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Abstract

Background: Contact-dependent inhibition (CDI) has been recently revealed as an intriguing but ubiquitous
mechanism for bacterial competition in which a species injects toxins into its competitors through direct physical
contact for growth suppression. Although the molecular and genetic aspects of CDI systems are being increasingly
explored, a quantitative and systematic picture of how CDI systems benefit population competition and hence alter
corresponding competition outcomes is not well elucidated.

Results: By constructing a mathematical model for a population consisting of CDI+ and CDI- species, we have
systematically investigated the dynamics and possible outcomes of population competition. In the well-mixed case,
we found that the two species are mutually exclusive: Competition always results in extinction for one of the two
species, with the winner determined by the tradeoff between the competitive benefit of the CDI+ species and its
growth disadvantage from increased metabolic burden. Initial conditions in certain circumstances can also alter the
outcome of competition. In the spatial case, in addition to exclusive extinction, coexistence and localized patterns
may emerge from population competition. For spatial coexistence, population diffusion is also important in
influencing the outcome. Using a set of illustrative examples, we further showed that our results hold true when the
competition of the population is extended from one to two dimensional space.

Conclusions: We have revealed that the competition of a population with CDI can produce diverse patterns,
including extinction, coexistence, and localized aggregation. The emergence, relative abundance, and characteristic
features of these patterns are collectively determined by the competitive benefit of CDI and its growth disadvantage
for a given rate of population diffusion. Thus, this study provides a systematic and statistical view of CDI-based
bacterial population competition, expanding the spectrum of our knowledge about CDI systems and possibly
facilitating new experimental tests for a deeper understanding of bacterial interactions.

Keywords: Contact dependent inhibition, Bacterial population, Competition, Extinction and coexistence, Spatial
aggregation

Background
Bacteria are highly social and present dominantly in
the form of complex communities where they interact
through a variety of fashions [1-3]. Among all types of
bacterial interactions discovered, competition has been
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identified as the most prevalent by recent studies [4-6].
The ubiquity of competition has been mainly attributed to
the limited space and resources of natural environments.
To maximize their survival and reproduction, bacteria
have indeed developed numerous competition strate-
gies, including interference competition where a species
directly harms another via active production of toxin and
other effectors [4,6-8].
Interference competition was initially shown to be

mediated by diffusible soluble factors, such as antibi-
otics and bacteriocins. These effector molecules serve to
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potently decrease survival and reproduction of neighbor-
ing bacteria at a long range spatial scale [2,9-11]. For
instance, Lactococcus lactis produces and secretes nisin,
a small antimicrobial peptide, into the extracellular mil-
ium (e.g., milk) to efficiently inhibit other bacterial species
for lactose competition [12]. A set of recent studies, how-
ever, have illustrated that interference competition can
also occur through direct physical contact between cells,
revealing a new class of competition with an interaction
scale restricted to nearest neighbors [13-17].
Furthermore, studies have uncovered a surprisingly high

degree of diversity among these contact–dependent inhi-
bitions (CDIs). They occur across a wide range of organ-
isms including both Gram- negative and positive bacteria
[17-21], use different toxins similar to nuclease, tRNAse
and DNase, and further exploit various delivery machiner-
ies spanning Type III, IV, V, and VI secretion systems
[13-15,22,23]. Moreover, it has been shown that certain
strains even have multiple CDI modules and multiple
toxins for competition [17,24].
Despite their structural and compositional diversity, all

of the CDI systems possess a common mode of action in
which growth inhibition toxins are deployed into competi-
tor cells via direct cell to cell physical contact. A repre-
sentative example is the CdiBAI system discovered in the
enterobacterium E. coli EC93 [14]: The system consists
of three functional components: CdiA, the toxin effector,
CdiB, the β-barrel protein localized to the outer mem-
brane for effector export, and CdiI, the immunity protein.
Upon contact with a neighboring cell, a CDI equipped cell
employs CdiB to inject toxin CdiA into the target cell to
inhibit its growth while expressing the immunity protein
CdiI to prevent autoinhibition.
The intriguing functionality and characteristics of CDI

motivate us to ask the following questions: How does
CDI impact the competition between a CDI equipped
(CDI+) and deficient (CDI-) species? Can the two species
coexist, or does extinction always occur for one of the
species? Due to the intrinsic association of protein expres-
sion and metabolic load, will the growth disadvantage of
CDI+ species counteract its competition advantage from
toxin production? How does cell motility alter the compe-
tition outcome in different environmental settings, such
as liquid or solid agar?
Although current experimental efforts [13,23-26] have

started to address some of the above questions, a system-
atic and quantitative understanding of CDI-based bacte-
rial competition has not been achieved. In particular, it
is not clear how the competition outcome is influenced
by the inhibition advantage of CDI-based competition
and the growth disadvantage associated with metabolic
load. Moreover, most experimental efforts have primar-
ily focused on liquid culture settings where populations
are well mixed [14,24,25] but little has been elucidated

