. However, it should be noted that this reason-
ing is incomplete because the blood gas estimation of
oxygen consumption takes the local blood flow mea-
sured in the stenosed region into account. Nevertheless,
systematic differences between the small region and the
average for the whole heart may contribute to the devi-
ation from the line of identity (see Figure 3) at low oxy-
gen consumptions.
Additional physiological measurements of oxygen con-

sumption and metabolic fluxes, independent from the
stable isotope labeling experiments, are desirable for fur-
ther validation of our method. Regional rates of oxygen
consumption can be measured by measuring oxygen
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content in small veins [31] with a spectroscopical
method in frozen tissue. The latter method is difficult
and its validation has been criticized. A further method
is the simultaneous determination of myocardial perfu-
sion and oxygen content in small regions of the heart
[32]. Oxygen consumption can also be measured using
PET and TCA cycle fluxes using in vivo NMR (e.g. [33]).
However, these methods mostly have very limited spatial
resolution [32] and were in turn subject to rather limited
validation themselves. The difficulty in measuring local
energy metabolic flux provided motivation to develop
our present method in the first place. Despite the limited
possibilities, further validation of the LIPSSS method in
the future is desirable.
Part of the dataset used here, namely the control and

dobutamine group, had been analyzed in a previous
study [8]. The estimates of Binsl et al. [8] relied on prior
information on the model parameters Ttrans and Panap.
The latter parameter, describing anaplerosis relative to
the TCA cycle flux was constrained to 6 ± 3% of JTCA,
based on information from literature studies on isolated
hearts. The latter studies however, only accounted for
anaplerosis from either propionate [34] or from pyruvate
[35,36]. It has been suggested that relative anaplerosis is
often underestimated by conventional approaches, in-
cluding isotopomer analysis or fractional enrichments of
carbons in glutamate [37]. Tracer experiments also exist
using 13C labeled propionate that report the relative
anaplerotic flux in rat hearts to be much higher than 6%,
e.g. 16% [38] or 29% [19]. Higher relative anaplerotic
fluxes were reported during low flow ischemia, reaching
100% [26] and 35% [25]. Higher values have also been
reported for hypertrophy [39]. Although our estimates
for the parameter Panap in the present study have a rela-
tively low precision, they suggest the possibility that in
porcine heart anaplerotic flux in vivo is relatively high in
contrast to low values often found in isolated hearts (see
Additional file 3).
Since three different stenosis conditions were included

in the present study, we chose a less constraining Bayes-
ian prior on the parameter Panap which covered a broad
range. It is important to note that the Bayesian priors
were the same for the analysis of NMR data from all ex-
perimental conditions. Despite the use of different
choices of priors on the parameters, and although a higher
anaplerotic flux was estimated (see Additional file 3), our
present estimates for fluxes in the control and dobutamine
groups did not differ much from the previous esti-
mates of Binsl et al. [8]. Our estimates for cardiac is-
chemia induced by coronary stenosis show that the TCA
cycle flux decreases whilst the relative anaplerosis in-
creases (see Figure 4 and Additional file 3) which is
compatible with existing literature (see references cited
above).
Due to the high velocity of the exchange reactions be-
tween α-amino and α-keto acids, the determination of
Jexch using tracer experiments is expected to be practic-
ally infeasible [22]. Because of the uncertainty on Jexch,
we decided to evaluate the effect of variation in Jexch.
Values for Jexch/JTCA found in literature vary between 0.2
and 13 [20,22], but are often around 1 in the heart [24],
in contrast to the very high Jexch/JTCA reported for the
human brain [40]. Initial estimations of Jexch in our data
showed that, particularly in samples with low NMR peak
intensity, the simulated isotope enrichment was not very
sensitive to Jexch. Rather than constraining Jexch around
an absolute value, we chose to set a Bayesian prior rela-
tive to JTCA. The standard deviation of the prior was set
to a very high value, reflecting the high variability of
Jexch/JTCA measurements found in the literature. Jexch/
JTCA estimated with our method ranged from 0.74 (me-
dian dobutamine group) to 1.75 (median control group).
Weiss et al. reported a decreased absolute exchange flux
compared with control conditions during post-ischemic
reperfusion in rat hearts [41]. A decrease in Jexch during
stenosis was estimated in the present study (see Add-
itional file 3).
Literature information on parameter values was in-

