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Abstract

Background: Tissue specificity is an important aspect of many genetic diseases in the context of genetic disorders
as the disorder affects only few tissues. Therefore tissue specificity is important in identifying disease-gene
associations. Hence this paper seeks to discuss the impact of using tissue specificity in predicting new disease-gene
associations and how to use tissue specificity along with phenotype information for a particular disease.

Methods: In order to find out the impact of using tissue specificity for predicting new disease-gene associations,
this study proposes a novel method called tissue-specified genes to construct tissues-specific gene-gene networks
for different tissue samples. Subsequently, these networks are used with phenotype details to predict disease genes
by using Katz method. The proposed method was compared with three other tissue-specific network construction
methods in order to check its effectiveness. Furthermore, to check the possibility of using tissue-specific gene-gene
network instead of generic protein-protein network at all time, the results are compared with three other methods.

Results: In terms of leave-one-out cross validation, calculation of the mean enrichment and ROC curves indicate
that the proposed approach outperforms existing network construction methods. Furthermore tissues-specific
gene-gene networks make a more positive impact on predicting disease-gene associations than generic protein-
protein interaction networks.

Conclusions: In conclusion by integrating tissue-specific data it enabled prediction of known and unknown
disease-gene associations for a particular disease more effectively. Hence it is better to use tissue-specific gene-
gene network whenever possible. In addition the proposed method is a better way of constructing tissue-specific
gene-gene networks.

Introduction
The emerging paradigm of “network medicine” has been
proposed to utilize different network-based approaches to
predict essential proteins [1-4], identify protein complexes
[5-8] and detect candidate genes related to different dis-
eases [9].As methodologies progress, network medicine
has the potential to capture the molecular complexity of
human disease while offering computational methods to
discern how such complexity controls disease manifesta-
tions, prognosis, and therapy. Up to now, different types of
biological data have been used to study disease related

genes and complexes [10-12]. For example, Goh K., et al.,
[13] constructed a network that consisted of genes asso-
ciated with the same disease, while Tian W., et al., [14]
combined protein and genetic interactions with gene
expression correlation. Ulitsky I and Shamir R [15] also
combined interactions from published networks and yeast
two-hybrid experiments to identify the associations.
Analyses of recent research studies, according to CIPHER
[16], GeneWalker [17], PRINCE [18] and RWRH [19]
highlighted the associations that were derived directly
from protein interactions to more distant connections in
various ways. Even though genes causing similar diseases
lay close to one another in the network, these algorithms
did not take into account the fact that the majority of
genetic disorders tend to manifest only in a single or a few
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tissues [13,20]. Tissue specificity is an important aspect of
many genetic diseases, reflecting the potentially different
roles of proteins and pathways in diverse cell lineages. In
the context of genetic disorders, even though the underly-
ing harmful mutation can exist in all the cells in the
human body, it most often wreaks havoc only in a few tis-
sues. This tissue selectivity will appear due to the differ-
ences in the functionality of the mutated protein within
these tissues, its tissue-specific interacting proteins, its
abundance and the abundance of its inter-actors. Hence,
the purpose of this study is to investigate whether a tissue
specific network was a better representation for the actual
disease-related tissue, which yields to more accurate prior-
itizations of the disease-gene associations.
Some research has been carried out by constructing tis-

sue specific networks to detect diseases through the
Bayesian structure learning algorithms [21]. But Bayesian
structure learning algorithms had three major shortcom-
ings, that is, the high computational cost, inefficiency in
exploring qualitative knowledge, and the inability to
reconstruct phenotype specific gene network. Others [22]
analyzed human PPIs in a tissue-specific context, showing
that many housekeeping proteins interact with highly
tissue-specific proteins, which in turn implies that house-
keeping proteins may have tissue-specific roles. This ana-
lysis was taken a step further by Emig and Albrecht [23]
who identified the functional differences between tissues,
showing that tissue-specific protein interactions are often
involved in transmembrane transport and receptor
activation.
This study therefore seeks to construct tissue-specific

