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Abstract

Background: Despite the lack of agreement on their exact roles, it is known that miRNAs contribute to cancer
progression. Many studies utilize methods to detect differential regulation of miRNA expression. It is prohibitively
expensive to examine all potentially dysregulated miRNAs and traditionally, researchers have focused their efforts
on the most extremely dysregulated miRNAs. These methods may overlook the contribution of less differentially
expressed but more functionally relevant miRNAs. The purpose of this study was to outline a method that not only
utilizes differential expression but ranks miRNAs based on the functional relevance of their targets. This work uses a
networks based approach to determine the sum node degree for all experimentally verified miRNA targets to
identify potential regulators of prostate cancer initiation, progression and metastasis.

Results: Here, we present a method for identifying functionally relevant miRNAs that contribute to prostate cancer
development. This paper shows that miRNAs preferentially regulate highly connected, central proteins within a
protein-protein interaction network. Known targets of miRNAs differentially regulated during prostate cancer
progression are enriched in pathways with known involvement in tumorigenesis. To demonstrate the applicability
of our method, we utilized a unique model of prostate cancer progression to identify five miRNAs that may
contribute to the oncogenic state of the cell. Three of these miRNAs have been shown by other studies to have a
role in cancer but their exact role in prostate cancer remains undefined.

Conclusion: Developing methods to determine which miRNAs to carry forward into biological and biochemical
analyses is important as traditional approaches often overlook miRNAs that contribute to oncogenesis. Our method
applied to a model of prostate cancer progression was able to identify miRNAs with roles in prostate cancer
development.

Background
Prostate cancer is a major medical problem for men
around the world. According to the American Cancer
Society, it is the most common non-cutaneous malig-
nancy in men [1]. Nearly 250,000 men will be diagnosed
with prostate cancer this year and it is estimated that
35,000 will ultimately succumb to the disease. Successful
treatment depends upon early identification, as death
rates increase significantly and treatment options decline
when the tumor leaves the confines of the prostate gland

[2]. The most significant event during prostate cancer
progression is metastatic dissemination [3]. Despite this
significance, molecular events surrounding tumor pro-
gression and metastasis are poorly understood.
In recent years, our knowledge of microRNAs (miRNA)

has evolved and it is now apparent that miRNAs are an
important class of non-coding RNA that regulates the
proteome [4]. miRNAs are short nucleotide sequences
(20-22 nucleotides in length) that alter gene expression
by binding to target mRNAs and either repressing trans-
lation or promoting mRNA cleavage. In the presence of
external cues and environmental stressors, miRNAs can
induce rapid changes in the proteome, allowing the cell
to respond in a more precise and energy efficient manner
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[5]. Numerous cellular processes are affected by miRNA,
including differentiation, growth/hypertrophy, cell cycle
control and apoptosis [6]. Aberrant expression of miR-
NAs has been shown to contribute to the development of
many pathological conditions including cancers of the
breast, prostate, thyroid, and B-cell lymphomas [7]. Con-
sidering their ability to modify gene expression through
direct action on mRNA the analysis of miRNAs is an
important emerging field of study in decoding the gen-
ome, its epigenetic modification, and its regulation.
Though miRNAs have been casually observed to be asso-
ciated with prostate cancer, there is no clear consensus
as to which specific miRNAs contribute to oncogenesis
and ultimately metastasis.
Many miRNA genes are dysregulated in cancer and

influence tumor formation/ progression because they
are located in fragile regions of the genome that are
commonly overexpressed, deleted or epigenetically mod-
ified [8]. Dysregulated miRNAs have been shown to
contribute to oncogenesis by the loss of tumor suppres-
sing miRNAs or increased expression of oncomiRs [9].
Both loss of tumor suppressors and increase of onco-
miRs can ultimately result in increased cell growth, pro-
liferation, invasiveness or metastasis. Aberrant
expression of even a single miRNA has the potential to
influence a large number of cellular processes, since it is
predicted that each miRNA has the potential to affect
hundreds of proteins. Thus, miRNA dysregulation can
destabilize homeostatic balance by affecting levels of a
multitude of target proteins.
Although it is clear that disturbance of miRNA