when competitions occur in space. There is hence a clear
need for a systematic investigation of CDI-based bacterial
competition that integrates the tradeoff between com-
petitor inhibition and metabolic cost with spatiotemporal
dynamics.
Here, we present a mathematical model to describe a

bacterial population with CDI+ and CDI- species that
compete through both contact-dependent inhibition and
nutrient utilization. With this model, we studied the com-
position of the competing population in the well-mixed
case, showing that the outcome is always extinction for
one of the species depending on initial conditions as well
as the tradeoff between inhibition strength and metabolic
cost.We then continued to investigate the dynamics of the
population in one dimensional space, revealing possible
spatial coexistence of the species through aggregation. To
acquire a statistical understanding of the coexistence pat-
terns, we further conducted a systematic survey into the
spatial structure of the competing populations by altering
the interplay between inhibition strength and metabolic
growth disadvantage. A set of illustrating tests in two
dimensional space was also implemented to demonstrate
the generality of our results. We finally conclude by
summarizing our findings and discussing possible future
developments.

Results
Amathematical model of bacterial competition with CDI
Bacterial competition has been modeled through cou-
pled systems of ordinary differential equations, dating
back to the work of Lotka and Volterra [27,28]. Later
developments of the original Lotka-Volterra model have
incorporated the effects of nutrient limitation and
species diffusion [29-36]. Typically, these models incor-
porated only on-site interactions (i.e. the interaction
range for competing species is taken to be infinites-
imally small). For bacteria competing through CDI,
however, it is natural to explicitly include a finite
interaction range in order to account for the intrin-
sic nearest-neighbor effects of toxin injection in the
system.
Previous studies on competition with a finite interac-

tion range have shown that spatial aggregation is possi-
ble in the long time limit [37-43]. For instance, a single
species with nonlocal interactions has unstable homoge-
neous states for certain functional forms of its growth rate,
leading to a spatial distribution of the population with
clumps of high species concentration separated by regions
with low density [41,44-47]. For two species systems, it
has been shown that systems with specific features, such
as systems with Allee effects and completely symmetric
interactions, may have steady spatial structures [37,40,48].
Despite these advances, a mathematical model appropri-
ate for bacterial populations with the nearest neighbor and
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asymmetric interactions implemented through CDI has
not been investigated.
To enable a quantitative and systematic investigation of

CDI-based bacterial competition, we constructed a math-
ematical model that describes a two-species population
with one CDI+ (CDI equipped) and the other CDI- (CDI
deficient) as follows:
du
dt = u

(
α − u − v − c

∫
f (|χ − x|)v(χ)dχ

)
+ Du∇2u

dv
dt = v(β − u − v) + Dv∇2v (1)

where u and v are the concentrations of the CDI- and
CDI+ species respectively. This model incorporates the
asymmetrical interaction from the CDI+ to CDI- species
through the integral term (−uc

∫
f (|χ − x|)v(χ)dχ ), the

effects of limited shared resources through the logis-
tic growth terms, and cell motilities through the corre-
sponding diffusion terms. Here, nondimensionalization
has been implemented with the original model detailed in
Additional file 1: Section 1.
Due to the intrinsic direct physical contact of CDI,

bacterial interactions follow a discrete, nearest neighbor
fashion, i.e., f (|xi − xj|) = 1/3δ when j = i + 1, i, i− 1 and
f (|xi − xj|) = 0 otherwise. The above model can thus be
discretized and rewritten in one spatial dimension as:

dui
dt = ui(α − ui − vi − c1(vi+1 + vi + vi−1))

+ D
δ2

(ui+1 − 2ui + ui−1)

dvi
dt = vi(β − ui − vi) + D

δ2
(vi+1 − 2vi + vi−1) (2)

i = 1, 2, . . . ,N
where δ is the grid spacing, ui (vi) is the concentration
of the CDI- (CDI+) species in space iδ, N is the num-
ber of total grid points, and D is the diffusion constant
(Du = Dv = D assumed for simplicity). In addition, we
have used c1 = c/3 to reflect the fact that there are three
interaction locations for CDI in one dimension including
one on–site and two nearest neighbors. Furthermore, c1
is a constant here, corresponding to a constitutive expres-
sion of the CDI system as seen in certain species such as
E. coli EC93 [24]. Periodic boundary conditions are
imposed so that uN+1 = u1 and u0 = uN (similarly for v).
Although this model is generic and does not describe

biochemical details of the competing population, it cap-
tures the main biological features of the system in realistic
settings: (1) Cellular growth is described using a logis-
tic growth model, which accounts for nutrient limitation
in experimental settings and has been adopted widely by
previous theoretical studies [35]; (2) Cellular movement
is modeled with a random diffusion term, which is ade-
quate to describe non-motile cells with passive diffusion

or motile cells without chemotaxis; (3) Constant growth
inhibition of the CDI system is modeled, which is sup-
ported by experimental evidence showing that certain
bacterial species have constitutive production of the CDI
machinery [24].
Our model has four key parameters, namely α, β , c1,

and D, which describe the growth rates of the CDI-
and + species, inhibition strength from the CDI+ to CDI-
species, and the motility of both species respectively. It is
evident that if the CDI+ species (v) has a larger growth
rate than the CDI- species (u) (i.e., α/β < 1), the outcome
of competition will be the extinction of the CDI- species
due to the additive combined affects of slower growth
and nearest neighbor inhibition. However, the outcome
is unclear when the metabolic load of producing proteins
involved in CDI causes α/β > 1.We are thus motivated to
understand how the tradeoff between inhibition strength
and growth disadvantage influences the outcome of com-
petition and what kinds of possible competition outcomes
may result. In the following, we consider the tradeoffs
between relative growth advantage and inhibition over a
range of cell motility.

