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Abstract

Background: Oncogenic mechanisms in small-cell lung cancer remain poorly understood leaving this tumor with
the worst prognosis among all lung cancers. Unlike other cancer types, sequencing genomic approaches have
been of limited success in small-cell lung cancer, i.e., no mutated oncogenes with potential driver characteristics
have emerged, as it is the case for activating mutations of epidermal growth factor receptor in non-small-cell lung
cancer. Differential gene expression analysis has also produced SCLC signatures with limited application, since they
are generally not robust across datasets. Nonetheless, additional genomic approaches are warranted, due to the
increasing availability of suitable small-cell lung cancer datasets. Gene co-expression network approaches are a
recent and promising avenue, since they have been successful in identifying gene modules that drive phenotypic
traits in several biological systems, including other cancer types.

Results: We derived an SCLC-specific classifier from weighted gene co-expression network analysis (WGCNA) of a
lung cancer dataset. The classifier, termed SCLC-specific hub network (SSHN), robustly separates SCLC from other
lung cancer types across multiple datasets and multiple platforms, including RNA-seq and shotgun proteomics. The
classifier was also conserved in SCLC cell lines. SSHN is enriched for co-expressed signaling network hubs strongly
associated with the SCLC phenotype. Twenty of these hubs are actionable kinases with oncogenic potential,
among which spleen tyrosine kinase (SYK) exhibits one of the highest overall statistical associations to SCLC. In
patient tissue microarrays and cell lines, SCLC can be separated into SYK-positive and -negative. SYK siRNA
decreases proliferation rate and increases cell death of SYK-positive SCLC cell lines, suggesting a role for SYK as an
oncogenic driver in a subset of SCLC.

Conclusions: SCLC treatment has thus far been limited to chemotherapy and radiation. Our WGCNA analysis
identifies SYK both as a candidate biomarker to stratify SCLC patients and as a potential therapeutic target. In
summary, WGCNA represents an alternative strategy to large scale sequencing for the identification of potential
oncogenic drivers, based on a systems view of signaling networks. This strategy is especially useful in cancer types
where no actionable mutations have emerged.
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Background
Small-cell lung cancer (SCLC) represent up to 15 % of
lung cancers and pose a major challenge as we are
unable to diagnose it early, its most aggressive clinical
behavior and the lack of lasting benefit from therapy.
Patients presenting with this neuroendocrine tumor of
the lung have a dismal 5% 5-year survival rate. Although
SCLC is highly sensitive to chemotherapy and radiation,
it invariably recurs with fatal widespread metastasis [1].
In contrast to non-small cell lung cancer (NSCLC), to
date no specific genetic biomarkers or molecular sub-
types have been identified in SCLC [2]. Gene expression
profiling has had limited success in SCLC stratification
for the purpose of personalized treatment. Although
recent advances in genomic analysis of SCLC have iden-
tified potential driver mutations in SCLC [3-5], there
remains an unmet need for approaches that can stratify
SCLC patients and/or uncover viable molecular targets
in SCLC.
To meet this challenge, we turned to weighted gene

co-expression gene network analysis (WGCNA), a
recently introduced bioinformatics method that captures
complex relationships between genes and phenotypes.
The distinct advantage over other methods, such as dif-
ferential gene expression, is that WGCNA transforms
gene expression data into functional modules of co-
expressed genes without any prior assumptions about
genes/phenotypes, providing insights into signaling net-
works that may be responsible for phenotypic traits of
interest [6-8]. In lung cancer, its potential remains
unexplored.
Our WGCNA analysis of a public lung tumor dataset [9]

revealed a module of co-expressed genes specific to SCLC.
After filtering, the SCLC-specific module was reduced to a
SCLC-specific hub network (SSHN) signature that classi-
fied SCLC from other lung cancer types in several public
and in-house tumor datasets (including independent high-
throughput screening techniques such as RNAseq and
shotgun proteomics), and in lung cancer cell lines. SSHN
was enriched for hubs in signaling networks known to be
associated with SCLC pathogenesis, including cell cycle,
oxidative stress response and DNA damage response. As a
proof of concept, we chose to validate oncogenic kinase
hubs (20 kinase genes) within SSHN, as they provide spe-
cial translational relevance as potential candidates for tar-
geted therapy and also play key roles in various hallmarks
of cancer. Among the twenty, spleen tyrosine kinase (SYK),
a previously undescribed target in SCLC, exhibited one of
the highest overall statistical associations with the SCLC
phenotype, based on WGCNA gene significance (GS, see
Methods) and overexpression in shotgun proteomics, and
was therefore selected for further validation as a target.
SYK has been previously investigated most extensively

in the context of lymphocyte development and as a

therapeutic target in hematologic malignancies. SYK
activation leads to several downstream events that
promote cell survival, including activation of phosphati-
dylinositol 3-kinase (PI3K) and AKT, and the phosphor-
ylation of multiple signaling proteins [10-12]. In B-cells,
it transduces tonic signaling by physical interaction with
the immunoreceptor tyrosine-based activation motif
(ITAM) of the B-cell antigen receptor (BCR) complex
[13], positively regulating survival and proliferation dur-
ing development and immune response. SYK is also
associated with the Fc receptor in B-cells, which instead
has opposite effects to the BCR [14,15]. The balance of
regulation on survival and proliferation downstream of
SYK is influenced by redox signaling: NADPH oxidase,
in close proximity to BCR, can produce peroxide that
inhibits phosphatase action on BCR-activated SYK, rein-
forcing tonic signaling [16]. Another important function
of SYK is response to oxidative stress where SYK gets
activated and promotes pro-survival pathways [17].
B-cells die in response to SYK knock-down and fail to
develop in SYK-deficient mice [15]. Together, these
observations have formed a rationale for SYK-targeted
therapy in hematological malignancies with small mole-
cule kinase inhibitors [12,18,19]. SYK has not been stu-
died in the context of lung neuroendocrine (NE) cells,
the SCLC cells of origin, whose oxygen sensing functions,
in analogy with BCR, rely on redox signaling [20].
To our knowledge, SYK has not been proposed before as

an oncogenic driver or candidate target in SCLC. Based on
our WGCNA results, we investigated this possibility. We
determined that 11 out of 33 SCLCs were SYK-positive by
immunostaining in patient tissue microarrays (TMAs).
Moreover, SYK knock-down reduced proliferation and
survival in SYK-positive SCLC lines. We propose that SYK
is an oncogenic driver in SCLC and that SYK expression
may be developed as a companion biomarker for SYK
targeted therapy.