expression can influence tumorigenesis, there is little
agreement on specific miRNAs that contribute to the
pathogenesis and metastasis of the prostate tumor.
Many studies have attempted to characterize a signature
that can identify malignant prostate tissue from its
benign counterpart but generally have failed to reveal a
consistent signature capable of discriminating between
phenotypes. Traditional methods typically examine the
most significantly, differentially expressed miRNA. How-
ever, such analyses can overlook the emerging potential
that miRNAs can exert on downstream proteins. It is
reasonable to suspect that smaller expression changes
can have a greater influence toward tumorigenicity, if
they regulate important protein targets. As each miRNA
can influence the level of numerous protein targets,
even slightly dysregulated miRNAs can exert a large
effect on cellular behavior.
Cancer is the end result of numerous alterations in

biochemical pathways and networks [10]. Understanding
the molecular perturbations that underlie cancer initia-
tion, progression and metastasis are critical. Systems
biologists seek to gather information about multiple
types of molecules (genes, proteins, RNAs) in the cell

and integrate the information in order to understand
the perturbations underlying a given pathology from a
broader perspective. Complex interactions can be mod-
eled as a biological network with the macromolecule
represented as a node and interactions modeled as
edges [5]. Network properties are described mathemati-
cally and their contributions to homeostasis are esti-
mated. An important indicator of molecular importance
is node degree. A highly connected node is more likely
to be essential and cause disease when dysregulated
[11,12]. The local connectivity and position of a protein
within the global network can be used to identify key
proteins that are likely to cause disease when aberrantly
expressed. The purpose of this paper is not to elucidate
specific miRNAs that drive prostate cancer development
but rather outline a method for ranking differentially
expressed miRNAs. This work shows that expression
profiling of a prostate cancer progression model in asso-
ciation with networks biology has the potential to reveal
more relevant miRNAs that drive prostate tumor
progression.

Results and discussion
miRNAs regulate highly connected protein nodes and
target pathways involved in cancer
A protein-protein interaction network (PPI) was built
from proven targets of known dysregulated miRNAs
involved in carcinogenesis of the prostate. This network
was used to determine whether or not miRNAs have a
tendency to regulate highly connected protein nodes.
Comparing the average node of proteins within a PPI
network built from proteins chosen at random to a
network of proteins regulated by miRNAs reveals sig-
nificant differences in the average node degree, closeness
centrality and network stress (p-value <0.0001)
(Table 1). This analysis shows that miRNAs preferen-
tially target highly connected protein nodes that are
generally considered to be key factors within the cell
[13]. Studies have shown that proteins with a high node
degree and lower closeness centrality are more likely to
cause lethality when dysregulated [14]. The average pro-
tein in the miRNA targeted network has a mean node
degree of nearly 30, while the randomly chosen protein
network has a mean node degree of less than five
(Figure 1). The observation that miRNAs tend to prefer-
entially regulate highly connected proteins can be used

Table 1

Descriptor Prostate Cancer
miRNA Targets

Randomly Chosen
Prostate Proteins

Mean degree 29.80 4.46

Closeness .000496 .1258

Stress 28,251.6 5821
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to estimate the contribution of a miRNA to the overall
stability within a cell. Our method outlined in Figure 2,
begins by building a data table of each miRNA and
associating it with proven mRNA targets. Each miRNA/
mRNA interaction is paired with the PPI degree of the
mRNA target. This approach will be used to functionally
estimate the contribution of miRNA dysregulation to
tumorigenic potential.
ToppCluster pathway analysis of known targets of

miRNAs dysregulated during oncogenesis reveals an
enrichment of proteins involved in pathways associated
with cancer (Figure 3) [15]. A similar analysis did not
identify any pathway enrichment in the list of randomly
chosen proteins. It is well known that driving cell cycle
progression or inhibiting apoptosis can promote neo-
plastic transformation [16]. Many of the miRNA targets
are key regulators of pathways that lead to uncontrolled
cell proliferation and survival. The pathways along with
key protein members are described in Table 2.