Well-mixed case
We begin our investigation by considering the well–mixed
case for our system, corresponding to a liquid assay or
D → ∞ in the model. In this case, the solutions are
assumed to be homogenous in space so that ui = u and
vi = v for all i. By eliminating the spatial interactions of
the system, we get an inhibition contribution of 3c1v (cv)
to the growth rate of u at each site. The resulting equations
are:

du
dt = u(α − u − v(1 + c))
dv
dt = v(β − u − v) (3)

from which we find four steady states, including (u, v) =
(0, 0), (u, v) = (α, 0), (u, v) = (0, β), and (u, v) = (β−(α−
β)/c, (α − β)/c).
The linear stability of these homogeneous steady states

changes as we vary the parameters of the model due
to the tradeoff between inhibition strength c and rel-
ative growth advantage α/β (Figure 1A). When the
growth advantage of species u (CDI-), given as α/β ,
greatly outweighs the inhibition constant c (the upper
white region of Figure 1A), species u drives v to extinc-
tion regardless of the initial conditions as illustrated in
Figure 1C. Conversely, when the growth advantage of
species u is less than one (the lower white region of
Figure 1A), species v always drives species u to extinction
(Figure 1D). There does exist, however, a certain param-
eter regime, namely 1 < α/β < 1 + c (the shaded
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Figure 1Well-mixed competition of a bacterial population consisting of a CDI+ and a CDI- species. (A) Phase diagram of the competing
population. Grey region: competition of the population may lead to the extinction of one of the two species, depending on the initial conditions of
the system. Upper white region: the CDI+ species (v) always goes extinct regardless of initial conditions. Lower white region: the CDI- species (u)
always goes extinct regardless of initial conditions. (B) Plot of the Lyapunov function [36] of the competing population in the regime when
extinction is possible for either species. The parameter set here corresponds to the blue cross in the grey region of Panel A. Notice that the minima
for the system lie on the respective axes, showing two possible extinctions. The dark circle is the saddle point of the system. C-E. Sample time
course trajectories of the two competing species. (C) Species u (CDI-) always dominates when growth advantage outweighs inhibition. Here,
α/β = 2 and c = 0.5, corresponding to the cross in the upper white region of Panel A. (D) Species v (CDI+) always take over the population when it
has a growth advantage and exerts inhibition. Here, α/β = 0.5 and c = 2.0, corresponding to the cross in the lower white region of Panel A. (E)
Both of the species may dominate depending on their initial conditions. Here, c = 2.0 and α/β = 2.0, corresponding to the cross in the grey region
of Panel A. In each panel (C-E), 100 pairs of trajectories (orange: CDI+, blue: CDI-) with random initial conditions are plotted.

region of Figure 1A), in which the outcome of the com-
petition depends on the initial conditions (Figure 1E).
In this parameter regime, both of the extinction states
are linearly stable. A plot of the Lyapunov function [36]
(Figure 1B) indeed shows two minima for the phase space
of the system, corresponding to possible stable extinction
states.
The above results suggest that the tradeoff between

inhibition strength, due to the production of toxins by
CDI, and relative growth advantage, due to the metabolic
load associated with CDI, determines the possible out-
comes of a two-species competition. This conclusion is
in agreement with a previous experimental study con-
cerning bacteriocin production [49], where initial con-
centrations of a competing population determined the
extinct species. Although a diffusible toxin instead of CDI
was employed in the experiment, it clearly supports our
modeling results. In another experimental report, it was
shown that a CDI+ strain is indeed capable of driving a
CDI- strain toward extinction in a well-mixed environ-
ment [14]. In the future, it will be valuable to design

experiments to systematically investigate the impacts of
initial concentrations and metabolic load on the outcome
of CDI-based species competition.
The dependence of competition outcomes on initial

conditions in certain parameter regions may have addi-
tional important implications: It indicates that spatial
aggregation and localized patterns may occur in space
with appropriate initial conditions when the diffusion of
the system is small.