Results
Identification of a SCLC-specific co-expression module
To identify a hierarchical network view of co-expressed
genes across lung cancer subtypes, we applied WGCNA
to a public dataset (GEO ID: GSE6044 - 33 untreated
patients) comprised of 5 normal, 9 adenocarcinoma
(ADC), 9 squamous cell carcinoma (SCC) and 9 SCLC
lung cancer tissue specimens [9]. An unsupervised corre-
lation similarity matrix was built based on pairwise corre-
lations between genes. Unsupervised average linkage
hierarchical clustering of all genes in this dataset resulted
into 13 modules (Figure 1A) labeled by color and each
comprised of mutually exclusive co-expressed genes.
Genes with no distinct module assignment are grouped
in a grey module by WGCNA. None of these modules
were identified using any pre-assigned phenotype or gene
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bias. To ensure that modules were not being detected by
chance, we simulated a random dataset containing same
number of samples and genes as our test dataset. Only
two modules were generated from the random dataset,
turquoise and grey (with the grey module containing the
vast majority of genes), indicating that WGCNA module
identification in our test dataset is in fact driven by mean-
ingful gene co-expression patterns (Additional file 1,
Figure S1).
Following the unsupervised module generation, indivi-

dual gene correlations to a specific phenotype (normal
lung, ADC, SCLC, SCC) were quantified by gene signifi-
cance (GS). The average GS of all genes within each
module is summarized in Figure 1B. This analysis
unveiled positive or negative correlation of certain mod-
ules with specific lung cancer subtypes, or normal lung.
The brown and purple modules appeared to be ADC spe-
cific, and included previously identified ADC markers
cytochrome B5 (CYB5A) or surfactant protein B, C and
D (SFTPB, SFTPC, SFTPD), respectively[21]. Yellow,
pink, orange and light cyan modules were SCC specific

and included involvulin (IVL), cytokeratin 14 (KRT14),
and galectin-7 (LGALS7) [21-23] (Additional file 2). The
green module contained genes positively correlated to
the normal lung phenotype and negatively correlated
with all tumor subtypes (SCLC, ADC, and SCC), making
it a “normal lung module” (Additional file 2).
The blue module was specific to SCLC (Figure 1).

Accordingly, it contained genes that have already been
associated with SCLC progression such as Achaete-scute
complex homolog 1 (ASCL1), Neural cell adhesion
molecule 1 (NCAM1/CD56), Thyroid transcription fac-
tor-1 (TTF-1) and Insulinoma associated-1 (INSM1)
[24,25] (Additional file 2).

Identification and validation of a SCLC-specific hub
network (SSHN) of co-expressed genes across genomic
and proteomic platforms
To identify and validate a network of co-expressed
genes that is specific to SCLC, we focused on the blue
module. The SCLC-specific blue module (1696 genes;
Figure 1) is comprised of co-expressed up-regulated

Figure 1 Identification of SCLC-specific modules using WGCNA. (A) In the hierarchical dendrogram, lower branches correspond to higher
co-expression (height = Euclidean distance). The 13 identified modules were coded by the colors indicated below the dendrogram. Below, red
and green lines indicate positive or negative correlations, respectively, with lung tumor types on the left. (B) Average ‘gene significance’ (GS) of
genes within a specific module summarized in the barplot for each lung tissue type (left to right: SCLC, SCC, ADC, and NL). The blue module is
associated solely with SCLC.
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genes across SCLC tumors. Each module is arranged in
the form of a hierarchical network (due to hierarchical
clustering used to obtain the modules, Figure 1A den-
drogram). Therefore, each module consists of a few
highly connected “hubs” (genes that have high intra-
modular connectivity kME) as well as many genes with
fewer connections. The rationale behind building hub-
based networks is to narrow down the list of relevant
candidates, based on the assumption that highly con-
nected hubs are more vulnerable targets to alter net-
work performance. This assumption has been successful
in several examples from biological networks in yeast
[26,27] and mammalian cells, including cancer [6,28].
Each module can be further filtered to identify the top

hubs relative to desired criteria using measures such as
intramodular connectivity (kME) and gene significance
(GS) [29]. We filtered the blue module genes to obtain
hubs that ranked high in each of the following criteria:
a) high positive correlation with SCLC phenotype given
by gene significance (GS.SCLC >0.5); b) high intramodu-
lar connectivity (blue module kME >0.5); and c) high
T-test statistic (overexpression in SCLC versus normal
lung > 5) and a p-value less than 0.01. This filtering
approach produced 287 hub genes, which are not only
overexpressed in SCLC, but also highly connected
within SCLC. We refer to this network of 287 hubs as
SCLC-specific hub network (SSHN) (Additional file 3).
To validate the robustness of SSHN as a SCLC-specific

classifier, it was first applied by unsupervised hierarchical
clustering bootstrap analysis to patient samples in a test
public dataset (GSE6044) from which the blue module
was derived. The SSHN classified SCLC away from every
other lung tumor subtype (ADC and SCC) and normal
lung, the area under ROC curve (AUC) was 0.87 with 95%
confidence interval (CI) of [0.72, 1] (Figure 2A). The per-
formance of the SSHN classifier was reproducible in both
an independent validation patient dataset of 163 tumors
(GSE11969) [30] generated in a different array platform
(Agilent) (AUC of 1) (Additional file 1, Figure S2A), as
well as in our own microarray dataset containing 23 SCC
and 10 SCLC samples (AUC of 0.94 with 95% CI of [0.85,
1])(Additional file 1, Figure S2B). In the GSE11969 dataset,
the SSHN also proved to be an excellent classifier for dis-
tinguishing SCLC from large cell carcinoma (LCC) sub-
type (Additional file 1, Figure S2A). Interestingly, large cell
neuroendocrine carcinomas (LCNC), another high-grade
neuroendocrine tumor (NET) of the lung, co-clustered
with SCLC, confirming similarities between the 2 tumor
types as reported previously [31]. On all the three patient
datasets, the SSHN genes are highly predictive of SCLC
against other tissue types with statistically significant
p-values less than 0.0001.
To further validate the SSHN as a classifier, we used

next-generation sequencing to produce genome-wide

RNA-seq data on an independent set of tissues includ-
ing 10 SCLCs, 5 SCCs, and 5 normal lung tissue speci-
mens. We detected overexpression of 206 genes out of
287 SSHN genes that differentiate SCLC (71.8%) from
normal lung alone (at 5% FDR) while 106 genes out of
287 SSHN genes differentiate SCLC (71.8%) from nor-
mal lung and SQCC (at 5% FDR) (Additional file 3),
indicating that SSHN is a robust classifier in another
data type (RNA-seq).
Finally, the SSHN gene expression classifier was