Expression profiling of prostate cancer progression model
Many model cell lines have been used to explore pros-
tate cancer progression. Most are derived from meta-
static sites and thus may not represent the best model
for elucidation of early indicators of cancer formation

[17-19]. The cells utilized in this study were obtained
from normal prostate tissue immortalized with SV40
large T antigen (P69) and cycled through male athymic
nude mice to obtain the highly tumorigenic and meta-
static variant (M12) [20]. This unique, isogenic model
may provide insights into the molecular causes that
initiate cancer formation that may be missed in other
prostate cancer cell lines established from end stage,
metastasized tumors.
We discovered 186 miRNAs that significantly change

(>2-fold) from the parental P69 to the highly tumorigenic

Figure 1 Connectivity of miRNA targets . Two shortest path
protein-protein interaction networks were built using the Agilent
literature search function within Cytoscape 2.8 and topological
measures evaluated using CenstiScaPe 2.76. The first network was
built using proven targets of miRNAs that are dysregulated during
the development of prostate cancer. The other network was built
from randomly chosen proteins that are expressed in the prostate
but chosen without regard to miRNA status. A whisker plot
composed using R displays the differences in the mean node
degree between the two PPI networks.

Figure 2 Outline of project design. The method outlined in this
paper integrates information obtained about validated targets of
miRNAs dysregulated in prostate cancer in order to rank
differentially expressed miRNAs. Node degrees for each miRNA are
determined and used to rank which miRNAs to carry forward to
biological characterization.

Figure 3 ToppCluster pathway analysis of known prostate
cancer miRNA targets. Validated targets of dysregulated miRNAs
were clustered into pathways using ToppCluster. Corrections for
multiple comparisons was accomplished using a Bonferroni
correction and statistical significance was set at p-value < 0.05. The
log base 10 of the p-value is displayed. Log transformed p-values
greater than 1.5 are statistically significant.
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M12 cell line (Figure 4A). Ninety miRNAs were lost as
the tissue became more tumorigenic, suggesting they
function as potential suppressors of tumor formation.
The expression of the remaining 96 dysregulated miR-
NAs showed increased expression as the tumorigenicity
increased indicating they function as oncomiRs. The fre-
quency distribution of the log transformed expression is
displayed in Figure 4B. Of the 186 dysregulated miRNAs,
only 65 miRNAs exhibited higher expression differences
(≥ 8.0) as the phenotype of the cell changed.
The cost to confirm every potentially dysregulated

miRNA identified in a microarray experiment is prohibi-
tively expensive. Few labs have the financial or physical
resources needed to carry out such validation. There-
fore, labs generally choose a subset of miRNAs to vali-
date. Many factors affect the choice of a gene set
including relative expression differences, biological func-
tion, availability of reagents, and investigator preference.
Traditionally researchers have focused their efforts on
extremely dysregulated miRNAs. This approach may
overestimate the importance of differential expression. It
is reasonable to suspect that smaller changes in some
miRNAs may exert a greater influence in tissue beha-
vior; i.e. if they modulate the expression of more impor-
tant proteins. Many of the miRNAs that are altered
during tumorigenesis changed between 2-8 fold. If one
only focuses on the extremely dysregulated miRNAs, the
contributions of many miRNAs will be overlooked. As
noted in Figure 4, less than 20% of miRNAs are dysre-
gulated greater than 8-fold. Most of the miRNAs change
between 2-8 fold; therefore, if one only focuses on the
extreme expression variances, the contributions of a

Table 2

Pathway Name Description Relevant miRNA Targeted Proteins

Apoptosis Process of programmed cell death APAF1, BAK1, BCL2, BNIP3L, CASP6, CASP7, CDKN2A,
FADD, FAS, IGF1R, JUN, MCL1, MYC, PIK3R1

E2F regulation of
DNA replication

E2F family of transcription factors affects cell cycle progression,
apoptosis and DNA synthesis.

