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Abstract

Background: Influenza is a common infectious disease caused by influenza viruses. Annual epidemics cause severe
illnesses, deaths, and economic loss around the world. To better defend against influenza viral infection, it is
essential to understand its mechanisms and associated host responses. Many studies have been conducted to
elucidate these mechanisms, however, the overall picture remains incompletely understood. A systematic
understanding of influenza viral infection in host cells is needed to facilitate the identification of influential host
response mechanisms and potential drug targets.

Description: We constructed a comprehensive map of the influenza A virus (‘IAV’) life cycle (‘FluMap’) by
undertaking a literature-based, manual curation approach. Based on information obtained from publicly available
pathway databases, updated with literature-based information and input from expert virologists and immunologists,
FluMap is currently composed of 960 factors (i.e., proteins, mRNAs etc.) and 456 reactions, and is annotated with ~500
papers and curation comments. In addition to detailing the type of molecular interactions, isolate/strain specific
data are also available. The FluMap was built with the pathway editor CellDesigner in standard SBML (Systems
Biology Markup Language) format and visualized as an SBGN (Systems Biology Graphical Notation) diagram.
It is also available as a web service (online map) based on the iPathways+ system to enable community
discussion by influenza researchers. We also demonstrate computational network analyses to identify targets
using the FluMap.

Conclusion: The FluMap is a comprehensive pathway map that can serve as a graphically presented knowledge-base
and as a platform to analyze functional interactions between IAV and host factors. Publicly available webtools will allow
continuous updating to ensure the most reliable representation of the host-virus interaction network. The FluMap is
available at http://www.influenza-x.org/flumap/.
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Background
Rapid adaption to new hosts and frequent antigenic alter-
ations make the prevention and treatment of influenza A
virus (IAV) infections challenging. To develop better inter-
vention methods, a deeper understanding of the viral in-
fection process and the host response to infection are
critical. IAV possesses an RNA genome of ~12 kilobases
* Correspondence: kawaoka@ims.u-tokyo.ac.jp
1JST ERATO Kawaoka infection-induced host responses project, Minato-ku,
Tokyo 108-8639, Japan
4Department of Pathological Science, School of Veterinary Medicine,
University of Wisconsin-Madison, Madison, WI 53711, USA
Full list of author information is available at the end of the article

© 2013 Matsuoka et al.; licensee BioMed Cent
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
(kb) that encodes 10–12 proteins. As a consequence of
this small coding capacity, IAVs usurp and modify the host
cell machinery to replicate. Several studies have now pro-
vided extensive datasets on cellular factors that may dir-
ectly or indirectly affect the viral life cycle [1-6] (works are
reviewed in [7,8]). However, it has been challenging to in-
tegrate and compare this information with other published
data, and to develop a complete picture of the viral life
cycle. To this end, a comprehensive illustration and anno-
tation of the current knowledge of the IAV infection
process with underlying textual descriptions would greatly
assist in elucidating the mechanisms by which influenza
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ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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viruses utilize host cell machinery and evade host defence
mechanisms.
Interaction networks, such as protein-protein inter-

action (PPI) networks, are often used to visualize interac-
tions among entities (for example, proteins), but such
networks do not capture the directionality of interactions
(for example, “who stimulates whom”). In addition, in-
teraction networks typically do not capture interactions
between different types of molecules (for example, pro-
tein–RNA interactions). For these purposes, pathway
visualization approaches, that is, ‘pathway maps’ – such as
those described for Epidermal Growth Factor Receptor
(EGFR) [9], Toll-like receptor (TLR) [10,11], retinoblast-
oma protein/E2F (Rb/E2F) [12], yeast [13], or mammalian
target of rapamycin (mTOR) [14] – are better suited. Fur-
thermore, while a graphical representation provides the
best overview of biological phenomena, it is also import-
ant to represent the model in a machine-readable format
that can be rigorously analysed using in silico methods.
Several projects have generated open-source, open-

access databases of viral genome sequences, structural
and interaction data for viral proteins, and host re-
sponse data (e.g., the Influenza Research Database [15],
the Influenza Virus Resource [16], and VirusMINT
[17]); or pathway maps of IAV infections (e.g., Reactome
[18,19] and KEGG [20]). Among the available pathway
maps, the ‘Influenza A’ KEGG map contains only a lim-
ited number of entities and reactions. A greater amount
Figure 1 FluMap, a comprehensive IAV pathway map. FluMap was cre
reactions were included. The SBML and high-resolution image PDF files are
all factors, reactions, and cellular compartments included in the map are lis
in the legend of Additional file 3. (See also Additional file 2).
of detail is available in the Reactome ‘Influenza Life
Cycle’ and ‘Host Interactions with Influenza Virus Fac-
tors’ maps; however, these maps have not been updated
since their creation in 2006, and the lack of integration
between them makes it difficult to obtain insights into
how they are interrelated. Both the KEGG and Reac-
tome maps also lack significant additional information
about pathway entities (e.g., PubMed IDs, supportive
references) and neither is readily amenable to computa-
tional analysis approaches unless their pathways are
converted to standard file formats that can be imported
to analytic tools such as Cytoscape. Therefore, the use-
fulness of both the KEGG and the Reactome pathways
as information- and hypothesis-generating platforms is
limited.
To address these shortcomings and improve our un-

derstanding of influenza virus infections, we created an
integrated, comprehensive and interactive map that in-
cludes both viral life cycle and host response processes
(i.e., the “FluMap”) (Figure 1). Here, we describe the
FluMap construction strategy, highlight some of the
map’s major characteristics, and demonstrate how it
can be used as a bioinformatics tool. FluMap will be
made available at a website (http://www.influenza-x.
org/flumap) and can be used in conjunction with the
online curation platform Payao [21] and a pathway
browsing platform iPathways+ [22]. Together, these
tools enable the scientific community to freely and
ated with CellDesigner version 4.3. A total of 960 factors and 456
available as Additional Data. When FluMap is opened in CellDesigner,
ted in the SBML file, and symbols used to build the map are illustrated
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simultaneously browse, add, and update FluMap informa-
tion, thus providing the foundation for a powerful,
community-curated knowledge base to further influ-
enza virus research.