Phase diagram for the existence of spatial patterns
In a preliminary search for the existence of stable patterns
in one spatial dimension, we performed simulations with
random initial conditions for a specific set of the growth
advantage (α/β), inhibition (c1 = c/3), and diffusion con-
stants (Du = Dv = D). Figure 2 illustrates three time
courses in which the concentration distribution of species
u shows stable localized patterns (spatial distribution of
species v is anti-correlated with that of u and presented
in Additional file 1: Figure S1–3). This phenomenon orig-
inates from the stability of both extinction states of our
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Figure 2 Representative time course evolutions of the
competing two-species population in one dimensional space
with a growth advantage (α/β) of 3.5 and an inhibition (c1) of
2.1. Coexistence of the CDI+ and CDI- species may appear in certain
parameter sets (Panel A and B). However, localized patterns will
merge and eventually disappear with the increase of the diffusion
constant for both species (Panel A: D = 0.001, Panel B: D = 0.01, and
Panel C: D = 0.1). The same set of initial conditions are used for all of
the panels. Here, only the spatiotemporal distributions of the
concentration of species u (CDI-) are shown in the panels due to the
mutual exclusion features of the two competing species. Those of the
other species (CDI+, v) are available in Additional file 1: Figure S1–3.

system in a certain parameter regime. Figure 2 further
shows that, as the diffusion constant changes, the basin
of attraction for the states may vary: as the diffusion con-
stant is changed from 10−3 to 10−2 and to 10−1, the small
stripes in Figure 2A become unstable in Figure 2B and all
stripes become unstable in Figure 2C. Therefore, diffusion
tends to destroy possible species aggregations within the
population.
To systematically explore possible outcomes of the com-

petition in space and to understand the conditions under
which corresponding patterns emerge, we computation-
ally examined possible steady states of the model as we
varied the relative growth advantage (α/β), inhibition
strength (c1), and species motility (D) for different ini-
tial conditions. In principle, a parameter search can be
implemented by repeatedly simulating our mathematical
model (Eq. 2) with massive random initial conditions for
each possible parameter combination and then by ana-
lyzing the corresponding steady states of the system. To
reduce the computational cost of the problem, we chose
a representative set of initial conditions for simulation in
practice. Here, the initial condition sets consisted of two
non-overlapping domains with each solely occupied by
one of the two species at the system’s carrying capacity,
i.e., grids 1-5 are solely occupied by u while the remain-
ing space, grids 6-32, are fully occupied by v for the
32-grid space (detailed in Methods and Additional file 1:
Figure S8).
Figure 3A shows the phase diagram for the competition

outcome of the population obtained from our numeri-
cal study. As illustrated in the figure, the beak regions
outlined by the color lines are the coexistence parame-
ter space where spatial localized patterns may emerge and
be stable. The colors of the lines (green, cyan, and navy)
correspond to the species’ diffusion constant of 0.0001,
0.001, and 0.01 respectively. Outside the beak regions, the
competition of the population always lead to the extinc-
tion of one of the two species. Although obtained using
the representative sets of initial conditions, the phase
boundaries were tested and confirmed by employing 104
random initial conditions for D = 0.001 with α/β ∈[ 3, 4].
To further illustrate the diversity of possible competi-
tion outcomes, representative patterns with the highest
likelihood from random initial conditions are shown in
Figure 3B–G, where the inhibition strength is varied
across the phase diagram (c1 = 1.7, 1.8, 1.9, 2.0, 2.1, 2.3)
for a fixed growth advantage (α/β = 3.5) and diffusion
constant (D = 0.001).
It is important to notice that the spatial coexistence

region is within the parameter region where both extinc-
tion states remain stable (shaded region), indicating that
the emergence of patterns is not due to a diffusion driven
instability of the homogeneous states like Turing patterns
[35,50]. In addition, as every spatial aggregate of the two
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Figure 3 Phase diagram and representative patterns of the competing population. (A) Phase diagram. The grey shaded region corresponds
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stripe configuration. (E-F) For an inhibition of 2.0 and 2.1, the most likely pattern changes to a double stripe configuration. (G) For an inhibition of
2.3, only the extinction states are observed, with the most likely state being the extinction of u.

species within a stable pattern is locally similar to the
extinction states of the system in the well-mixed case, the
stability of both extinction states appears to be a neces-
sary condition for the existence of spatial patterns. Thus,
the tradeoff between relative growth advantage and inhi-
bition strength continues to play a key role in determining
possible outcomes of competition in space.

Statistics of localized patterns
Through our computational survey of competition out-
comes, we have found that diverse patterns may emerge
from the competing population for a single parameter set:
As illustrated in Figure 4, the competition of the popula-
tion can possibly produce single-stripe, double-stripe, and
multi-stripe localized patterns as well as the extinction
of either species for a growth advantage of 3.5, inhibi-
tion constant of 2.2, and a diffusion constant of 10−3.
Although various patterns were observed, their preva-
lence was different: In this specific case, double, single and
multi–stripe patterns constitute the vast majority of pos-
sible outcomes with a relative abundance of 51.5%, 23.7%,
and 23.3% respectively.
To reveal how key system parameters influence the

occurrences of possible patterns, we performed the simu-
lations of ourmodel with 104 random initial conditions for
a varying inhibition strength (relative growth advantage
and diffusion constant are fixed) and analyzed the corre-
sponding statistics. As shown in Figure 5A, competition
of the population always gives rise to extinction (species
v) when the inhibition strength is weak (c1 = 1.4), corre-
sponding to the left of the coexistence region in Figure 3A.