further validated at the protein level in yet another in-
house, independent set of formalin fixed paraffin
embedded patient tissue samples analyzed by shotgun
proteomics and comprised of 5 samples each of SCLC,
SCC, ADC and age- and smoking history-matched nor-
mal lung tissues specimens, pooled by histologic type.
Out of 287 SSHN genes, 141 gene products were
detected at the proteomic level and also classified the
SCLCs apart from the other tissues (Figure 2B). To our
knowledge, this is a first report of an entire SCLC geno-
mic signature validated at the proteomic level.
In each of the 4 datasets, there were 1-2 specimens that

did not segregate with the SSHN-defined SCLC cluster,
but were clinically diagnosed as SCLC (Figure 2A; Addi-
tional file 1, Figure S2). This could be due to mis-diagnosis
as is fairly common in SCLC due to mixed SCLC-NSCLC
histology [32], or possibly a small subset of patients whose
tumors have different biology. Overall, we conclude that
the SSHN is a robust molecular classifier to distinguish
SCLC from other lung tumor types and normal lung
across multiple gene and protein expression platforms.

Biological insights from the SSHN: Network enrichment
analysis and target identification
To gain biological insights in SCLC biology, the SSHN
component genes were further categorized into functional
pathways based on the assumption that they are co-upre-
gulated because of shared cellular functions. Analysis of
SSHN by Webgestalt [33] revealed that SSHN is enriched
for functional pathways summarized in Additional files 4
and 5 and Figure S3 in Additional file 1, and include cell
cycle and checkpoint response (total of 25 genes), cellular
stress response (41 genes of which 21 genes related to oxi-
dative stress), and DNA damage response and repair path-
ways. All p-values were adjusted for multiple comparisons
in Webgestalt and therefore effectively rank the signifi-
cance of these functional pathways in SCLC phenotype.
As a proof-of-concept that connected hubs identified

by WGCNA are of biological relevance, we further
refined the pathway analysis by focusing on kinases,
since these tend to be of the greatest translational value.
There were 20 kinases contained in the SSHN (Addi-
tional file 6), all worth investigating in the context of
SCLC. However, shotgun proteomics data (available for
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4 kinases, Additional file 6) indicated that SYK is
strongly overexpressed within the SCLC phenotype
compared to normal tissue (high “SCLC vs. Bronchial
epithelium Rate ratio” and “SCLC vs. Alveolar epithe-
lium Rate ratio”, column J and M in Additional file 6,
respectively). SYK is an oncogenic non-receptor tyrosine
kinase involved in hematologic malignancies [12,18,19].

Another oncogene, the SRC-family kinase FYN, was also
part of this SSHN kinase set. SYK is an intracellular sig-
nal transducer downstream of growth factor/T-cell/B-
cell receptors well known to work in concert with SRC-
family kinases [15]. Specific overexpression of SYK and
FYN in SCLC, compared to other lung tumor types, has
not been previously reported, to the best of our

Figure 2 Validation of SSHN as a robust classifier for SCLC in two independent datasets from (A) high-throughput gene expression
and (B) shotgun proteomic analysis. (A) Unsupervised clustering heatmap based on 287 SSHN genes (rows) of lung cancer patients (columns)
in GSE6044 dataset [9]. Red and green indicate high and low expression, respectively. The majority of SCLCs cluster by themselves on the far left
of the dendrogram. Two SCLC specimens are excluded from this cluster, a trend to be investigated in more depth if confirmed in larger datasets
(see Discussion). (B) SSHN-based unsupervised clustering heatmap of an in-house generated shotgun proteomic dataset comprised of control
alveolar and bronchial epithelium, ADC, SCC and SCLC tissue specimens (for each tissue type, specimens from multiple patients, five in this case,
were pooled as it is customary for shotgun proteomic analysis). Red and green as denoted in (A). Analysis is limited to 141 out of 287 SSHN
proteins (rows), since the remainder proteins were not detect by shotgun proteomics. The 3 tumor specimens segregate together from normal
tissue. Within the 3 tumor specimens, ADC and SCC are more similar to each other than to SCLC.
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knowledge (Figure 3). Together, these clues prompted
us to select SYK and FYN for further investigation in
the context of SCLC tumors.
To verify co-expression at the protein level, we immunos-
tained for SYK and FYN in a panel of SCLCs assembled in
tissue microarrays (TMAs). All specimens were tested in
duplicate, and the expression of SYK and FYN consistently
co-varied (Figure 4A), with a correlation of 0.28 across
SCLC specimens. Clustering analysis of the staining scores
of SYK/FYN expression separated the TMA specimens
into 2 groups, SYK/FYN-positive and -negative tumors
(Figure 4B).

Preservation of SSHN and differential SYK/FYN expression
in SCLC cell lines
SYK and FYN are attractive candidates for targeted ther-
apy [34,35]. To test their functional relevance in SCLC, we
turned to SCLC cultured cell lines. The SSHN classifier
was conserved in a large panel of lung cell lines [36]. As
indicated by clustering analysis (Figure 5A), 21 out of 23
SCLC cell lines separated nicely from the other 36 lung
cancer cell lines tested (AUC of 0.97 with 95% CI of [0.94,
1]). Note that 2 SCLC cell lines did not follow this pattern,
an observation mirrored in tumor specimens (Figure 2;
Additional file 1, Figure S2) that warrants further studies.
We investigated co-expression of SYK and FYN in SCLC

cell lines by western blotting of whole-cell lysates with
appropriate antibodies (Figure 5B). Similar to our protein
expression shown by immunostaining of our TMAs, SYK
and FYN exhibited a trend to co-vary in SCLC cell lines
(Figure 5B), opening an avenue to biochemical analyses of
the functional value of this differential expression. Note

that SYK has two splice-variant isoforms - long (L or
p72SYK) and short (S or B) that lacks 23 amino acids [37].
The SYK positive cell lines overexpress SYK (L) form while
other cell lines express low or no SYK (S) (Figure 5B).