Construction and contents
Construction of a comprehensive, knowledge-based
pathway map of influenza virus infection (FluMap)
The information used to build the FluMap (Figure 1;
Additional file 1, Additional file 2, Additional file 3, and
Additional file 4) was derived from several different
sources. First, we manually reconstructed the Reactome
‘Influenza Life Cycle’ and ‘Host Interactions with Influenza
Virus Factors’ maps [18,19] into a single map file (the
FluMap pathway ‘skeleton’). Next, we manually incorpo-
rated information about host pathways that are activated
in response to influenza virus infection, and - for all vali-
dated interaction partners of IAV factors - we included in-
formation about downstream signalling and processing
events (e.g., phosphorylation cascades). Host factor and
pathway data were obtained by using published pathway
maps, KEGG [20], PANTHER [23] and/or Reactome
[18,19] pathway map databases. Finally, we manually inte-
grated literature-based information regarding the influenza
virus replication cycle and virus-host interactions that was
absent from the Reactome pathway ‘skeleton’ (Approxi-
mately 13% of the interactions in the map were derived
from the “skeleton”, and another 10% were collected from
the public pathway databases). This information was iden-
tified from review articles, extensive searches on PubMed,
and text-mining platforms such as iHOP [24].
Although recent siRNA screens [2-4,6], protein-protein

interaction studies [5,25-28] and global proteome analyses
[29,30] have identified a substantial number of cellular fac-
tors with potential roles in the IAV infection process,
FluMap includes only those with roles that have been ex-
perimentally confirmed. In addition, FluMap focuses on
intracellular events, and does not include intercellular
events (e.g., immune cell interactions). All curated reac-
tions and interactions in the FluMap were categorized into
specific parts of the influenza infection process (e.g., ‘vRNP
export), and for reactions imported from Reactome, we
kept the reaction name from this database (e.g., ‘Entry of
Influenza Virion into Host Cell via Endocytosis’). A similar
naming strategy was used for other reactions manually
added to the map (Additional file 2 and Additional file 5).
To build the graphical representation of the FluMap

(Figure 1; Additional file 2, Additional file 3, and Additional
file 4), we used CellDesigner ver.4.3 [31], a modeling soft-
ware that can be used to depict cellular processes step-
by-step, edit annotations, and provide links to reference
databases [32]; we also used Payao, a community-based,
collaborative web service platform for gene-regulatory and
biochemical pathway model curation [21]. The map is
stored in the standard Systems Biology Markup Language
(SBML) (Additional file 4), a data exchange format based
on XML [33]; and it is represented in the CellDesigner’s
graphical notation [34], which adheres to the Systems
Biology Graphical Notation (SBGN) standards [35]. Map
graphics were produced using SBGN ‘process description’
language (Additional file 2), which allows for visualization
of state transitions (e.g., stimulation or inhibition events).
By using standard formats, we have enabled FluMap to
be adaptable to multiple network analysis tools such as
Cytoscape or to simulation by employing user-supplied
kinetic laws and SBML-compliant simulators.
In addition to a detailed visual representation, we gener-

ated comprehensive, text-based annotations, which are
stored in the same map file. CellDesigner enables annota-
tion of information in three different ways: (1) in the Notes
section; (2) in the MIRIAM (Minimum Information Re-
quired In the Annotation of Models) [36] format section;
and (3) in an additional layer overlaying the base model.
For FluMap, we used all three annotation options to maxi-
mise data accessibility (see Additional file 2 for details).
Gene IDs, UniProt accession numbers, PubMed (reference)
IDs, and Reactome IDs are stored in the Notes and MIR-
IAM sections. The Notes section also includes information
about the intracellular location of specific interactions or
reactions (e.g., ‘Nucleus’ or ‘Mitochondria’), the stage of the
infection process at which it occurs (e.g., ‘Virus Entry’ or
‘vRNP Export’), the participation of specific viral proteins,
and association with multi-protein complexes that regulate
host processes (e.g., ‘Apoptosome’) or signalling pathways
(e.g., ‘MAPK’). Additional reference information (e.g., ‘HA1:
Yoshida R et al. 2009’) is captured in the layer that overlays
the base model. CellDesigner provides direct access to the
relevant databases mentioned in the Notes section through
the CellDesigner database menu, and the weblinks in the
MIRIAM section by pressing the access button.
While process description diagrams capture all details

of biological processes, it is also useful to have a simpli-
fied overview of the system. We, therefore, used the ‘re-
duced notations’ option in CellDesigner to illustrate the
relationships between entities (positive/negative infer-
ences, modulation, trigger, etc.). This notation depicts
positive/negative influence interactions, rather than de-
tailed events, such as phosphorylation or catalysis in the
process description notation (see Additional file 2 sec-
tions B and C). Finally, we used this notation to manu-
ally construct a simplified map (Figure 2; compare to the
fully detailed FluMap in Figure 1) that provides a high-
level overview of the IAV replication cycle.
The FluMap is posted under http://www.influenza-x.