CCNE1, CDC25A, DHFR, E2F1, E2F2, E2F3, PRIM1, RB1,
TYMS

TRKA signaling Activation leads to cell survival and replication ADCY6, AKT2, CDKN1A, CDKN1B, CRK, FOXO1, IRS1, KRAS,
MAPK12, MAPK14, MAPK7, MTOR, NRAS, PIK3R1, PTEN,
RHOA

miR-17-92 cluster/
E2F

Regulation of E2F and Myc by members of miR-17-92 cluster E2F1, E2F2, E2F3, MYC

IL2 signaling events
mediated by STAT5

Cytokine signaling pathway involved in immune response to
foreign infection

BCL2, CCNA2, CCND3, CDK6, FOXP3, JAK1, MYC, PIK3R1,
SP1

ErbB Signaling ErbB family of receptor tyrosine kinases regulates motility, survival,
apotosis, proliferation

CCND1, CDKN1A, CDKN1B, CRK, EGFR, ERBB2, ERBB3,
FOXO1, JUN, KRAS, MTOR, MYC

G1/S Transition Cell cycle checkpoint CCND1, CDK4, CDKN1A, CDKN1B, CDKN2A, E2F1, E2F2

IL-4 Signaling Regulates immune response signaling including B cell proliferation,
T and B cell survival, production of immunoglobulins, and
chemokine production.

BCL2, CCNA2, CCND3, CDK6, FOXP3, JAK1, MYC, PIK3R1,
SP1

Cell Cycle Cell division, replication, and maturation. CCNA2, CCND3, CCNE1, CDC14B, CDC25A, CDK4, CDK6,
CDKN1A, CDKN1B, CDKN2A, E2F1, E2F2, E2F3, PLK1, RB1

Figure 4 A: Frequency distribution of qRT-PCR array of
prostate cancer cell lines. Two variants (P69 and M12) of a
genetically related prostate cancer progression model were
compared using the Exiqon miRCURY LNA™ Universal RT microRNA
PCR system (Exiqon, Denmark). miRNA expression was calculated by
the 2^-ddCT method [43]. The total number and frequency of
potential oncomiRs and tumor suppressors is displayed as well as
the subset with an expression difference of greater than 8-fold (A).
Figure 4-B: Frequency distribution of qRT-PCR array of prostate
cancer cell lines. miRNAs functioning as oncomiRs demonstrated
higher expression levels in the M12 variant and have a log
transformed ratio greater than 1.0. Tumor suppressing miRNAs have
a log transformed expression ratio of less than 1.0. A relative
frequency distribution of log transformed miRNA fold changes was
created using Microsoft Excel (B).
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large number of miRNAs will be overlooked. Based on
the observation discussed earlier using known dysregu-
lated miRNAs, our approach considers differential
expression and functional relevance as ranked by the
total node degree for all known protein targets. It is
important to consider that not all miRNA targets are
known but as the field evolves our method will remain
applicable. miRNAs that exhibit greater than 2-fold
expression differences between the non-tumorigenic and
the tumorigenic, metastatic cell line were plotted against
the total node degree of all proven interactions
(Figure 5). The average connectivity of differentially
expressed miRNAs is ~200 and indicated by a horizontal
line dividing the graph into two regions. The points
located near the top of the plot represent miRNAs that
are proven to regulate important protein nodes that
may play key roles in oncogenesis. A vertical line is
drawn at 0, points located to the right function as onco-
miRs in our cells and points to the left serve as potential
suppressors of tumor formation. Several of these miR-
NAs have been previously described in cancer as dis-
cussed below but their role in prostate cancer
development remains unresolved. The top 25 dysregu-
lated miRNAs as ranked by the total node degree of
proven protein targets is included in Table 3. Since, the
purpose of this paper is not to elucidate miRNAs that
drive prostate cancer development but rather outline a
method for ranking differentially expressed miRNAs

further biological and biochemical analyses are needed
to define their contribution to the development of pros-
tate cancer.