corporated into the analysis as Bayesian priors because
of the high noise level in the NMR data. Without using
prior information, flux parameters sometimes reach
physiologically infeasible regions in parameter space.
We investigated the sensitivity of our estimates of the
primary parameters to the priors for the auxiliary pa-
rameters by re-performing the analysis with doubled
prior standard deviations in equations 2 and 3. The es-
timate for parameter Pdil is rather insensitive to changes
in the prior standard deviation (absolute difference in
the estimated value averaged over all groups is 4.4±4.0%)
while estimates of JTCA are more sensitive to alterations in
the priors on auxiliary parameters (average absolute differ-
ence 20±21%). Especially in the moderate stenosis group,
for which the NMR signals are on average very low, many
estimates fail to meet the quality criteria if the standard
deviation for all three priors simultaneously was made
twice as large. This shows that the estimate of JTCA is sen-
sitive to the prior. However, Bayesian priors are necessary
to constrain the estimates within reasonable ranges. It is
therefore important to emphasize that the prior values
and their standard deviations are not arbitrarily chosen.
The prior distributions of Panap and Jexch are based on ex-
perimental data [20,23–26] and were given large standard
deviations. The prior on Ttrans is based on previous esti-
mates [6,8] and its standard deviation allows for a broad
range. We therefore argue that although constraining pa-
rameters in this study was necessary due to the high noise
in the data, our framework still allowed to define reason-
able point estimates of flux parameters and additionally to
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define the variability in parameter estimates taking reason-
able, sometimes deliberately high, values for the uncer-
tainty of auxiliary parameters into account.
Parametric sensitivity analysis is commonly applied in

systems biology [42]. In this investigation, we chose an ap-
proach that explored the multidimensional space around a
set of best-fit parameters using a random walk with the
Metropolis-Hastings algorithm [9,10,21]. The advantage
of this method is that it takes into account possible corre-
lations and nonlinear dependencies between the model
parameters. Antoniewiecz et al. approached the problem
of defining confidence regions for flux estimates by min-
imizing a sum of squared residuals objective function as a
function of the flux value [17]. In their approach, the con-
fidence interval for a flux of interest is derived by setting
the flux constant while optimizing all remaining fluxes in
the system. This step is repeated for a range of fixed flux
values until the objective function value exceeds a prede-
fined confidence limit. The advantage of the MCMC ap-
proach to determine confidence regions is that it takes all
possible correlations between the fluxes into account,
since no flux parameter is fixed during the MCMC
sampling.
The challenge in analyzing the data in this study was

the high noise level. Up to seven of the nine measured
multiplet intensities could sometimes not be detected.
Ensemble modeling proved to be a feasible method to
separate samples with flux parameters that could be esti-
mated from samples with poor information on the fluxes
in the system. This ensemble approach made it possible
to identify 262 out of 347 samples that gave useful esti-
mates for the primary parameters. The quality selection
of the samples allowed us to use the best-fit parameters
from each sample as a point estimate for the primary pa-
rameters. The MCMC approach allowed us to define
confidence bounds on all estimated parameter values
taking their correlations into account. This is a signifi-
cant advantage compared with previous approaches,
where linearized or analytical methods were used to cal-
culate errors on estimated model parameters [5,6,8].
Adding the Monte Carlo ensemble sampling to the

LIPSSS framework enables us to estimate the confidence
regions of flux parameters in a single sample. The small
size of the tissue samples makes it feasible to identify
the spatial variation of flux parameters expected because
of the known heterogeneity in the tissue. The physio-
logical meaning of our measurements of heterogeneity
in metabolism in heart muscle will be addressed in fu-
ture studies.

Conclusions
In this study we improved the LIPSSS method in order to
quantify metabolic fluxes using stable isotope labeling in-
tegrated with mathematical models of carbon transitions:
auxiliary information was taken into account in the form
of Bayesian priors and emphasis was placed on the uncer-
tainty analysis of the estimated flux parameters. The
method was used to quantify TCA cycle fluxes from noisy
NMR measurements in porcine hearts under different
physiological conditions. Two important metabolic fluxes
could be determined in single biopsies taken during ani-
mal experiments and confidence regions could be calcu-
lated for single samples.

Additional files

Additional file 1: Model equations. In this supplemental text, we give
a detailed description of the computational model and list all model
ODEs.

Additional file 2: Code and data. In this supplemental file we provide
all R code and part of the experimental data used to produce the results
of this study. The zip file contains a file README.txt which describes all
code and data.

Additional file 3: Estimation of auxiliary model parameters. In this
supplemental text, the results of estimating the auxiliary model
parameters Panap and Jexch are presented and discussed.
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