org/flumap, where users can browse its contents using a
pathway-browsing platform (iPathways+) and provide
updates and improvements using a manual curation
platform (Payao).

http://www.influenza-x.org/flumap
http://www.influenza-x.org/flumap


Figure 2 Simplified version of FluMap. To generate a simplified version of FluMap for a high-level overview, we extracted central components
and reactions from the FluMap (virus factors (purple), host factors (green), antiviral factors (orange)), focusing on the inhibition (red) or activation
(blue) of IAV replication by host factors.
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General characteristics of FluMap
The comprehensive FluMap (Figure 1; see Additional file
4 for the original SBML file) contains 960 factors (696
species + 264 factors hidden in complexes) and 456 re-
actions. Among these, there are 558 viral and cellular
proteins, 212 molecular complexes (composed of more
than one component), 12 ions, 55 ‘phenotypes’ (repre-
senting biological events such as apoptosis or autophagy),
and 18 antiviral compounds. As described, all reactions
are annotated with PubMed IDs in the Notes section; the
entire map is annotated with 476 papers (Additional file 5
and Additional file 6). FluMap thus provides a significant
improvement over the Reactome influenza infection
pathway, which included 156 species and 58 reactions
as of April 2012.
While the FluMap adopts the SBGN’s process descrip-

tion graphical notation, the simplified map (Figure 2;
Additional file 7) adopts the ‘reduced notation’ similar to
SBGN’s activity flow, which better facilitates visualization
of the virus-host interplay at different stages of the virus
life cycle. To better highlight the virus-host interplay, we
manually restructured the simplified FluMap into a lin-
ear flowchart that is divided into viral and host response
events (Figure 3; Additional file 8). In this representa-
tion, it is easier to track the different phases of the viral
life cycle (entry, endocytosis, transcription/translation,
assembly, and budding).

Description of the IAV replication cycle
In the following sections, we summarize our current
knowledge of the IAV replication process as outlined in
the FluMap (Figure 1), focusing on virus-host interactions.

Virus entry
The first step in the IAV life cycle is virus binding to host
cells (‘Virus Entry’, Figure 1). The viral hemagglutinin
(HA) protein is critical for this step since it binds to sialic
acids on host cell glycoproteins or glycolipids. The HA
proteins of human IAVs preferentially recognize sialic acid
linked to galactose by an α2,6-linkage (Siaα2,6Gal) [37-42]



Figure 3 Flowchart of the IAV life cycle. The simplified FluMap (Figure 2) was converted into a linear process flow diagram and separated into
the different phases of the viral life cycle (top portion), viral processes (middle portion), and host interaction factors (lower portion). Interactions
are classified as inhibitory (red), stimulating (blue), and transition (black). Enclosure in the middle (orange line) indicates nucleoplasm.
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that is predominant on epithelial cells in the human upper
respiratory tract [43-49]. In contrast, avian virus HA pro-
teins preferentially bind to Siaα2,3Gal [37-42], which is
predominantly found on epithelial cells of the duck intes-
tine (where avian influenza viruses replicate) [39,50-52].
These differences in HA receptor specificity are a critical
determinant of IAV host range (reviewed in [53-55]).

Endocytosis
Following receptor binding, IAVs enter cells through
receptor-mediated endocytosis (‘Endocytosis’ in Figure 1).
Clathrin-mediated endocytosis appears to be the primary
internalization pathway of IAVs [56]; however, clathrin-
independent endocytosis [57,58] and macropinocytosis
[59,60] have also been described for IAV internalization.
Several host factors including the small GTPases Rab5
and Rab7 [61], and interferon-inducible transmembrane
IFITM protein family members (i.e., IFITM1, IFITM2,
IFITM3) interfere with IAV internalization [1,62].

Fusion
At the low pH of the late endosome, HA undergoes an
irreversible conformational shift which expels the N-
terminus of the HA2 subunit (the so-called ‘fusion pep-
tide’) so that it can insert into the endosomal membrane,
resulting in the fusion of the viral and endosomal mem-
branes (reviewed in [63]) (‘Fusion’ in Figure 1). Through
an ion channel formed by the viral M2 protein, proton
influx also acidifies the interior of the virus particles,
leading to the dissociation of the viral matrix protein
(M1) from viral ribonucleoprotein (vRNP) complexes
[64]. vRNPs are composed of one of the eight viral
RNAs (vRNAs), which are wrapped around the nucleo-
protein (NP) and are also associated with the viral poly-
merase complex (see below). Dissociation from M1
allows vRNP release into the cytoplasm and subsequent
nuclear import, which is mediated by the cellular nu-
clear import factors importin-α (karyopherin-α) and
importin-β (karyopherin-β) [65-72] (‘Nuclear import’ in
Figure 1). The M1 protein, after dissociating from vRNP
complexes in late endosomes, is imported into the nu-
cleus separately [73].