gene-gene networks for a particular query disease and try
to match these networks with the similar phenotype
details to predict new disease-gene associations. The novel
tissue-specific gene-gene network construction method
called the tissue-specified genes (TSG) method would be
used to initially identify the tissues mainly affecting the
query disease and secondly the gene expression details of
the tissues would be used to construct tissue-specific
gene-gene networks. Created tissue-specific networks
would be used with the most nearest phenotype details of
the query disease to predict gene-disease associations. The
original Katz method has been modified and used as the
primary method of prioritizing disease genes by using tis-
sue-specific gene-gene networks. The novel tissue-specific
gene-gene network construction method is described in
details in the methodology section.

Methods
Tissue specific gene expression
Gene expression profiles have been widely used with
protein interaction networks to identify protein com-
plexes, predict protein functions, construct dynamic pro-
tein interaction networks, and discover disease-related

genes [24-26]. In this research, the human body index-
transcriptional profiling of tissue-specific gene expression
data set was downloaded from the gene expression omni-
bus (GEO) for GSE 7307 series [27] to predict disease
genes. The dataset consisted of a total of 677 samples,
representing over 90 distinct tissue types. Normal and dis-
eased human tissues were profiled for gene expression
using the Affymetrix U133 plus 2.0 arrays. Based on the
case studies which has used in this study, detailed gene-
expressions of 7 tissues were selected.

Disease-tissue relationship
The relationships between diseases and tissues were con-
sidered from the work by Lage et al [28] who estimated
the association of a tissue and a disease by measuring
their co-occurrence in PubMed abstracts. It has created a
disease-tissue co-variation matrix of high-confidence
associations of >1,000 diseases to 73 tissues.

Selection of tissue-specific gene interaction pairs
After identifying the tissues related to each query disease
gene expression, details of these tissues were downloaded
from GEO in the national center for biotechnology infor-
mation (NCBI) website. Using these genes expression
details of each query disease, Pearson correlation coeffi-
cient (PCC) was calculated [29-31] for each gene-gene
interaction in the gene-gene network.
A separate tissue specific gene-gene networks was con-

structed for each tissue that was related to the query dis-
ease by considering the PCC values for each gene-gene
interaction. The interactions that have PCC values more
than the threshold value were considered for tissue speci-
fic gene-gene network and others were removed from the
gene-gene network.

Weighted TSG network
After the creation of the tissue-specified genes (TSG) net-
work for each tissue, each interaction was weighed by con-
sidering the relationship between gene and different
phenotypes along with gene expression details of each
query disease. The weight of each interaction in the novel
network was calculated from equation (1).

S(i, j) = α

(
n∑

k=1

aik ajk /Nk

)
+ (1 − α)PCC (1)

From the first part of the equation the co-occurrence of
phenotypes with less annotated genes that gave more
weight than well-studied, [23] broadly-defined phenotypes
are shown. Therefore in the equation, aik= 1 if gene i has
phenotype k and aik = 0 otherwise, and Nk is the number
of genes involved in the specific phenotype k; and n is
the total number of phenotypes. In the second part of
the equation it emphasis on the tissue-specificity of the
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interaction by incorporating PCC value. Hence, the
weight represents how each interaction in the tissue spe-
cified gene-gene network reacts to different phenotypes
while considering tissue-specificity. The phenotypes used
for the calculation are similar phenotypes to the query
disease. The similarities between phenotypes were
obtained using the matrix introduced by van Driel et al
[32], who used the anatomy (A) and the disease (C) sec-
tions of the medical subject headings vocabulary (MeSH)
to extract terms from online Mendelian inheritance in
man (OMIM) to identify similar diseases. Finally, a ∈ 0
[1] is a parameter controlling the relative importance of
the phenotype vs. the PCC value.