However, as the inhibition strength increases, the system
enters the coexistence parameter space and various pat-
terns are observedwith different relative occurrences. The
competition outcome of the population becomes exclu-
sively extinction (mostly of species u) when the inhibition
is beyond a threshold (the right boundary of the coexis-
tence region). Accordingly, the most probable pattern is
changed from extinction to single-stripe patterns and later
to double-stripe patterns before eventually returning back
to extinction (Figure 3B-G). The observed alteration of
pattern diversity and relative abundance is due to the fact
that the orchestration of the tradeoff between inhibition
and growth advantage is mandatory for the spatial coex-
istence of the two species and imbalance of the tradeoff
results in the increase of species extinction. In addition to
the relative abundance, the widths of stripes of localized
patterns also change with the inhibition strength as shown
in Table 1 (and Additional file 1: Table S3). In contrast
to the relative abundance of pattern occurrences, pattern
widths are less subjective to parameter changes, mainly
due to the requirement of minimal size of localized pat-
terns for stabilization and the mutual exclusion feature of
the two species.
Similar to the inhibition strength, the relative growth

advantage can also considerably alter the localized pat-
terns of the competing population. As illustrated in
Figure 5B, the relative abundances of stable patterns vary
with the growth advantage with the most probable pattern
changing from extinction to double-stripe to single-stripe
and finally to extinction again. This trend of pattern alter-
ations is opposite to the case of varying inhibition strength
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Figure 4 Occurrence of localized patterns of the competing population with a growth advantage of 3.5, an inhibition of 2.2 and a
diffusion constant of 10−3. Various patterns may emerge in this parameter set, among which double-stripe patterns are the most dominant
(51.5%), followed by single-stripe (23.7%) and then multi-stripe (23.3%) patterns. Only about 1.5% of initial conditions result in extinction for one of
the species. Here, 104 runs with random initial conditions are used to generate the statistics.

(Figure 5A). This is primarily due to the opposite impacts
of growth advantage and inhibition in shaping population
structures. The statistics of the width of stripes of stable
patterns with different growth advantages are shown in
Table 2 (and Additional file 1: Table S4).
The statistics of the stripe patterns further show that

the CDI- strain tends to have larger cluster sizes than
the CDI+ strain on average within the coexistence region.
In fact, for all coexistence statistics computed, the CDI-
strain occupies a greater percentage of the space than the
CDI+ strain. The disparity of the stripe widths for CDI+
and CDI- is primarily due to the non-local nearest neigh-
bor interactions: To have a sustained domain, CDI- cells
must build a buffer region to protect themselves when
they are surrounded by CDI+ cells; in contrast, when
CDI+ cells are surrounded by CDI- cells, no buffer lay-
ers are needed. Therefore, there is an increase in colony
width for CDI- colonies, compared to CDI+ colonies.
Importantly, the stripe width disparity does not exist in
systems with only on–site interactions as employed previ-
ously in many competition studies [29-34]. Instead, both
species will occupy the space equally on average. From an

ecological perspective, the disparity of localized patterns
shows the importance of non-local interactions in deter-
mining the species aggregation of bacterial communities
and may offer new insights into the diversity of microbes.

Perturbative expansion for patterned states
To gain insight into the exact requirements for inhibi-
tion and growth advantage necessary to produce spatial
coexistence of the population, we have employed a pertur-
bation approach in addition to the numerical results pre-
sented above. The perturbation approach is built around
finding a stable spatially inhomogeneous steady state
for the model with D = 0 and then considering how
the state is perturbed when slow diffusion is allowed
(see Additional file 1: Section 2 for details).
When D = 0, each equation in our model (Eq. 2) at

steady state becomes the product of two linear equations.
Thus, there are 22N possible steady states in total, where
N is the number of grid points. To determine the pos-
sibility of coexistence, we consider the simplest possible
steady state with coexistence and aggregation, in which
species u and v each form a single domain at the respective
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Figure 5 Statistics of localized patterns as a function of growth
advantage and inhibition. (A) Relative abundance of spatial
patterns as a function of CDI inhibition (c1) for a given growth
advantage (α/β = 3.5). The most likely steady pattern transits from
CDI+ extinction to single to double stripe, with a increasingly high
prevalence of multi-stripes, as CDI inhibition increases. It makes a
sharp change back to extinction (CDI-) as the parameters exit the
spatial coexistence region. (B) Relative abundance of spatial patterns
as a function of growth advantage (α/β ) for a given CDI inhibition
(c1 = 2.0). An opposite trend of pattern statistics is observed
compared with panel A.

carrying capacities with two single-grid-point transition
layers connecting the two domains in space. By plugging
this trial state into our model, we have:

ui = α vi = 0 i = 1, . . . ,
N
2

− 1

ui = α − βc1 vi = 0 i = N
2

ui = 0 vi = β i = N
2

+ 1, . . .N − 1

ui = α − βc1 vi = 0 i = N (4)