Virus replication and transcription
The replication and transcription of IAV genomic RNAs
takes place in the nucleus and is catalysed by the trimeric
viral polymerase complex composed of PB2, PB1, and PA
subunits (‘Replication’, and ‘Transcription’ in Figure 1).
Viral RNA replication starts with the synthesis of a
positive-sense copy of the vRNA, termed complementary
RNA (cRNA) (reviewed in [74]). This cRNA is then copied
to produce large amounts of vRNA (reviewed in [75,76]).
Several host factors have been identified that may play a
role in viral genome replication (reviewed in [77-79]).
Viral RNA transcription is initiated by the binding of

PB2 to the 5′-cap structure of host mRNAs [80-82]. The
endonuclease activity of PA [83] then ‘snatches’ the cap
structure and the 10–13 nucleotides included with the cap
serve as a primer for viral mRNA synthesis. The synthesis
of viral mRNAs is carried out by the polymerase activity
of PB1 [84]. The nuclear export of viral mRNAs is
reviewed in York and Fodor [79]. Transcription proceeds
until the polymerase complex stalls at a polyadenylation
signal near the end of the viral RNA [85-88].
Two IAV mRNAs (derived from the two smallest

vRNA segments, M and NS) are spliced to yield the M1
and M2, or the interferon antagonist (NS1) and nuclear
export (NEP/NS2) proteins. Splicing is carried out by
the host cell splicing machinery, but is likely regulated
by NS1 [89,90], which binds to several cellular splicing
components such as U6 small nuclear RNAs [91,92]
and UAP56, a splicing factor involved in spliceosome
formation [93,94].

Translation
Influenza viral mRNAs are translated by the host cell
translation machinery (‘Translation’ in Figure 1); thus
not surprisingly, several cellular translation factors such
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as eIF4A (eukaryotic initiation factor-4A), eIF4E, and
eIF4G interact with viral mRNAs and/or polymerase
complexes [95-98]. Upon IAV infection, host cell protein
synthesis is limited, and IAV mRNAs are preferentially
translated [99-101]. In particular, ‘cap-snatching’ may de-
plete newly synthesized, nuclear mRNAs of their cap
structures, resulting in their rapid degradation before
nuclear export and translation. In addition, the inter-
action of NS1 with the cellular PABII (poly(A)-binding
protein II) [95,98] and CPSF (cleavage and polyade-
nylation specificity factor) proteins [102,103], and the
interaction of the viral polymerase complex with the C-
terminal domain of the largest subunit of cellular DNA-
dependant RNA polymerase II (Pol II) [104,105] may
contribute to the inhibition of host mRNA synthesis
(reviewed in [106]).
After their synthesis in the cytoplasm, the viral polymer-

ase subunit proteins and NP are imported into the nucleus
via their nuclear localization signals [71,74,107-118] to
catalyse the replication and transcription of vRNA. In
addition, the M1 [64,119], NEP/NS2 [120], and NS1 [121]
proteins are imported into the nucleus to execute their
roles in vRNP nuclear export (M1 and NEP/NS2) or the
processing and export of cellular and viral mRNAs (NS1)
(reviewed in [122]).

vRNP export
The nuclear export of newly synthesized vRNP com-
plexes requires the viral NEP/NS2 [123-126] and M1
[66,127,128] proteins. The latter is thought to form a
bridge between vRNPs and NEP/NS2 [129-131], and M1
association with vRNP may require M1 SUMOylation
[132]. In the nucleus, vRNPs destined for export are
targeted to chromatin where they associate with Rcc1,
and export is mediated by the cellular export factor
Crm1 (‘vRNP export’ in Figure 1) [125,127,133] in a
manner that is likely regulated by phosphorylation
[65,128,134-137]. The cellular Y box binding protein 1
(YB-1) protein also associates with vRNPs in the nu-
cleus, is likely exported from the nucleus in conjunction
with vRNPs, and facilitates vRNP association with
microtubules for transport to the plasma membrane
(see below) [138].
Following their synthesis by the cellular translation

machinery, the viral HA, neuraminidase (NA), and M2
proteins enter the endoplasmic reticulum (ER) where
they are glycosylated (HA and NA) (reviewed in
[139,140]) or palmitoylated (HA and M2). Cleavage of
the HA proteins of highly pathogenic avian H5 and H7
viruses (which possess multiple basic amino acids at the
HA cleavage site) into the HA1 and HA2 subunits oc-
curs most likely by cellular furin-like proteases [141] in
the trans-Golgi network; this cleavage event is critical
for the virulence of influenza viruses [142,143].
Transport of virus proteins to the cell membrane
Transport of viral proteins to the plasma membrane
(‘Transport to membrane’ in Figure 1) likely requires
MTOCs (microtubule-organizing centers) [144,145], mi-
crotubules [144-146], and additional host factors includ-
ing COPI (coatomer I) protein family members [147], a
Rab GTPase (Rab11A) [145,148-150], and the HIV Rev-
binding protein (HRB) [151].

Packaging and budding
At the plasma membrane, HA and NA associate with
lipid rafts (membrane regions rich in sphingolipids and
cholesterol) that are the site of influenza virus budding
[152-160] (‘Packaging’ and ‘Budding’ in Figure 1). The
assembly and virion incorporation of the eight vRNPs
requires segment-specific packaging signals in the viral
RNAs [161,162]. The M1 protein may play a role in the
assembly process since it interacts with lipid membranes
[163-165], vRNPs [130,131,166] (reviewed in [167,168]),
and NEP/NS2 [129,169]. In addition, some evidence
suggests the possibility that the M2 cytoplasmic tail me-
diates vRNP incorporation into the assembling virus par-
ticle [170].
Influenza virus budding does not require the proteins

of the endosomal sorting complexes that are required to
transport ESCRT complexes, which are utilized by a
number of other viruses for budding. Rather, M2, which
is found in the raft periphery [152,157,171], appears to
mediate membrane scission and particle release [172].
This process may also require the cellular F1Fo ATPase
[25]. The enzymatic activity of the viral NA protein
removes sialic acids from host cells and from glycopro-
teins on virions, allowing virus release and preventing
virion aggregation (reviewed in [55,75]).