Inhibiting SCLC cell line viability by SYK knock-down
To assess the validity of SYK and/or FYN as targets in
SCLC, we down-regulated the expression of these
proteins using siRNA in the H69 and H146 cell lines
(Figure 5B). siRNA induced 80-90 percent reduction in
total protein expression for each of these molecules in
both H69 and H146 (Figure 6A and 6D; Additional
file 1, Figure S5A and D). We assessed viability with
automated microscopy, imaging-based methods (Live-
dead assay, see Methods; images and segmentation for
obtaining cell counts shown in Additional file 1, Figure
S4). SYK knock-down caused a significant decrease in
proliferation rates compared to scrambled control in
both H69 and H146 (Figure 6B and 6E), while FYN
knock-down showed little effect (Additional file 1, Fig-
ure S5B and E). The decrease in proliferation was in
part due to a loss of cell viability, as indicated by
increased cell death by Day 5 in SYK knock-down cells
assessed by ethidium homodimer positivity (Figure 6C
and 6F; Additional file 1, Figure S5C and F). Together,
these data suggest that SYK is a candidate therapeutic
in SYK/FYN-expressing SCLCs.

Discussion
We report several findings of immediate translational
value for SCLC: 1) derivation of an SCLC-specific hub
network (SSHN) that classifies SCLC from other lung

Figure 3 Co-expression of 2 SSHN kinases FYN and SYK in SCLC patients. Log2 expression values are indicated in the boxplots for each
individual hub within SSHN across various patient lung tissues from the GSE6044 test dataset [9]. The outliers are denoted by dots. P-value
shows statistical significance by Kruskal-Wallis nonparametric test [81]. FYN and SYK are co-overexpressed in SCLC patients versus NSCLC (ADC,
SCC) and normal lung.
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cancers, including the closely related neuroendocrine
tumors; 2) validation of the SSHN classifier across many
data types, including expression microarrays from multi-
ple platforms, RNAseq and shotgun proteomics; 3) co-

varied expression of 2 oncogenes, SYK and FYN, in a
subset of SCLC tumors and cell lines; and 4) identifica-
tion of SYK as a candidate biomarker and therapeutic
target for SCLC.

Figure 4 Co-expression of SYK and FYN in a subset of SCLC tumors. Contiguous sections of TMAs from 39 SCLC patient specimens were
stained with antibodies to SYK and FYN, respectively. Stained sections were scored by a pathologist as described in Methods. (A) Representative
stained sections showing positive (upper) or negative (lower) results. See text for additional details. Tumor spot images were captured by
brightfield microscopy at 20X magnification. (B) Unsupervised hierarchical clustering heatmap of SYK and FYN immunostaining intensity scores
across SCLC patients distinguished positive from negative tumors as described in Methods. Red and green indicate high and low expression,
respectively. Specimens that are positive for both SYK and FYN segregate in one cluster, on the right. Patient ID shown below the heatmap.
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The increasing availability of large gene expression can-
cer datasets presents unprecedented opportunities for
translational advances. Challenges in data analytics, how-
ever, must be met. For instance, the predominant metric
of differential gene expression is silent on disease rele-
vance of identified gene products, since it provides no
measure of their functional relatedness [38], and its result-
ing signatures do not replicate well across datasets [7,39].
The number of potential therapeutic targets (e.g., ranked
by differential expression scores) is large and expanding,
but target prioritization is hampered by lack of functional
insight. In contrast, analyses based on gene co-expression
algorithms perform well across data types [7] and inspire
working hypotheses since their results resemble hierarchi-
cal signaling networks. Accordingly, the SCLC-specific
co-expressed gene classifier network SSHN we report here
is robust across datasets encompassing different types
of lung cancer (Figure 2; Additional file 1, Figure S2;

Additional file 2). In particular, despite being derived from
gene expression microarray data, the SSHN performed
well on proteomic lung cancer specimens. Note that each
of the datasets tested were obtained from independent
SCLC patient cohorts. To our knowledge, this is the first
report of signature preservation on a shotgun proteomic
SCLC dataset. Other co-expression based approaches have
also been successfully applied in other cancers such as
breast cancer [7].
Neuroendocrine lung tumors, to which SCLC belong, are

sometimes difficult to sort out based solely on the current
World Health Organization (WHO) criteria of morphology
and mitotic rate, warranting searches for additional bio-
markers [32,40,41]. The SSHN signature begins to address
this need, e.g., distinguishing SCLC that stain negative for
neuroendocrine markers such as synaptophysin and chro-
mogranin A (~25%) [25,32] from NSCLC, and mixed
SCLC-NSCLC from NSCLC. However, because of the very

Figure 5 SSHN is preserved in SCLC cell lines. (A) Unsupervised clustering heatmap based on SSHN genes (rows) of lung cancer cell lines
(columns) in GSE4824 dataset [36]. Red and green colors in rows of the heatmap indicate high and low expression respectively. This analysis
shows SSHN conservation across SCLC cell lines. (B) Representative western blot of SYK and FYN in various lung cancer cell lines. FYN and SYK
are selectively overexpressed in SCLC cell lines. Within the SCLC cell lines, the red and green bars indicate FYN/SYK-positive and -negative SCLC
cell lines, respectively. Arrows point to bands corresponding to the expected molecular weight for SYK and FYN. The dotted arrow indicate the
position of a shorter form of SYK protein (SYKB or S) that lacks 23 amino acids [37].
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small number of LCNEC samples studied by gene expres-
sion analysis, we cannot exclude the possibility that other
LCNEC tumors would co-cluster with SCLC. In addition,
due to the lack of larger SCLC datasets and the limited
clinical information on the available SCLC datasets, careful
validation of our results, including outcome associations, is
definitely warranted.
While SSHN as a whole is an effective SCLC classifier,

its individual component genes (or gene products) may
or may not be expressed in a particular tumor. This is
not at all surprising, due to the expected inter-tumor
heterogeneity within a particular histological type [32].
Our data suggest that within the SCLC cluster defined by
SSHN, a further subdivision between SYK/FYN-positive
and -negative may be informative. A few specimens
classified as SCLC by pathological and clinical criteria,
did not cluster with SSHN-defined SCLC (Figure 2A;

Additional file 1, Figure S2). Whether these are misdiag-
nosed or represent disease heterogeneity or different
stage of tumor progression remains to be tested.
Receptor and non-receptor tyrosine and serine-threo-

nine kinases are effective actionable targets in cancer.
SSHN contains twenty kinases and growth factor recep-
tors, including TTK, TLK2, NEK2, CDK4, FYN, PLCG1,
SYK (Additional file 6). None of these were previously
reported in SCLC; thus, prioritization strategies are called
for. The kinases SYK and FYN stand out as potential
SCLC targets for several reasons. Besides being tightly
associated with the SCLC phenotype, they are already pro-
ven as candidate targets in other cancers, such as CML
[10,42], AML [12], retinoblastoma [43], glioblastoma [44]
and prostate cancer [45,46]. They also activate Focal adhe-
sion kinase (FAK) [47,48], previously shown by our group
to be amplified, overexpressed and constitutively activated