Table 1 Summary of statistics for different inhibition
values (c1) using a growth advantage (α/β) of 3.5 and a
diffusion constant (D) of 0.001

c1 Single stripe Double stripe Multi–stripe
width width width

1.4000 N/A N/A N/A

1.5000 8.9207±0.2727 3.9583±1.2969 0.0000

1.6000 9.1718±0.3142 4.1944±2.1219 2.5625±1.3797

1.7000 9.0973±0.4039 4.1153±2.0673 2.4557±1.4078

1.8000 8.9883±0.5083 4.0300±2.1113 2.3128±1.3519

1.9000 8.8421±0.6373 3.9168±2.0163 2.2297±1.2819

2.0000 8.5869±0.8970 3.7419±1.9762 2.0780±1.2299

2.1000 8.1909±1.2791 3.4835±1.8674 1.9343±1.1349

2.2000 6.7693±2.1881 3.0211±1.5841 1.8590±0.9125

2.3000 N/A N/A N/A

Widths are the average size of domains for species u in a system of length
(L=10) with the standard deviations shown.

for which we have assumed that two transition layers
occur at i = N/2 and i = N for simplicity (our analysis
can be similarly applied for the transition layers being any-
where in the space). Note that Eq. 4 above corresponds to
Eqs. S9-10 and S12 in Additional file 1. Through linear sta-
bility analysis, we found that this proposed state is indeed

Table 2 Summary of statistics for different growth
advantage values (α/β) using an inhibition (c1) of 2.0 and
a diffusion constant (D) of 0.001

α/β Single stripe Double stripe Multi–stripe
width width width

3.2000 N/A N/A N/A

3.3000 6.6860±2.2685 3.0043±1.5822 1.8632±0.9081

3.4000 8.2396±1.2199 3.4892±1.8759 1.9354±1.1538

3.5000 8.6220±0.8392 3.7115±1.9583 2.0711±1.2085

3.6000 8.8299±0.6749 3.8809±2.0082 2.1776±1.2621

3.7000 8.9415±0.5602 3.9947±2.0408 2.2990±1.3339

3.8000 9.0544±0.4490 4.0685±2.0718 2.3592±1.3373

3.9000 9.1103±0.3828 4.1275±2.0864 2.4225±1.4374

4.0000 9.1619±0.3433 4.1917±2.0968 2.5129±1.3891

4.1000 9.1953±0.2962 4.1774±2.1287 2.5104±1.4332

4.2000 9.2119±0.2598 4.2721±2.1072 2.5651±1.2789

4.3000 9.2310±0.2421 4.1741±2.3164 0.0000

4.4000 8.9557±0.2050 0.0000 0.0000

4.5000 8.9623±0.2083 0.0000 0.0000

4.6000 N/A N/A N/A

Widths are the average size of domains for species u in a system of length
(L=10) with the standard deviations shown.
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linearly stable in the case of D = 0 (see Additional file 1:
Section 2).
When the system has a nonzero diffusion (D �= 0),

we would like to determine if some perturbed form of
the above steady state remains stable. This can be imple-
mented by performing a perturbation expansion in D, i.e.,
ui ∼ u0i + Du1i + D2u2i + O(D3) and vi ∼ v0i + Dv1i +
D2v2i + O(D3), where u0i and v0i are the steady state val-
ues presented in Eq. 4 (ui and vi). To have a stable state,
it is mandatory to have all ui and vi remain positive and
bounded by the respective carrying capacities, which gives
rise to a necessary condition for stability with D �= 0 as
(see Additional file 1: Section 2)

1 + c1 <
α

β
< 1 + 2c1 (5)

which corresponds to Eq. S20 in Additional file 1. The
necessary condition also allows us to estimate the coexis-
tence phase boundary in the limit as D → 0, as shown in
Additional file 1: Figure S4
Although we only considered the perturbation results

for two one-grid-point transition layers, our results can
be generalized to larger transition layers. The simplicity
of the one grid point case, however, provides an ana-
lytical bound between growth advantage and inhibition
strength for the existence of stable localized patterns. As
the diffusion constant of the model approaches to zero,
we found that our analytical calculation from Eq. 5 indeed
represents a good approximation of the phase boundaries
obtained from numerical simulations (see in Additional
file 1: Figure S4).

Two dimensional patterns
Although we have primarily focused on the exploration
of spatial population structures in one dimension thus
far, coexistence and localized patterns can be present in a
high dimensional space as well. To demonstrate our idea,
we extended our model (Eq. 2) for the two dimensional
case where both species diffusion and nearest neighbor
interactions are over a square grid. Similar to the one
dimensional case, an inhibition constant c2 = c/5 was
introduced to reflect the five locations for possible CDI
(one on–site and four nearest neighbors).
To illustrate the plausibility of competition-induced spa-

tial patterns, we examined possible outcomes of the popu-
lation with the alteration of the strength of CDI inhibition
while keeping the relative growth rate and diffusion con-
stant fixed. Accordingly, two sets of representative initial
conditions are employed: one set of initial conditions
having a cluster of u that is centered in the space and
surrounded by v, and the other set having a cluster of
v centered in the space and surrounded by u (detailed
in Methods and Additional file 1: Figure S9). Figure 6A
shows the counts of stable coexistence patterns for both