Construction of gene-phenotype network
To construct the gene-phenotype bipartite network for
each tissue type for the specific disease the following
method was used. The gene-phenotype association matrix
was constructed where, pi ∈ R|g|×|pi|, such that (Pi)gp = 1 if
gene g is associated with phenotype p or 0 otherwise. For
the matrix the phenotypes that were selected were similar
to phenotypes for the query disease. In order to find the
most similar phenotypes, the text mining method MimMi-
ner was used [32].

Construction of phenotype-phenotype network
Separate phenotype-phenotype matrices were constructed
for each query disease. To select the most similar pheno-
types for the query disease the MimMiner approach was
utilized [32].

Implementation of prioritization methods on TSG
network
Random Walks with Restart on Heterogeneous network
[19], PRINCE [18] and ProSim [33] methods were used as
prioritization methods that accepted TSG networks.
During the implementation of each method the entire
gene-gene network was sub divided into several tissues-
specified gene-gene networks depending on the query
disease. Then the algorithm was executed with each sub
network separately and the final results were merged from
the result of each sub network.

Random Walks with Restart on Heterogeneous network
Random Walks with Restart on Heterogeneous net-
work (RWRH) is an algorithm for predicting gene-dis-
ease associations proposed by Li and Patra. RWRH
performs a random walk on a heterogeneous network
of gene interactions and human diseases [19]. The ran-
dom walk is started from a set of seed nodes, which
for a phenotype p is the set of genes known to be
associated with p, and gene nodes are ranked by the
probability that a random walker is at a given gene,
under the steady state distribution for the random

walk. RWRH considers the following heterogeneous
network:

c =
[

G λP
λPT Q

]

where G is the entire gene-gene interactions matrix, Q is
the phenotype-phenotype similarity matrix, and λis the
probability that the random walker jumps from a gene
node to a phenotype node (or vice versa).

PRINCE and ProSim
PRINCE [18] and ProSim [33] are other graph-based
methods that can be thought of as a special case of
RWRH. In both methods random walk is used over the
protein-protein interaction network instead of the hetero-
geneous network. Phenotype similarity is used as the
restart vector in PRINCE [18] and the combination of phe-
notype similarity and protein proximity is used as the
restart vector for ProSim method [33]. For the research
experiment PRINCE algorithm has been changed where
protein-protein network is replaced by the tissue-specific
gene-gene network for a particular disease. The ProSim
method is changed where gene-gene network is con-
structed by considering three features: Pearson correlation
coefficient of tissue specific gene expression details of each
query disease, gene’s small world clustering coefficient and
subcellular localization details of each protein-protein
interaction. For both methods the final equation remains
same for our experiment.

Data sources
The data was downloaded from the following data
sources.
Gene-gene network: HPRD database was downloaded

from [34]. The edges in the HPRD network are un-
weighted. This protein-protein network was used to create
the gene-gene network.
Phenotype-phenotype network: with the use of OMIM

phenotypes, the similarity matrix will be calculated
using the MinMiner introduced by van Driel [32].

Results and discussion
Construction of tissue-specific gene-gene networkSix
case studies were studied, in order to measure the effec-
tiveness of the tissue specific details of each query dis-
ease, to predict disease genes. The selected cases
included; Breast Cancer (MIM: 114480), Colorectal
Cancer (MIM: 114500), Prostate Cancer (MIM: 176807),
Lung Cancer (MIM: 211980), Alzheimer (MIM: 104300)
and Diabetes Mellitus (MIM: 125853).
In order to identify the disease-tissue associations