Figure 6 Effect of Syk knock-down in Syk/Fyn positive SCLC cell lines. The SCLC cell lines H146 (A-C) and H69 (D-F) were treated with
Syk-specific and control siRNA as described in Materials and Methods section. (A, D) The efficiency of inhibition was measured by Western
blotting on day 3 and 7 post transfection. Syk resolves as two bands, of which the lower is a less-functional splice variant that lacks 23 amino
acids [37]. Band intensity (lower panels) was quantified by densitometry in ImageJ (http://rsbweb.nih.gov/ij/). (B, E) Cell proliferation, measured by
cell counts as described in Materials and Methods section, shows that Syk-siRNA treatment induces statistically significant growth inhibition
compared to untreated cells and to scrambled siRNA treatment. Asterisks denote overall statistical significance of slope as compared to control
across the siRNA conditions, as follows: <0.0005 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’. The viability growth curves (from N = 4 experiments) statistics were
generated from slopes of a linear regression model. Multiple comparison of treatments were derived using ANOVA and Tukey’s method [80].
(C and F) Percentage of dead cells (percent of ethidium homodimer positive cells normalized to total cell counts, see Materials and Methods) is
significantly higher (H69 p-value < 2.2e-16; H146 p-value < 2.2e-16) in Syk siRNA treated cells at day 5, compared to controls. Asterisks denote
statistical significance measured by paired t-test as compared to control across the siRNA conditions, as follows: <0.0005 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’.
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in SCLC [49,50]. They play key roles in anchorage inde-
pendence, survival and oxidative stress response by acti-
vating multiple downstream pathways including AKT and
ERK kinases [15,35].
We found that SYK knock-down significantly decreased

viability and growth rates in SYK/FYN-positive SCLC via
increased cell death (Figure 6), suggesting that SYK plays
an oncogenic driver role and that inhibitors could poten-
tially be used in SYK-positive SCLC, alone or in combina-
tion with chemotherapy. Increased cell death was also
observed in AML via knock-down of SYK [12]. Further
studies are needed to discriminate between overexpression
versus activation of SYK in SCLC.
Our findings unveil an unsuspected link between

SCLC and the biology of B-cell leukemias/lymphomas
that is worth exploring. The role of SYK in B-cell recep-
tor (BCR) initiated tonic signaling both in normal
B-cells and lymphomas is well established [14,15]. Tonic
signaling promotes proliferation and survival of B-cells.
Mice lacking SYK exhibit profound B-cell development
deficits, and die embryonically from severe hemorrhages,
also pointing to indispensable SYK signaling in cell types
other than B-cells [51]. Targeted SYK therapy has been
advocated in various types of B-cell lymphomas, and
specific inhibitors for its kinase activity are already
approved such as R406, fostamatinib [14,18,19,34],
opening avenues for testing targeted treatment in SCLC.
SYK signaling in NE (and possibly SCLC) may be asso-
ciated with oxygen sensing [20], but SYK-associated
receptor(s) in NE or SCLC cells remain to be defined.
There are several reports of tumor suppressor functions

for SYK in several solid tumor types, including breast can-
cer [52], gastric cancer, and melanoma [53]. Additional
data are needed to reconcile these seemingly conflicting
roles of SYK as oncogene or tumor suppressor. In this
regard, it is worth noting that in B-cells effects of SYK on
survival and proliferation are modulated by associated
SRC-family kinase members [13]. Differential interactions
of SYK with such kinases in a tumor-specific manner are a
possible explanation for the dual role of SYK as a tumor
suppressor in some cancers [52,53], and an oncogene in
hematologic malignancies [10,12] and SCLC. Therefore,
an immediate priority is to determine the type of receptor
SYK is associated with in SCLC, and its possible regulation
by SRC-family kinases such as FYN (see below).
In agreement with our results, in the Cancer Cell Line

Encyclopedia [54], 35 out of 49 SCLC cell lines tested
overexpress SYK (> 2 fold of the median centered intensity
values). In another recent large dataset 33 of 53 SCLC cell
lines overexpress SYK [55]. We confined our experimenta-
tion to SCLC cultured cell lines and knock-down of SYK
expression. While our data are encouraging, future studies
should address applicability to spontaneous [56] or human
xenotransplant mouse models of SCLC [57]. Furthermore,

it remains to be seen whether inhibition of SYK-kinase
activity, in addition to expression, elicits a death response
in SCLC.
It is worth noting that to date no SYK mutations have

been reported in any tumor type. SYK gene fusions or
translocations have been reported in hematologic malig-
nancies, in which a driver function for overexpressed
SYK has also been postulated [15,58,59]. On the other
hand, SYK negative tumors have hypermethylation and
loss of function of the SYK gene [60]. Thus, the biology
of SYK-positive SCLC tumors may be potentially distinct
from SYK-negative SCLC tumors, with differences due to
stages of progression, or divergence of transforming
mechanisms.
SYK signaling functions are mediated in concert with

SRC-family kinases [15]. This subject is not fully under-
stood and, in particular it is not clear to what extent var-
ious SRC-family kinases are interchangeable in this role
within a given cell type. It is perhaps not coincidental that
a SRC-family kinase, FYN, was identified in the blue mod-
ule by WGCNA and that a strong co-expression correla-
tion was found in SCLC TMAs and cell lines (Figure 4
and 5). Byers.et.al also reported activation of SRC-family
kinases in SCLC assessed via reverse phase protein arrays
(RPPA) [61]. On the other hand, FYN kinase inhibition
had no effect on SCLC cell line survival (Additional file 1,
Figure S6). Clarifying the SYK-FYN signaling connection
in SCLC, and the possible redundancy of SRC-family
kinases may open avenues to productively deploy inhibi-
tory combination of SYK and FYN targeted therapy.
In the TMA patient dataset, we detected 2 groups of

SCLC based on SYK/FYN expression alone (Figure 4A
and 4B). Admittedly, this dataset is too small to reach
conclusions, highlighting the need for larger patient
populations. Nonetheless, our observations raise the pos-
sibility of distinct treatment strategies in SYK-positive
SCLC tumors, by analogy to lung tumors overexpressing
EGFR, or HER2+ breast cancers, whose response to tar-
geted therapy dramatically improves the outcome [62,63].
Here we have implemented an alternative strategy to

large scale sequencing, based on a systems view of signaling
networks provided by gene co-expression analysis. We
respectfully submit that this approach can provide useful
translational insights in the biology of specific cancer types.