Post-translational processing
Several post-translational modifications have been de-
scribed for IAV proteins, including the glycosylation of HA
(reviewed in [75,142]) and NA [173], the palmitoylation
(S-acylation) of HA and M2 (reviewed in [174]), and the
SUMOylation (i.e., conjugation with the small ubiquitin-
like modifier) of M1 [132,175], NS1 [176,177], NP [175],
PB1 [175], and NEP/NS2 [175] (‘Post-translational pro-
cessing’ in Figure 1). Moreover, phosphorylation of M1
[137,178] and NP [107,179-183] may affect vRNP nuclear
import and export [66,113,128,134]. Phosphorylation of
NS1 [184] and PB1-F2 (a short protein synthesized from
the PB1 gene; see below) affects virulence [185], although
the mechanisms are not yet fully understood. These phos-
phorylation events are catalysed by several cellular kinases
such as PKC (protein kinase C) which phosphorylates M1
[136], PB1-F2 [185], NS1 [184,186], and PB1 [186], or by
CDKs (cyclin-dependent kinases) and ERKs (extracellular
signal-regulated kinases), which phosphorylate NS1 [187].
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Host responses
IAV infections trigger multiple host antiviral responses
(reviewed in [188,189]). These interactions are sum-
marized in the FluMap (Figure 1) and in the flowchart
that depicts the different stages of the viral life cycle
(Figure 3).
As a major host defence mechanism, pattern recognition

receptors (PRRs) recognize infecting agents and trigger
cellular antiviral responses (reviewed in [190]). To date,
three major classes of PRRs [Toll-like receptors (TLRs);
RIG-I-like receptors; NOD-like receptors (NLRs)] are rec-
ognized, all of which play a role in the defence against IAV
infections. The activation of PRRs leads to increased pro-
duction of type I interferon (IFN) and chemokines/cyto-
kines, resulting in the upregulation of antiviral factors.
IAV infections are recognized by TLR3 [191,192],

which acts through the adaptor molecule TRIF (TIR-
domain-containing adapter-interferon-beta) to stimulate
IFN-regulated factor 3 and NFκB (nuclear factor-kappa
beta); TLR7 [193,194], which signals through the adaptor
protein MYD88 (myeloid differentiation factor 88) and
induces IRF7 (interferon regulatory factor 7) and NFκB;
and RIG-I [195-198], which signals through MAVS
(mitochondrial antiviral signalling), also known as IPS-1,
and leads to the stimulation of IRF3, IRF7, and NFκB.
Moreover, IAV infection activates the inflammasome
[199-203], resulting in the cleavage and activation of
pro-caspase-1, interleukin-1 beta (IL-1β), and IL-18.
PRR stimulation leads to the synthesis of IFNα/β, which

binds to the ubiquitously expressed IFNα/β (IFNAR) re-
ceptor, resulting in the upregulation of the JAK/STAT
(janus kinase/signal transducer and activator of transcrip-
tion) pathway. JAK/STAT signalling induces the forma-
tion of a transcription factor complex (composed of
STAT1, STAT2, and IRF-9) that upregulates the expres-
sion of IFN-stimulated genes (ISGs). A number of ISGs
encode proteins with antiviral functions, such as PKR
(protein kinase R), OAS (2′-5′-oligoadenylate synthetase),
RNaseL (ribonuclease L), Mx, ISG15, IFITM family mem-
bers, and viperin (see below for details). IAVs have thus
evolved mechanisms to counter these host anti-viral de-
fence strategies, primarily through the actions of the NS1
and PB1-F2 proteins.
NS1 is the major viral IFN antagonist ([204]; reviewed

in [189,205]). It blocks RIG-I-mediated innate immune
responses by targeting RIG-I [195,206] and/or TRIM25
(tripartite motif-containing protein 25) [207], and inter-
feres with caspase-1 activation [208].
NS1 also interferes with the effects of several antiviral

host factors. IAV infection activates PKR, resulting in the
phosphorylation of the eukaryotic translation initiation
factor eIF2α and the subsequent shutdown of protein syn-
thesis. This activation is inhibited by NS1 [209-214]. NS1
also controls the antiviral activity of OAS and RNaseL, a
cellular nuclease that degrades viral RNA [215]. ISG15
(interferon-stimulated gene 15) is an IFNα/β-induced,
ubiquitin-like protein that conjugates to a wide array of
cellular proteins, thus blocking their function. It affects
IAV infection by interfering with the function of NS1
[216,217].
IAV infection stimulates the phosphoinsitide-3-kinase

PI3K/Akt pathway [218-226], which has pro- and anti-
viral functions (reviewed in [219]). In particular, this
pathway is activated by NS1 binding to the p85 subunit
of PI3K [218,221,224,226-228] and by IAV vRNAs via
RIG-I [229]. Activation of the PI3K/Akt pathway is crit-
ical for efficient IAV replication [219,220], likely by
preventing premature apoptosis [222,227,230-232].
The C-terminal four amino acids of most NS1 pro-

teins comprise a PDZ ligand domain motif [233] that af-
fects virulence [234-236] (reviewed in [237]), most
likely through interaction with the cellular PDZ domain
proteins Scribble, Dlg1 (disks large homolog 1), and
membrane-associated guanylate kinase MAGI-1, -2,
and −3 [238-240], which play roles in the regulation of
apoptosis or tight junction formation.
NS1 also reduces the levels of IFNα/β mRNA by inter-