Potential miRNAs regulating prostate tumorigenesis
Our method identified five miRNAs that clearly stood
out from the others with total node degrees exceeding
1000. A review of the literature supports the fact that
each of these may play a role in the tumorigenic pro-
pensity of the M12 cells (Figure 5). Three miRNAs (hsa-
miR-125b, hsa-miR-1, and hsa-miR-21) with known
roles in prostate cancer were identified (Figure 5
circled). Of these, one miRNA (hsa-miR-125b) is highly
dysregulated during prostate cancer progression and
likely would have been selected for further analyses
based upon extreme differential expression. The other
two (hsa-miR-1 and hsa-miR-21) are not as greatly dys-
regulated and their contribution to oncogenesis may
have been overlooked. Potential roles in cancer develop-
ment for these selected miRNAs are discussed below.
Two miRNAs (hsa-miR-124 and hsa-miR-34a) may play
a role in prostate cancer progression but their

Figure 5 Plot of changes in miRNA expression versus node
degree. Each dysregulated miRNA was plotted with the value of
the X-axis being the log transformed fold change observed when
comparing the M12 cells to the P69 cells. The y-axis represents the
sum node degree of all experimentally verified targets of that
miRNA. A horizontal line was drawn at 200, which is the mean
node degree of all dysregulated miRNA targets. miRNAs with
proven roles in cancer progression are identified with a circle
whereas miRNAs identified with a square have an unproven role in
tumor progression.

Table 3

miRNA ID Fold
Difference

Listed in
miR2Disease

Node Degree of
Proven Targets

hsa-miR-1 8.53 No 1330

hsa-miR-21 0.26 Yes 1302

hsa-miR-124 9.48 No 1242

hsa-miR-34a 1850.82 Yes 1208

hsa-miR-125b 0.00 Yes 1194

hsa-miR-19a 0.09 No 701

hsa-miR-22 2.67 Yes 565

hsa-miR-146a 0.26 Yes 504

hsa-miR-153 240.02 No 451

hsa-miR-20b 0.06 No 432

hsa-miR-15b 0.08 No 411

hsa-miR-100 0.21 Yes 354

hsa-miR-29c 2.75 No 339

hsa-miR-9 9.56 No 338

hsa-miR-181b 0.41 Yes 328

hsa-miR-99a 6.08 Yes 311

hsa-miR-31 0.32 Yes 305

hsa-let-7a 0.48 Yes 267

hsa-miR-27b 0.46 Yes 263

hsa-miR-7 2.38 No 263

hsa-miR-296-5p 0.31 No 260

hsa-miR-27a 0.30 Yes 234

hsa-miR-185 0.21 No 230

hsa-miR-133a 92.91 No 211

hsa-miR-181c 4.72 No 172
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mechanism is not as clearly defined and additional
investigation is needed. They are identified in Figure 5
with a square.
Human miR-125b was greatly decreased in the highly

tumorigenic, metastatic M12 cell line. There are many
proven targets of miR-125b including the epidermal
growth factor receptors (EGFR) ErbB2 and ErbB3 [21].
Increased levels of ErbB2/ ErbB3 can lead to uncon-
trolled cellular proliferation and inhibition of apoptosis
through activation of the AKT pathway. Patients with
metastatic, hormone-refractory prostate cancer all
showed an increase in EGFR expression and overexpres-
sion of the EGFR receptor has been shown to be asso-
ciated with poor outcomes [22,23]. A recent study that
compared matched prostate tumorigenic epithelium to
benign epithelium revealed significant down regulation
of miR-125b suggesting that the decreased expression of
miR-125b can be used as a potential biomarker to dis-
cern malignant from benign epithelium.[24]. Increased
expression of miR-125b in highly tumorigenic and meta-
static prostate cancer cells may decrease tumorigenicity
by inhibiting the EGFR family of growth factor receptors
also making miR-125b an attractive therapeutic target.
In this cell progression model, miR-125b clearly func-
tions as a tumor suppressor.
miR-21 possesses diverse roles in cell proliferation,