Conclusions
We have identified a robust co-expression network based
signature (SSHN) for SCLC tumors on three independent
platforms (microarrays, RNAseq and shotgun proteo-
mics). This signature was also conserved in SCLC cell
lines. Within this SSHN network, we found twenty targe-
table kinases that were overexpressed in most, if not all
of these platforms. Two tyrosine kinases SYK and FYN
were overexpressed significantly in SCLC patients and
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cell lines by several independent bioinformatics and
experimental methods, and distinguished between two
potential groups of patients - SYK/FYN positive and
negative. The SYK/FYN positive SCLC cell lines exhib-
ited significant loss of viability and increased cell death in
response to SYK siRNA, providing evidence for SYK as a
novel oncogenic driver for SCLC. All SCLC patients get
treated with combination chemotherapy (cisplatin, etopo-
side) without distinction. Our work suggests that stratify-
ing patients with respect to SYK/FYN expression may
open avenues to personalized medicine in SCLC, given
that SYK small-molecule inhibitors are already in clinical
trials for other disease conditions. Future work will have
to determine whether in fact SYK may represent a poten-
tial actionable target in SCLC, by itself or in combination
with chemo or radiation therapy.

Methods
Cell lines and reagents
All normal, NSCLC and SCLC cell lines were purchased
from ATCC (http://www.atcc.org). All lung cancer cell
lines were grown in RPMI containing 10% fetal bovine
serum (GIBCO®) as recommended by ATCC with the
exception of HBECKT (Keratinocyte serum free media).
SYK, FYN and beta-Actin (Sigma-Aldrich®) antibodies
were used for western blotting and IHC.

Microarray data normalization
Public datasets on the Affymetrix platform (GSE6044)
[9], GSE4824 [36]) were downloaded from GEO [64] as
CEL files, normalized and median centered using quan-
tile RMA normalization using Affy Bioconductor pack-
age [65] in R [66]. Agilent datasets, GSE11969 [30] and
our own Agilent dataset, were Lowess-normalized and
median centered using GeneSpring [67].

Network analysis
Probe-level data for all the datasets was converted to gene-
level data by probe merging using the collapseRows func-
tion [68]. Probes with no known gene symbols were
removed from further analyses to reduce the dimensional-
ity of the dataset. The co-expression network analysis was
performed in R using the WGCNA package as previously
described [6,8]. Briefly, all genes in the training dataset
(GSE6044) were used to build unsupervised co-expression
based similarity matrix using Pearson’s correlation coeffi-
cient. The similarity matrix was converted to a weighted
adjacency matrix by raising it to a power b (b = 6) to
amplify the strong connections and penalize the weaker
connections [29]. Modules were generated using unsuper-
vised average-linked hierarchical clustering with a cut-off
of 0.9. This cut-off was chosen to minimize a large num-
ber of modules with very few genes, that is, less than 20
modules containing at least 100 genes. Each module is a

hierarchical gene network. Gene significance (GS): defined
as GSi = |cor(xi, T)|, indicates correlation of a xi node
expression profile to a phenotypic trait T, a binary trait
variable across m samples [29]. In this case, phenotypic
trait is lung tissue type - ADC, SCC, SCLC, and NL.
Network hubs are defined as highly connected genes
within a network, having high intramodular connectivity.
Intramodular connectivity is a measure of module eigen-
gene-based connectivity (kME) (or module membership),
defined as Kcor,i

(q) = cor(xi, E
(q)), where E(q) is the module

eigengene or 1st principal component of module q. Mod-
ule hubs that have high GS are hubs that are significantly
correlated to a phenotypic trait [29], in our case, SCLC
phenotype. To filter hubs significantly correlated to SCLC
phenotype and identify a SCLC specific hub network
(SSHN), we used high values of GS, kME and differential
expression (SCLC vs normal lung NL). To classify SCLC
from other lung cancer types, unsupervised clustering of
the SSHN genes was performed by bootstrapping analysis
using pvclust package [69]. Bootstrapping analysis pro-
vides confidence values for the stability of each cluster
derived by hierarchical clustering, via resampling of the
data. Heatmaps were generated using the gplots package
[70]. For classification performance estimation, we used
nested repeated 5-fold cross-validation procedure [71].
The inner loop of cross-validation was used to determine
the best parameters of the classifier (i.e., values of para-
meters yielding the best classification performance for the
validation dataset). The outer loop of cross-validation was
used for estimating the classification performance of the
model that was built using the previously found best para-
meters by testing with an independent set of samples. To
account for variance in performance estimation, we
repeated this entire process (nested 5-fold cross-valida-
tion) for 10 different splits of the data into 5 cross-valida-
tion testing sets and averaged the results. Linear support
vector machine is used as the classifier in our analysis, and
the error penalty parameter was selected based on the
nested cross-validation procedure.

Pathway analysis
Functional enrichment analysis of the SCLC hub net-
work (SSHN) was performed using Webgestalt [33].
This tool statistically compares the enrichment of SSHN
genes with pathways contained in various databases
such as Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG). Functional category
enrichment in Webgestalt was tested by the hypergeo-
metric test and multiple comparison corrections were
made using Benjamini & Hochberg method [33,72].

RNAseq data generation and analysis
Tissue samples (20 samples: 10 with SCLC, 5 with SCC,
and 5 normal bronchial brushings) were collected from
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the Vanderbilt University Medical Center and the
University of Liverpool Hospital. Research protocols
were approved by both institutions’ Institutional Review
Board. Total RNA was extracted from fresh frozen
tumors and bronchial brushings by the RNeasy Kit
(Qiagen, CA USA) according to the manufacturer’s
protocol. Whole transcriptome analysis (RNA-seq) was
carried out by next-generation sequencing using Illu-
mina platform in the lab of Vanderbilt Genome Sciences
Resource. Next-generation sequencing methodology has
been applied to sequence RNA from 20 tissue samples.
Due to staged sequencing of samples, two technologies
have been utilized: Illumina GAIIX and Illumina Hi-Seq.
Sequencing runs from Illumina GAIIX (for 11 samples)
were produced with 43bp reads and data was prepro-
cessed using CASAVA 1.7 software. Sequencing runs
from Illumina Hi-Seq (for 9 samples) were produced
with 51bp reads and data was preprocessed with
CASAVA 1.8 software. To make data from two plat-
forms comparable, we have trimmed the last 8bp on
each Illumina Hi-Seq read. Using 20 FASTQ data files
(after Illumina Pass Filtering) with 43bp reads, we per-
formed alignment using TopHat (v1.4.1), Bowtie
(v0.12.7.0), and Samtools (v0.1.18) software. We experi-
mented with two alignment approaches: with two seeds
of 21bp and with one seed of 25bp. Since both align-
ment approaches led to very similar results (in terms of
number and percentage of pass filter aligned reads and
gene correlations with phenotypes in Fragments Per
Kilobase of transcript per Million (FPKM) mapped reads
data), we decided to use alignment with one seed of
25bp. Given aligned data, we computed gene expression
FPKM (fragments per kilobase of exon per million frag-
ments mapped) values using Cufflinks (v1.3.0) software
and performed additional upper quintile normalization
of Cufflinks. Using the resulting normalized gene
expression dataset, we have assessed whether 287 SSHN
genes are associated with SCLC vs. normal OR SCLC
vs. SCC brushings by a two-sample t-test at 5% alpha
level adjusted for multiple comparisons using the
method [61].