fering with mRNA splicing [90-92,241] and the poly-
adenylation and nuclear export of cellular pre-mRNAs
[90,91,102,241-246].
PB1-F2 is a short protein of 87–90 amino acids

encoded by the +1 reading frame of most, but not all,
IAV PB1 genes. It localizes to the mitochondrial mem-
brane [247-249] where it interacts with the mitochon-
drial membrane proteins ANT3 (adenine nucleotide
translocator 3) and VDAC1 (voltage-dependent anion-
selective channel 1) [250], resulting in membrane
depolarization [251,252] and the induction of apoptosis
[247,248,250]. However, a recent study suggested that the
induction of apoptosis may not be the major function of
PB1-F2 [253]. Rather, PB1-F2 may interfere with the func-
tion of MAVS (mitochondrial antiviral-signalling protein)
[254], and the resulting inhibition of IFN induction may
contribute to PB1-F2-conferred increases in pathogenicity,
inflammation, and the frequency and severity of bacterial
co-infections [255-259]. In addition, PB1-F2 binding to
PB1 affects the intracellular localization of the polymerase
protein and reduces polymerase activity, potentially affect-
ing virulence [260].
Other host antiviral factors include the Mx proteins

[261-263], which most likely interfere with viral replica-
tion [264-266]; members of the IFITM protein family,
which interfere with IAV cell entry [1,62,267]; and
viperin, which executes its antiviral activity by disrupting
lipid rafts that are critical for IAV budding [268].
Other important host responses to IAV infection in-

clude the mitogen-activated protein kinase (MAPK) sig-
nalling pathways, which regulate multiple cellular events
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including cell cycle control, cell differentiation, and
apoptosis. All four of the currently recognized MAPK
pathways [extracellular signal-regulated kinases 1/2
(ERK1/2); c-jun-N-terminal kinase (JNK); p38; and
ERK5] are activated upon IAV infection [135,269-276].
Some of these pathways may have both pro- and anti-
viral functions [135,274,277-279].

Antiviral compounds
The FluMap also captures antiviral compounds that are
directed against a viral factor or a host target that is crit-
ical for efficient viral replication (reviewed in [280-283]).
See Additional file 9 for a summary table.
Currently, there are two types of FDA-approved anti-

IAV compounds: M2 ion channel inhibitors (amantadine,
rimantadine), and NA inhibitors (oseltamivir, zanamivir).
M2 ion channel inhibitors block the ion channel in the

viral envelope formed by the viral M2 protein. They pre-
vent the influx of hydrogen ions from the acidic late en-
dosome into the interior of the virion, a process that is
necessary for the release of vRNPs into the cytoplasm.
However, these inhibitors are no longer recommended
for use in humans because most circulating IAVs are re-
sistant to these compounds [284].
The NA inhibitors oseltamivir and zanamivir are the

only antivirals currently recommended worldwide for
human use. Both compounds block the enzymatic activ-
ity of NA that is critical for efficient virus replication
[285-288]. Resistance to NA inhibitors has been de-
scribed but is not widespread among currently circulat-
ing IAVs (reviewed in [289]).
Several new antiviral compounds are in different stages

of clinical development and/or have been approved for hu-
man use in some countries, including two new NA inhibi-
tors, peramivir [290,291] and laninamivir [292], and a viral
polymerase inhibitor, T-705 [293-295].
Other strategies include the development of com-

pounds that interfere with virus replication (ribavirin)
[296,297], NP function (nucleozin) [298-301], NS1 func-
tion (several candidates) [302-304], or HA function
[chemical compounds such as arbidol [305] that block
HA-mediated membrane fusion, or monoclonal anti-
bodies (MABs) directed against HA]. In particular, the
development of monoclonal antibodies that target con-
served regions of the HA protein and interfere with
HA-mediated receptor-binding or fusion has received
increased attention [306-314].
Host factors that are crucial for efficient IAV replica-

tion but dispensable for cell viability may be interesting
drug targets since they are less likely to acquire resist-
ance to an antiviral compound compared with IAV pro-
teins (reviewed in [281,283]). For example, the sialidase
DAS181 (Fludase, NexBio), which cleaves sialic acids on
human bronchial tissue and inhibits IAV infection
[315-317], is currently in Phase II clinical trials in the U.S.
[283]. Several other approaches that are in early stages of
development include: (i) protease inhibitors that block cel-
lular enzymes required for HA cleavage [318-320]; (ii) spe-
cific inhibitors of MAPKs, such as U0126 (a MAPK/ERK
inhibitor), which blocks the nuclear export of vRNP com-
plexes [135,321]; (iii) NFκB inhibitors such as acetylsali-
cylic acid (ASA; commonly known as aspirin) [322],
although aspirin may have adverse effects in IAV-infected
individuals [323,324]; and (iv) agonists of sphingosine-
1-phosphate (S1P) receptors, such as AAL-R, which re-
duce lung pathology upon IAV infection, likely because of
their effect on dendritic cell activation, T-cell responses,
and cytokine levels [325,326].