sets of the initial conditions with the green inverted tri-
angles corresponding to the first set and the orange tri-
angles corresponding to the second. It is clear that the
counts of stable patterns are different for the two differ-
ent initial condition sets even with the same parameter
set, which is due to the asymmetry of the interactions
between the CDI+ and CDI- species. By summing up
the two counts, we found that the overlapping region of
Figure 6A (blue region) corresponds to the parameter
space where the population competition has the largest
probability of forming coexisting patterns, corresponding
to the least chance of species extinction, for the sets of
initial conditions tested.
With the exploration of parameter space, we further

illustrated spatially localized patterns in two dimensional
space in Figure 6B-D where representative spatial dis-
tributions of species u are shown (see Additional file 1:
Figure S5–7 for species v). The average amount of space
occupied by species u decreases with the increase of the
inhibition. As in the one dimensional case, the space occu-
pied by u is larger than that of v in the coexistence region
for the parameters explored. Our results demonstrate that
the two dimensional model is indeed capable of producing
coexistence for the two species with a rich set of possible
patterned steady states.

Conclusions and discussion
With a two-species population model, we have computa-
tionally investigated the dynamics and competition out-
comes of a bacterial population with contact–dependent
inhibition in different settings. We found that the tradeoff
between the strength of inhibition via direct cell contact
and relative growth advantage associated with metabolic
burden are of central importance in determining the out-
come of bacterial competition. In the well-mixed case,
two competing species are mutually exclusive and their
competition always leads to the extinction of one of the
two species depending on the inhibition-growth tradeoff
as well as initial conditions. In contrast, coexistence and
localized patterns may also emerge from the competition
of the population in the spatial case, in addition to exclu-
sive extinctions. In addition, a statistical picture of a pop-
ulation with CDI-based competitions has been revealed,
including the diversity, relative abundance, and pattern
characteristics of all possible competition outcomes.
This study has hence expanded the spectrum of the

current knowledge about contact dependent inhibition
and provided a systematic view of CDI-based competition
in bacterial populations by exploring possible outcomes
in different settings. It also offers a quantitative calibra-
tion on the requirements for the emergence of various
outcomes by examining the effects of inhibition, rela-
tive growth rate, and population diffusion. In addition,
the population competition dynamics illustrated here
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Figure 6 Localized patterns in two dimensional space. (A) Counts of stable localized patterns for two sets of initial conditions (see Additional
file 1: Figure S9). The green and orange curves (triangles) correspond to the counts for the initial conditions when u is surrounded by v and v is
surrounded by u respectively. The overlap region (blue) suggests a parameter regime where species coexistence is stable for both sets of initial
conditions. (B-D) Localized patterns in two dimensional space with a growth advantage of 3.5, a diffusion constant (D) of 10−3, and an inhibition of
1.0, 1.05, and 1.1 respectively. Each pattern was chosen to represent the average space occupied by CDI- for 100 runs with random initial conditions.
The average percentage of space occupied by CDI- for the three inhibition values is 95%, 84%, and 78% respectively.

increase our understanding of the complexity of bacterial
social interactions. Furthermore, this work sheds light on
new experimental design and tests by providing the pre-
dictions on spatial coexistence and localized patterns of
the population structure as well as their initial condition
dependence.
It is worthy to note that our mathematical model

adopted a deterministic description of population com-
petition. However, population dynamics and competition
outcomemay differ or, in some cases, deviate dramatically
from those of a deterministic model when we take into
account the stochastic nature of cellular growth [51]. For
instance, diversity of emergent patterns and their charac-
teristics may be altered significantly when the system is
close to its phase boundary where multiple distinct spatial
patterns occur. In addition, contact–dependent inhibition
may have altered modes of action in different organisms
as the expression of the CDI genes can be constitu-
tive or stationary phase dependent [14,25,52]. For future
study, it will therefore be valuable to consider the growth
phase dependence of the activities of contact dependent
inhibitions.

Methods
Numerical integration
To explore the competition outcomes of a two-species
bacterial population, we numerically integrated our math-
ematical model consisting of a set of coupled ordinary
differential equations (e.g., Eqs. 2 and 3). Here, integra-
tion was carried out using a Runge-Kutta adaptive step
size method of order 4-5 [53,54]. The maximal error
per step was set to 10−6 for all runs unless otherwise
noted, and a maximal step size of 10−1 was imposed.
To avoid negative values for any of the species con-
centrations during integration, we decreased the time
step until all negative values were within the maximal
error threshold from zero and subsequently set the neg-
ative values to zero before the next time step was taken.
Our results for numerical integration were validated with
random sample runs using a different maximal error
and maximal step size as detailed in Additional file 1:
Section 3.
Discretization of the reaction diffusion equations for

our system was accomplished using a Taylor expansion
approximation to the diffusion operator. Namely:
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d2u
dx2 ≈ u(x + δ) − 2u(x) + u(x − δ)

δ2
(6)

which converts the coupled partial differential equations
of our system to a set of coupled ordinary differential
equations. The number of coupled ordinary differential
equations was determined by the number of grid points
employed for the system, which for the one dimensional
case is 32 unless otherwise noted.