Shotgun Proteomics
Shotgun proteomic analysis was performed from archi-
val formalin fixed paraffin embedded tissues for pools of
5 ADC, 5 SCC, 5 SCLC as well as 5 non-cancerous
alveolar lung and 5 bronchial epithelium tissue using
our previously published methods [73]. Briefly, following
deparaffinization with Sub-X, rehydration with ethanol-
water, and protein solubilization in ammonium bicarbo-
nate and trifluoroethanol, proteins were reduced, alky-
lated and digested overnight with trypsin. Tryptic
peptides were separated by isoelectric focusing using
ZOOM IPGRunner IEF strips (Invitrogen) with an

immobilized pH gradient of 3.5-4.7 [74]. LC-MS/MS
analyses were performed on an LTQ-XL mass spectro-
meter (Thermo Fisher Scientific, San Jose, CA) equipped
with an Eksigent nanoLC 1D plus pump and Eksigent
autosampler (Dublin, CA) as described previously [73].
MS/MS spectra were processed for protein identifica-
tions using a data analysis pipeline described previously
[75-77]. False positive peptide-spectrum matches were
estimated by reversed database search [5] and held at
5%. Further filtering to require at least one identified
spectrum per sample across all analyses maintained a
protein false discovery rate (FDR) [72] below 5%. To
compare protein expression differences between differ-
ent histology groups (for example, SCLC vs. Normal),
we applied our quasi-likelihood model and analysis soft-
ware QuasiTel to analyze spectral count data [78]. The
quasi-likelihood model, with no restriction on the distri-
bution assumptions, is appropriate for modeling count
data with overdispersion and/or underdispersion issue
that is frequently observed in spectral count data. Multi-
ple comparison adjusted p values (quasi-FDR) were cal-
culated by incorporating the FDR method described
previously [72].

Tissue microarray immunostaining and analysis
Two TMAs of SCLC specimens were prepared from for-
malin-fixed paraffin-embedded (FFPE) tissue blocks fol-
lowing previously reported methods [40]. Pathology
blocks were retrieved from the archives of the Depart-
ment of Pathology at Vanderbilt University Medical
Center, Nashville VA Medical Center and St-Thomas
Hospital in Nashville, Tennessee. They were obtained
between 1996 and 2008 from 85 patients who had sur-
gery or bronchoscopy prior to medical treatment. SCLC
diagnosis was confirmed on hematoxylin and eosin-
stained sections by an experienced lung cancer patholo-
gist (RE). The study was approved by Institutional
Review Boards at each medical center. The Syk/Fyn IHC
was examined in two to five spots for each TMA. The
intensity of staining was scored as 0-no staining,
1-weak, 2-moderate, and 3-strong and the percentage of
area stained was also measured. The IHC score was
determined by multiplying intensity score to the percen-
tage area stained. The highest score among the spots
was used for the unsupervised clustering analysis of
Syk/Fyn expression. Tumor images were captured by
brighfield microscopy using the Leica SCN400 system
(Leica Biosystems®) at 20X magnification.

Western blot
All cell lines were plated for 2 days in complete medium
to achieve equilibrium in signaling states. Lysates were
prepared by spinning cells down at 4°C, aspirating the
media, and adding M-PER lysis buffer (Pierce®) containing
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1X phosphatase inhibitors 2 and 3 and protease inhibitor
(Sigma-Aldrich®). Lysates were incubated for five minutes
at room temperature, vortexed for 30secs and centrifuged
at 15000 rpm for 15mins (at 4°C). The protein concentra-
tion was quantified using BCA assay (Pierce®) and 30ug of
protein was loaded onto 8% Bis-tris gels (Bio-Rad®). Blots
were imaged using chemiluminescence or Odyssey. The
band intensities were quantified using ImageJ and plotted
in R (http://www.r-project.org). For siRNA experiments,
400,000 cells were transfected using Dharmafect 4 trans-
fection reagent and siRNA (Dharmacon®) in 6-well plates.
Cells were incubated for either 3 or 7 days followed by
lysate preparation and western blotting process as detailed
above.

Viability assay
10000 cells (of H69 or H146) were plated in 100ul of
complete medium (RPMI 1640 containing 10% Fetal
bovine serum) in a 96-well plate with Dharmafect 4 and
siRNA mixture. The reagent dilutions and transfection
procedures were performed as per the manufacturer’s
protocol. Cells were incubated at 37°C until each time-
point. At each timepoint, cells were transferred to a BD
Falcon 96-well black clear bottom imaging plate and
live-dead viability dyes (calcein - live cells; ethidium
homodimer - dead cells) and hoescht 33342 for total
nuclei (Invitrogen®) were added in complete medium.
The cells were incubated with the dyes for 15mins at
37°C followed by imaging using the Cellavista high-
throughput imaging microscope (SynenTec, Elmshorn,
Germany). The Roche cell viability protocol was used to
image and quantify the cells in 3 colors as per manufac-
turer’s instructions. The output generated from this
algorithm included total cell number, viable cell count,
percent live/dead cells, etc. The data plotting and statis-
tics were done using R [66]. The viability growth curves
statistics were generated using a linear regression
growth model [79]. Multiple comparison of treatments
were derived using ANOVA and Tukey’s method
[79,80]. The p-values for percent dead at day 5 were
generated using a paired t-test, pairing across, N = 4,
experimental replicates.