In silico prioritization of potential drug targets
A critical quest in infectious disease research is to iden-
tify and prioritize novel potential therapeutic targets. In
our in silico analysis of FluMap, we exploited a specific
aspect of the network called controllability to identify
molecules that, when inhibited, increase the likelihood
of deregulating the virus replication cycle. Controllability
is the ability to drive a network from any initial state
to any desired state in a finite amount of time given a
suitable choice of inputs [327]. From a biological net-
work perspective, controllability analyses identify key
molecular entities and processes that when perturbed
can drive a biological system from a disease state to a
healthy state [328].
To begin, we identified the smallest set of driver nodes

(molecules, complexes, etc.) needed to attain complete
control of all of the other nodes in the network. The size
of this smallest set was directly related to how difficult it
was to control the network in question. Networks that
demand a large set of driver nodes are inherently more
difficult to control. Further, as nodes are removed from
the network, the identity of the driver nodes may change
but, more importantly to our application, the number of
driver nodes – and the associated difficulty of control-
ling the network – may remain fixed or also change.
Thus, the second step of the analysis involved identifying
‘critical’ nodes that when removed from the network, in-
creased the number of driver nodes necessary to elicit
complete control, that is, increase the difficulty in con-
trolling the network [329]. From a therapeutic perspec-
tive, inhibition of critical nodes/links would make it
increasingly difficult for the virus to maintain control of
the replication process. Further, controllability analysis
can also be performed for the network links. Lastly, we
investigated whether the critical nodes/links are associ-
ated with more commonly used network topology mea-
sures (e.g., nodes with a high number of neighbours
(degree) or nodes that are bottlenecks in the network
(betweeness)).
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To facilitate the above analyses, we converted FluMap
to a binary network by taking the direction of connec-
tions while ignoring the type of reaction (catalysis, inhib-
ition etc.) (Figure 4; Additional file 10 and Additional
file 11). Note that controllability analysis does not use
the type of reaction (e.g., catalysis, inhibition etc.). Thus,
ignoring the type of reaction does not affect the results.
Within the FluMap, we found that 256 (41.2%) of the

nodes were driver nodes and 112 (18.0%) were critical
nodes. Among the 137 critical links (15.3%), ~15% ac-
counted for interactions among viral factors, whereas ~10%
accounted for virus-host interactions. The remaining
two-thirds accounted for reactions between host factors.
Compared with previous studies [327], the driver nodes
ratio of the FluMap is similar to that of metabolic net-
works (30%–40%), and lower than the gene regulatory
networks (>80%).
Topology analysis revealed that critical nodes tended

to have a higher degree and higher betweenness than
noncritical nodes (two-sided Wilcoxon rank sum test
[WRST] of the degree and log10 of the betweenness; P <
2.2E-16 and P = 3.452e-06, respectively, see Additional
file 12). By using the node degree to prioritize the crit-
ical nodes, we found that the nuclear pore complex
(NPC) and the three host proteins, Akt, PKC, and the
Ran/GTPase complex (which plays a critical role in the
export of proteins from the nucleus to the cytoplasm),
are both critical and highly connected within the network.
PKR and Y-box binding protein 1 (YB-1) come in the
Figure 4 Controllability analysis. Critical factors (nodes) identified by the
critical interactions between viral and host proteins, purple edges indicate
and orange edges indicate interactions between host factors.
second tier. YB-1 is reported to assist in the transport of
influenza virus RNP to microtubules [138]. Perturbation
of these complexes/factors would thus be expected to have
the greatest impact on the IAV life cycle.
Among the 137 critical interactions identified, we did not

find that critical interactions have a higher or lower edge
betweeness than noncritical interactions (P=0.1, WRST of
the log10 of the edge betweenness), but we did find that the
ISG15-NS1 interaction and several interactions related to
pH control involved molecules with high degree. Our con-
trollability analysis identified several current antiviral com-
pounds and targets, such as M2 ion channel inhibitors
(which affect the pH inside the virion), the targets of si-
alidase, and viral polymerase inhibitors (Figure 4).
Our results suggest that the controllability analysis, to-

gether with network topology characteristics, can identify
important factors for the viral life cycle that may be poten-
tial therapeutic targets as well as known drug targets.
Given that the current map is constructed by manual cur-
ation, many important edges and nodes may be missing,
so that the robustness of the controllability analysis cannot
be assessed. Nonetheless, we show the potential of identi-
fying and prioritizing critical nodes and edges that may be
targeted for antiviral drug development.

Utility and discussion
Here, we present FluMap, a comprehensive pathway
map for IAV infections. This map is the most recent ver-
sion of the IAV host-virus interaction map and includes
controllability analysis are shown in red. Thick magenta edges indicate
virus factor interactions/transitions (for example, transport processes),
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a significantly higher number of factors than previous
versions. It is intended to provide a platform for data
sharing, community curation, and in silico analysis, such
as network controllability analysis. We have made
FluMap accessible online to allow for pathway and anno-
tation browsing. We have also provided interactive fea-
tures that will allow the research community to actively
participate in improving and updating FluMap.

FluMap as a data analytic platform
We applied a network controllability analysis to demon-
strate that maps like FluMap can be used for in silico
analysis. Although the controllability analysis we applied
here does not take into consideration the nature of the
interaction (for example, activating or inhibitory), our
analysis identified several events known to be critical for
the IAV life cycle, suggesting that the algorithm [327]
can be effectively applied to process-descriptive pathway
networks such as FluMap to identify and prioritize fac-
tors that could be targeted to affect the IAV life cycle. In
addition to known targets, our analysis also identified
factors that are not currently recognized as critical, such
as YB-1; further experimental testing could address the
significance of these events in IAV infections.
A comprehensive map such as FluMap can also be

used to analyze large-scale data sets (obtained from
‘omics’ or siRNA inhibition studies) by using the data
mapping function of CellDesigner or other visualization
tools.
For a deeper insight into IAV virus-host interactions,