invasion and motility [25]. Many studies have shown
that miR-21 functions as an oncomiR. It often increases
during the process of tumorigenesis targeting a large
number of genes that inhibit tumorigenic transformation
[26]. However, a recent study by Folini et al. shows that
many prostate cancer patients suffer a down regulation
of miR-21 [27]. This suggests a need to consider any
dysregulated miRNA in the context of the disease as its
role could change depending upon the tissue source.
miR-21 is not the only miRNA to display contrasting
behaviors during cancer development. Eleven miRNAs
have shown conflicting results during prostate tumor
progression and can function as either a tumor suppres-
sor or an oncomiR [13]. Despite the conflict, miR-21
remains an interesting target that needs further
investigation.
Predominantly thought to induce cardiac/skeletal mus-

cle differentiation and development, miR-1 also increases
during the development of prostate cancer [28]. Dozens
of targets have been proven to be regulated by miR-1, the
most well described of which is HDAC4, a histone deace-
tylase. Androgen insensitivity is commonly observed in
most disseminated prostate carcinomas. Localization of
HDAC4 in the nucleus of androgen insensitive cancer
cell lines was observed and hypothesized to contribute to
the development of the hormone refractive phenotype
[29]. HDAC4 represses transcription of the androgen
receptor [30]. It remains probable that miR-1 may be an

important oncomiR that drives prostate cancer progres-
sion justifying further investigation.
Although a role for the remaining two miRNAs (hsa-

miR-34a and hsa-miR-124) is less obvious, a case can be
made for their possible role in prostate tumorigenesis.
Studies have demonstrated that the decreased expres-
sion of miR-34a may enhance cancer progression [31].
Wild type P53 has been shown to transactivate miR-34a.
It is known that PC3 and DU145 cells are null or
express a mutant P53 respectively when compared to
the LnCap cells that express wild type P53. Thus miR-
34a expression is dependent upon a secondary regulator.
Although the status of P53 needs to be investigated in
the cell lines, it is possible that P53 expression could
account for differences in miR-34a levels. miR-124 is
enriched in brain tissue and its over expression in
neural stem cells induces differentiation [32]. Other stu-
dies have shown that miR-124 functions as a tumor sup-
pressor and is lost during tumorigenesis [33,34]. As
mentioned previously, several miRNAs have shown con-
trasting roles and therefore conflicting roles must be
considered between different types and stages of carci-
noma progression. In our cell model the expression of
miR-124 increases during tumorigenesis. Although clear
roles for these miRNAs in prostate tumor progression
could not be identified, our study would suggest their
investigation is warranted.

Conclusion
The method described here extends a researcher’s ability
to not only consider the extent of differential expression
but includes consideration of functional importance
when choosing which miRNAs to further characterize.
This work shows that miRNAs preferentially target mes-
sages that are highly connected and when aberrantly
expressed results in a loss of cell cycle control leading
to increased proliferation, invasion and metastasis.
Expression profiling of a prostate cancer cell progression
model revealed a large number of dysregulated miRNAs,
several of which have known roles in the development
of cancer (miR-125b, miR-21 and miR-1) but their
involvement in prostate cancer progression was not
clear. Two new miRNAs (miR-34a and miR-124) that
likely affect prostate tumor progression were identified
but a literature review does not indicate a clear role,
and thus continued investigation is needed to prove
their role in cancer formation.

Materials and methods
Protein-protein interaction network
Proven miRNA/gene interactions (2058) were assembled
from Tarbase and miRecords [35,36]. Multiple entries
were eliminated and resources combined into a single
non-redundant data table. A list of d[14]ysregulated
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miRNAs contributing to prostate cancer were obtained
from miR2disease and each associated with validated
targets using our comprehensive record [37]. Transcrip-
tome profiles from the Unigene database were obtained
and used to determine miRNA targets expressed in the
prostate. Known prostate miRNA targets were used to
build a protein-protein interaction network [38]. An
Agilent literature search (v2.76) tool installed in Cytos-
cape 2.8 was used to infer two protein-protein interac-
tion networks [39,40]. A prostate cancer miRNA
targeted network was inferred from a candidate list of
608 known prostate cancer miRNA target proteins. Each
protein was used as a search term in the Agilent litera-
ture search tool and the search controlled to limit inter-
actions to Homo sapiens with a maximum of 10 hits
per search string/ search engine. As a control, the sec-
ond network was built in the same manner using 608
randomly chosen proteins that are expressed in the
prostate but chosen without regard to known miRNA
status [38]. Following network inference, visualization
was accomplished using Cytoscape and topological net-
work descriptors were estimated using CentiScaPe [41].