Additional material

Additional file 1: This file includes the following supplementary
figures 1-5. Figure S1: Absence of modules/clusters in a control
WGCNA analysis of a simulated random dataset. 1000 random
datasets were simulated in R to mirror the test dataset GSE6044 (8500
genes, 33 samples)[9], and was subjected to the exact analysis. (A) A
representative dendrogram is shown (each line is a gene). Essentially all
genes merged into the grey module, which is reserved by WGCNA to
genes not assigned to any module. (B) Shows the number of random
simulated datasets from the N = 1000 that detected a certain number of
modules. The overall p-value for this simulation analysis is less than
0.001, which is highly significant, indicating that our 13 modules

detected in GSE6044 are meaningful and relevant to the biology of these
tumors. Figure S2: SSHN as a reproducible classifier in GSE11969
and in-house Agilent datasets. Unsupervised clustering heatmap based
on SSHN genes (rows) of (A) 163 lung cancer patients (columns) in
GSE11969 dataset [30], and (B) our own Agilent microarray dataset
containing 23 SCC and 10 SCLC samples. Red and green colors in rows
of the heatmap indicate high and low expression respectively. LCC- large
cell lung carcinoma, LCNEC- large cell neuroendocrine carcinoma. Figure
S3: mRNA expression of SSHN genes for the top representative
canonical pathways from network enrichment analysis. Functional
enrichment analysis was carried out using Webgestalt [33]. Boxplots of
mRNA expression of representative SSHN hubs functioning in various
pathways (A) Cell cycle checkpoint control and DNA replication; (B) DNA
damage response and repair; (C) Wnt and Notch signaling pathways (D)
Amino acid metabolism pathways. The outliers are denoted by dots. P-
value shows statistical significance by Kruskal-Wallis nonparametric test
[81]. Figure S4: Viability assay measurements using Cellavista high-
throughput imaging microscope. (A) Individual cell populations and
segmentation performed by Cellavista Roche viability kit algorithm. The
colors denote the different dyes used for measurement of total cell
count (blue, Hoescht 33342 - left image), viable cell count (green, calcein
AM - center) and dead cell count (red, ethidium homodimer - right).
Representative viability assay images of H146 (top panel) and H69
(bottom panel) - (B) No treatment, (C) Scrambled and (D) SYK siRNA. SYK
knock-down decreases cellular viability via increased death in both H69
and H146. Figure S5: Fyn KD has no effect on Fyn and Syk positive
SCLC cell lines. The SCLC cell lines H146 (A-C) and H69 (D-F) were
treated with Syk-specific and control siRNA as described in Materials and
Methods section. (A, D) The efficiency of Fyn siRNA inhibition was
measured by Western blotting on day 3 and 7 post transfection. Band
intensity (lower panels) was quantified by densitometry in ImageJ. (B, E)
Cell proliferation, measured by cell counts as described in Materials and
Methods section, shows that Fyn-siRNA treatment shows no growth
inhibition compared to untreated cells and to scrambled siRNA
treatment. Asterisks denote overall statistical significance of the slope as
compared to control across the siRNA conditions, as follows: <0.0005 ‘***’
0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’. The viability growth curves (from N = 4
experiments) statistics were generated from slopes of a linear regression
model. Multiple comparison of treatments were derived using ANOVA
and Tukey’s method [80]. (C and F) Percentage of dead cells (percent of
ethidium homodimer positive cells normalized to total cell counts, see
Materials and Methods) in Fyn siRNA treated cells at day 5, compared to
controls. Asterisks denote statistical significance measured by paired t-
test as compared to control across the siRNA conditions, as follows:
<0.0005 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’.

Additional file 2: Modules identified by WGCNA. This table shows the
13 modules (column modules) identified by WGCNA analysis. Columns
titled kME denote the module specific kME values for each gene
assigned by WGCNA. The kME denotes the intramodular connectivity of
a gene within a particular module. Gene significance or GS for each lung
tissue type is indicated in separate columns. Columns T-AD show fold
change and T-test statistic values for SCLC versus normal lung
comparisons.

Additional file 3: SCLC specific hub network signature (SSHN) gene
information. This table shows expression values for 287 SSHN genes
(identified by WGCNA analysis) across various datasets. RNAseq data
shows comparisons of differential expression of SCLC versus normal lung
and associated statistics such as p-value and false discovery rates (FDR).
Shotgun proteomic data denotes the comparison of rate ratios (obtained
from Shotgun data, see Materials and methods) of SCLC versus normal
bronchiolar epithelium and SCLC versus normal alveolar epithelium. Note
that a few hubs from the yellow and black module (high kMEyellow and
kMEblack respectively) with high GS.SCLC and T-test statistic were also
included in the SSHN. Shown in this table is only kMEblue. kMEblack and
kMEyellow are shown in Additional file 2.

Additional file 4: SCLC specific hub network signature (SSHN) gene
Gene ontology (GO) enrichment analysis. This table shows the
enriched GO biological processes and genes within the SSHN contained
within those categories. This enrichment analysis was performed using
Webgestalt [33] as described in Materials and Methods. For each GO
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biological process, the first row lists the process name, and
corresponding GO ID. The second row lists number of reference genes in
the category (C), number of genes in the gene set and also in the
category (O), expected number in the category (E), Ratio of enrichment
(R), p value from hypergeometric test (rawP), and p value adjusted by
the multiple test adjustment (adjP). Finally, genes in the pathway are
listed. For each gene, the table lists the Gene symbol, and description.

Additional file 5: SCLC specific hub network signature (SSHN) gene
KEGG pathway enrichment analysis. This table shows the enriched
Kyoto Encyclopedia of Genes and Genomes (KEGG) canonical pathways
and genes within the SSHN contained within those categories. This
enrichment analysis was performed using Webgestalt [33] as described in
Materials and Methods. For each KEGG pathway, the first row lists the
KEGG pathway name, and corresponding KEGG ID. The second row lists
number of reference genes in the category (C), number of genes in the
gene set and also in the category (O), expected number in the category
(E), Ratio of enrichment (R), p value from hypergeometric test (rawP), and
p value adjusted by the multiple test adjustment (adjP). Finally, genes in
the pathway are listed. For each gene, the table lists the Gene symbol,
and description.

Additional file 6: Kinase hubs of SSHN. This table shows expression
values for twenty kinase genes (identified by WGCNA analysis) enriched
in SSHN across various datasets. RNAseq data shows comparisons of
differential expression of SCLC versus normal lung and associated
statistics such as p-value and False discovery rates (FDR). Shotgun
proteomic data denotes the comparison of rate ratios (obtained from
Shotgun data, see Materials and methods) of SCLC versus normal
bronchiolar epithelium and SCLC versus normal alveolar epithelium.
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