the next step in pathway modeling is the integration of
additional datasets of host responses to IAV infections.
FluMap includes critical host response factors such as
RIG-I, PKR, and the NLRP3-inflammasome. However,
the pathways regulated by these factors are complex and
a significant amount of ‘cross-talk’ occurs between the
pathways, making it extremely challenging to compre-
hensively map host responses. Here, the integration of
additional experimental data as they become available
will improve our understanding of host responses to
IAV infections. Moreover, future versions of FluMap
could integrate intercellular reactions, such as events
stimulated by interferons and cytokines/chemokines.
Lastly, a key distinction of FluMap compared with pre-

vious influenza replication cycles is the inclusions of
strain-specific information. There are strong differences
between the pathogenic potential of individual virus
strains, and highly pathogenic strains may exploit differ-
ent host machinery to ensure rapid replication and im-
mune suppression [330-333]. Within FluMap, users can
exploit the various annotations tools to analyse isolate-
specific pathway interactions and attempt to identify
critical molecular events associated with highly patho-
genic infections. As future studies with H5N1, H7N9, or
reconstructed Spanish influenza viruses reveal more in-
formation regarding virus-host interactions, the FluMap
presented here will provide a basis for rapid consolida-
tion and in silico exploration.
Conclusions
We constructed a publicly available knowledge base
called “FluMap” that contains 960 factors and 456 reac-
tions. All reactions are annotated with PubMed IDs in
the Notes section and isolate-specific information is
available from many interactions; the entire map is an-
notated with 476 papers. FluMap is a comprehensive In-
fluenza A virus replication life cycle and host response
map, and is expected to be a valuable guidance map for
those who study influenza infection.
Availability and requirements
The FluMap is accessible at http://www.influenza-x.org/
flumap/.
Additional files

Additional file 1: FluMap building and workflow of literature-based
pathway modeling. (a) FluMap was built based on information from the
literature and from several pathway databases such as Reactome, KEGG,
and PANTHER. The resulting map captures the viral life cycle and host
responses. Extensive annotations are provided. We then manually
generated a simplified map for high-level overview, and a map in which
arrows outline the sequence of events during IAV infection (i.e., binding,
internalization, nuclear import, etc.). We conducted controllability and
network analyses over the FluMap to identify nodes essential to the
replication process. Key interactions and nodes from these analyses are
highlighted. (b) Summary of the literature-based pathway modeling
process that converts and integrates textual information into a graphical
representation. FluMap allows the community to browse, use, and
comment on the information provided; this interface with the research
community is shown in green.

Additional file 2: How to browse FluMap. This document explains
how to browse FluMap at the website http://www.influenza-x.org/
flumap/, and shows its graphical notation scheme, as well as the
annotation policy we adopted for curation of the map. It also describes
how to open the map file with CellDesigner for further analysis or
modification, and how to curate the map on the Payao system
(http://www.payaologue.org).

Additional file 3: A poster version of FluMap.

Additional file 4: SBML map file of FluMap. The SBML map file
FluMap.xml can be browsed using CellDesigner. Please download
CellDesigner at http://www.celldesigner.org/, install it, and open the
SBML file FluMap.xml to browse FluMap by using CellDesigner. For usage
of the software, see the documentation provided at the CellDesigner
website: http://www.celldesigner.org/documents.html

Additional file 5: Entities & Reactions List of FluMap. This is a list of
the entities (such as proteins, genes, etc.) and reactions (interactions
between entities) in FluMap.

Additional file 6: Reference List of FluMap. This contains all of the
references annotated in FluMap.

Additional file 7: SBML map file of the simple version of FluMap.
The SBML map file of the simplified version of the IAV virus-host
interaction map can be browsed by using CellDesigner. Please download
CellDesigner at http://www.celldesigner.org/. For detail usage of the

http://www.influenza-x.org/flumap/
http://www.influenza-x.org/flumap/
http://www.biomedcentral.com/content/supplementary/1752-0509-7-97-S1.pdf
http://www.biomedcentral.com/content/supplementary/1752-0509-7-97-S2.pdf
http://www.influenza-x.org/flumap/
http://www.influenza-x.org/flumap/
http://www.payaologue.org/
http://www.biomedcentral.com/content/supplementary/1752-0509-7-97-S3.pdf
http://www.biomedcentral.com/content/supplementary/1752-0509-7-97-S4.xml
http://www.celldesigner.org/
http://www.celldesigner.org/documents.html
http://www.biomedcentral.com/content/supplementary/1752-0509-7-97-S5.xlsx
http://www.biomedcentral.com/content/supplementary/1752-0509-7-97-S6.xlsx
http://www.biomedcentral.com/content/supplementary/1752-0509-7-97-S7.xml
http://www.celldesigner.org/
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software, see the documentation provided at the CellDesigner website:
http://www.celldesigner.org/documents.html

Additional file 8: SBML map file of the flowchart version of FluMap.
The SBML map file of the IAV virus-host interaction timeline can be
browsed by using CellDesigner. Please download CellDesigner at http://
www.celldesigner.org/. For detail usage of the software, see the
documentation provided at the CellDesigner website: http://www.
celldesigner.org/documents.html

Additional file 9: Antiviral Drug List. This is a list of the influenza-
related antiviral drugs.

Additional file 10: Controllability Analysis. This document describes
the protocol for the controllability analysis we conducted with FluMap.

Additional file 11: Controllability Analysis Results. This file contains
the results of the controllability analysis, listing the critical, ordinary, and
redundant nodes/links.

Additional file 12: Topology Analysis Results. This file contains the
results of the topology analysis based on the controllability analysis
results to prioritize the target candidates.
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