Pathway analysis
The two lists of proteins were uploaded into the
ToppCluster gene enrichment analyzer, each as a cluster
[15]. The first set was composed of the validated protein
targets regulated by miRNAs (608) and the second, the
list of randomly sampled and expressed prostate pro-
teins. Multiple comparisons were corrected using a Bon-
ferroni correction and statistical significance was set at
p-value < 0.05. Data is presented as the log transformed
p-value at base 10.

Cell culture
Cells were cultured at 37° C in RPMI1640 with L-gluta-
mine obtained from Gibco supplemented with 5% fetal
bovine serum, 5 μg/ml insulin, 5 μg/ml transferrin, and 5
μg/ml of selenium (ITS from Collaborative Research Bed-
ford, MA). Inhibition of bacterial contamination was
accomplished with the addition of Gentamycin (0.05 mg/
ml). All tissue culture cells were grown in 75 cm2 flasks
and split when 60-70% confluent. Cells were pelleted after
trypsin (0.25% in EDTA) digestion and inactivation with
serum-containing media by centrifugation at 5000 RPM
for five minutes. After washing, cell pellets were flash fro-
zen in liquid nitrogen and stored for at least 24 hours.

Cell pellet RNA extraction
Total RNA was extracted from cell pellets described
above using the miRVana™ miRNA isolation kit from
Ambion per manufacturer’s instructions. Briefly after
cell lysis and organic extraction, total RNA was bound
to a glass fiber filter, washed and eluted with a

proprietary elution buffer. After isolation, RNA concen-
tration was estimated using a Biorad® Smart Spec™
3000 spectrophotometer, diluted to a concentration of
100 ng/μl and stored at -80°C for at least 24 hours.

MicroRNA profiling
Real time PCR profiling was performed using the miR-
CURY LNA ™ Universal RT microRNA PCR system
(Exiqon, Denmark). Human Panel I was used to identify
dysregulated miRNAs in the P69 cell line versus its
metastatic derivative M12. Duplicate samples were com-
pared using 25 ng and 50 ng of RNA as input. RNA
input was converted to cDNA using supplied reagents
and enzymes (4 μl of 5x reaction buffer, 9 μl of nuclease
free water, 2 μl enzyme mix, 1 μl synthetic RNA spike
in, and 5 μl of RNA diluted to 5 ng/ul). The reaction
was incubated for 60 minutes at 42° C and the enzyme
was heat inactivated for 5 minutes at 95°C. Real time
PCR plates were run on an ABI7900 HT (95°C for 10
mins, 40 cycles at 95°C for 10 secs, for 60°C-1 min,
ramp rate 1.6°C/s). Threshold and baseline were set
manually according to recommendations in the supplied
protocol. After correcting for interplate variability, cycle
threshold (Ct) values were normalized to the global
mean expression of all miRNAs. Initial data analysis was
performed using Exiqon GenEx software and all values
are reported as fold changes relative to P69. miRNAs
exhibiting greater than 2-fold expression differences in
both sets of arrays were considered to be significant and
selected for further analysis. The data discussed in this
publication has been submitted in NCBI’s Gene Expres-
sion Omnibus and accessible through GEO as accession
number GSE49520. [42].

Statistical analysis
Differences in network distributions were evaluated
using an Analysis of Variance test (ANOVA) with signif-
icance set at probability ≤ 0.05. All statistical analyses
were performed using JMP 8.0 (Statistical Analysis Soft-
ware Cary, NC). Figures 1 and 5 were created using the
R Project for Statistical Computing (http://www.
r-project.org). The remaining data analyses and figures
were compiled and constructed using Microsoft Excel.

List of abbreviations used
miRNA microRNA
mRNA messenger RNA
PPI protein protein interaction network
EGFR epidermal growth factor receptor
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