Spatial patterns
To determine the possibility of population coexistence
and aggregation in one dimensional space, we used initial
conditions that involve two domains with each consisting
solely of one of the two species at its individual carry-
ing capacity as shown in Additional file 1: Figure S8. The
domain size was varied between all possible sizes for each
species with the entire space filled, which gives rise to
31 different initial conditions used with initial condition j
given by:

ui = 0 vi = β i = 1, . . . , j
ui = α vi = 0 i = j + 1, . . . , 32 (7)

where j varied from 1 to 31. This set of initial condi-
tions was used to approximate the phase boundary for
the coexistence of the two species. The boundary was
further validated through the use of 104 random ini-
tial conditions near the boundary for α/β ∈[ 3, 4] and
D = 10−3.
The statistics for patterns within the coexistence region

were collected through the simulation of 104 random
initial conditions until convergence was reached. We
considered the system to have converged if the maxi-
mal difference for all grids averaged below 10−8 times
the largest carrying capacity in the system for 103
time steps. The stripe widths were calculated by deter-
mining the dominant species at each grid point. Pat-
terns were then classified according to the number of
distinct stripes and widths present in the converged
state.
We further extended our model to give illustrative

examples of possible pattern formation in two dimen-
sional space. To explore parameter space, we utilized a set
of initial conditions in which each species formed a spa-
tial aggregate at the center of space surrounded by a sea
of its competitor. For example, a square of 4 grid points
of species u at its carrying capacity was surrounded by
species v at its carrying capacity. The interior species size
ranged from 4 grid points to 256 grid points with the total
system size set at 1024 grid points (see Additional file 1:
Figure S9).

Parameter space
For the well–mixed case, the phase diagram (Figure 1A)
was determined using linear stability analysis. The Lya-
punov function [36] in the either extinction region was
constructed using α = 2, β = 1, and c = 2 (Figure 1B).
The representative time course for the parameter regions
employed α = 2, β = 1, and c = 0.5 (Figure 1C), α = 0.5,
β = 1, and c = 2 (Figure 1D), and α = 2, β = 1, and c = 2
(Figure 1E).
In Figure 2, an identical set of initial conditions was

used to produce the spatial patterns. The growth advan-
tage (α/β) and inhibition (c1) were held fixed at 3.5 and 2.1
respectively, while D was varied between 10−3, 10−2, and
10−1 for Figure 2A–C respectively.
To systematically explore the tradeoff between rela-

tive growth advantage and inhibition in the small dif-
fusion limit, we searched over parameter space in the
one dimensional model with α/β ∈[ 1, 5], c1 ∈[ 0, 4], and
D ∈ {10−4, 10−3, 10−2} to generate the phase diagram in
Figure 3A. The growth advantage and inhibition strength
were sampled every 10−1 here. For Figure 3B–G, a growth
advantage (α/β) of 3.5 was used with a varying inhibition
strength (c1), given by 1.7, 1.8, 1.9, 2.0, 2.2, 2.3 respectively,
to find the most likely steady state out of 104 random
initial conditions.
In Figure 4, we used a growth advantage (α/β) of 3.5, an

inhibition constant (c1) of 2.2, and a diffusion constant of
10−3. The percentages were taken from 104 random ini-
tial conditions in which the steady states were classified
according to single stripe, double stripe, multi–stripe, or
extinction.
As a summary of the types of patterns observed across

the coexistence region in the parameter space, Figure 5
shows the relative abundance of patterns when varying
growth advantage and inhibition. In Figure 5A, the growth
advantage and diffusion constant are fixed at 3.5 and 0.001
respectively while the inhibition is varied between 1.4 and
2.3 with 0.1 increments. In Figure 5B, the inhibition and
diffusion constant are fixed at 2.0 and 0.001 respectively
while the growth advantage is varied between 3.2 and 4.6
with 0.1 increments.
For the two dimensional model, α/β and D were kept

fixed at 3.5 and 10−3 respectively while c2 was sampled
every 10−1 within [ 0, 3]. Figure 6A was generated using a
set of initial conditions with each species surrounded by a
sea of its competitor at carrying capacity (see Additional
file 1: Figure S9). Figure 6B–D are possible steady state
patterns using an inhibition constant (c2) of 1.0, 1.05, and
1.1 respectively.

Analytical results
Analytical results for the phase boundaries were deter-
mined using asymptotic expansions and linear stability
analysis (see Additional file 1: Section 2 for details). For an
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introduction to asymptotic expansions and linear stability,
see [55]. The existence of a stable coexistence state for
slow diffusion in discrete systems was proposed in [29] for
a two grid point system through the use of a perturbation
theorem that remains valid for any number of grid points.

Additional file

Additional file 1: Supplementary Information.
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