research work carried out by [28] was used. According
to the study of Lagea, et al [28] a matrix was generated
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computationally which showed the relationship between
different tissues and diseases. Systematic analysis was
done between tissue-specific gene expression and patho-
logical manifestations in many human diseases and can-
cers. The diseases were systematically mapped to tissues
they affect from disease-relevant literature in PubMed
and used to create a disease-tissue co-variation matrix
of high-confidence associations of > 1,000 diseases to 73
tissues. From the results breast cancer (MIM: 114480),
ovary, prostate and skin tissues were identified as the
most prominent tissues affected by the disease. For Col-
orectal cancer (MIM: 114500), liver, lungs and ovary tis-
sues were responsible whiles for Diabetes mellitus
(MIM: 125853), liver and pancreatic islets tissues were
much prominent for the disease. Whiles for Prostate
cancer (MIM: 176807) prostate and skin tissues are
more prominent and for lung cancer (MIM: 211980)
lung and skin tissues as well. Finally for Alzheimer dis-
ease (MIM: 104300), brain tissues are more affected
from the disease.
After identifying the tissues for each disease, the gene

expression details for each tissue sample were downloaded
from the NCBI website. This consisted of human tissues
measured in the Human Body Index Transcriptional. By
using these genes expression details of each tissue in each
query disease, PCC was calculated for the entire gene-gene
network. The relationship between the PCC values and the
amount of coverage within the entire gene-gene network
is shown in Figure 1. From Figure 1, it was observed that
more gene-gene interactions are covered if 0.2 was
selected as the threshold value for PCC which unfortu-
nately, will reduce the prediction power of the final tissue-
specific gene-gene interaction network. Therefore consid-
ering the coverage and the effectiveness of predicting new
disease-gene associations 0.3 was selected as the threshold

value for PCC to create tissue-specific gene-gene
networks.
After removing the lower PCC value gene-gene interac-

tions from the network, all the remaining interactions
were weighted using equation (1). Testing was carried out
to find the best formulation between the phenotype and
the tissue gene expression values. In addition, testing was
repeated to check the most suitable parameter value for
the equation. Testing was based on the effectiveness of
predicting and detecting disease related genes from the
newly created tissue-specific gene-gene network. After a
series of testing the parameter a = 0.6 was finalized as the
best value.

Prediction of disease cause genes using Katz method
After constructing tissue-specific gene-gene networks,
Katz method was used to check the effectiveness of the
network in predicting disease genes. In order to prioritize
candidate disease genes, Katz method was used because its
application has been successfully tested for link prediction
in social networks [35]. Furthermore, the method is based
on integrating functional gene interaction networks with
phenotype data and computing a measure of similarity
based on walks of different lengths between gene and
phenotype node pairs. Hence in this research Katz method
has been used as the platform method to evaluate the per-
formance of each method of constructing tissue-specific
gene-gene networks in predicting disease genes.
By definition Katz measure is a graph-based method for

finding nodes similar to a given node in a network [36].
The research done by Singh-Blom, et al [37] applied Katz
method to recommending genes for a given phenotype or
drug. They have introduced a Katz adjacency matrix for a
heterogeneous network as:

c =
[
G P
PT Q

]
(2)

Let G denote the gene-gene network, let P denote the
bipartite network between genes and phenotypes, and let
Q denote the phenotype-phenotype network. PT is the
transpose matrix of P. And the final Katz score matrix
SKatz (C) corresponding to similarities between gene
nodes and human disease nodes can be expressed as:

SKatzHs (c) = βPHs + β2 (GPHs + PHsQHs) + β3 (
PPTPHs + G2PHs + GPHsQHs + PHsQ2

Hs

)
(3)

where, PHs and QHs denote the gene-phenotype and
phenotype-phenotype networks of humans, respectively.
As well as P consist of phenotype information from
multiple species. Namely: pant, worm, fly, zebrafish, E.
coli, chicken, mouse and yeast phenotype information
are compared with human phenotype information. b is a
constant that dampens contribution from longer walks.
The research study has modified the Katz method in

Figure 1 Total coverage of the protein-protein network for
different PCC values. For breast cancer, colorectal cancer, diabetes
mellitus, prostate cancer, lung cancer and Alzheimer diseases how
many protein-protein interactions are covered for PCC values from
0.2 to 0.4.
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such a way that it will accept tissue-specific gene-gene
networks and it only considers gene-phenotype associa-
tions to human. Therefore the final Katz score matrix
SKatz (C) was calculated by considering the tissue details
along with the relationship between genes and pheno-
types. The equation is expressed as:

SKatz(c) = βP + β2 (GP + PQ) + β3 (
PPT + G2P + GPQ + PQ2) (4)

where, G, P and Q denote tissue-specified gene-gene
network, gene-phenotype network and phenotype-
phenotype network, respectively. (Construction of gene-
phenotype network and phenotype-phenotype network
is explained in the method section.) The algorithm para-
meter b will remain same as 10-6 and the number of
iteration to 3 [37]. From the final matrix values we are
able to predict candidate disease genes by considering
the tissue-specific details.
In order to check the performance of the TSG network,

it was evaluated with the generic protein-protein network
by considering the effectiveness of predicting known
disease genes as well as unknown disease genes. The pre-
diction rate of known and unknown disease genes for
breast cancer, colorectal cancer, diabetes mellitus, prostate
cancer, lung cancer and Alzheimer is shown in Figure 2.
From the result, breast cancer and colorectal cancer had a
higher rate in predicting known and unknown disease
genes than other diseases. Diabetes predictions showed
the lowest disease genes rate as compared with others.
According to the results highlighted, tissue-specific net-
work is reacting in higher rate in predicting known and

unknown disease genes for a particular disease than using
generic protein-protein network.
Furthermore, to justify the importance of using tissue-

specific gene-gene network instead of generic protein-
protein network for predicting and prioritizing disease
genes the generated TSG network was tested with three
other methods namely; ProSim [33], PRINCE [18] and
RWRH [19]. Leave-one-out cross validation was carried
out for each method to detect the capability of each
method in predicting known disease genes at the point
where generic PPI and TSG networks were used. With
each cross validation trial, a single seed gene related to
the query disease was removed and then each method
evaluated on its success of identifying and ranking the
removed seed gene. Figure 3, 4, 5 shows results of
leave-one-out cross validation as in columns. According
to Figure 3, 4, 5, for breast cancer by using tissue-speci-
fic gene-gene network it enables to predict true disease
genes the rate of 85%, 81% and 80% for ProSim,
PRINCE and RWRH methods, respectively. As well as
for Alzheimer disease the values change as 71%, 60%
and 61%, respectively. According to the results, we are
able to conclude that by using tissue-specific gene-gene
network it enables to predict more known disease genes
than using a generic PPI network.

Comparison with other network construction methods
In order to check the effectiveness of the novel method
of constructing tissue-specific gene-gene network it was
compared with three other methods. The methods
included; tissue-specific node-removal (TS-NR) and tis-
sue-specific edge-reweight (TS-ERW) methods designed

Figure 2 Prediction of known and unknown disease genes
between generic PPI and TSG network. Percentage of known
and unknown disease genes prediction by using generic PPI
network and TSG network for breast cancer, colorectal cancer,
prostate cancer, lung cancer, diabetes mellitus and Alzheimer
disease.

Figure 3 Percentage of true disease genes detection for
ProSim methods. Percentage values of true disease genes
detection by using generic PPI and TSG networks for ProSim
method. Testing is carried for breast cancer, colorectal cancer,
prostate cancer, lung cancer, diabetes mellitus and Alzheimer
disease separately.
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by Magger et al [38], and BlockRank method by Jiang et
al [39]. Basically node-removal tissue-specific PPI net-
work was derived by removing from the original PPI
network proteins that are not expressed in the relevant
tissue and all of the edges adjacent to them [38]. The
remaining edges were retained, along with their weights.
In an edge-reweight tissue-specific PPI network, the
confidence of each interaction represents the probability
that the interaction takes place within a given tissue.
This probability rw is calculated from the formula (5):

w′
ij = P

(
Pi,Pjint eract|Tissue = t

)
=

P
(
Iij|t

) ∗ P (X (i, t) |t) ∗ P
(
X

(
j, t

) |t) = wij ∗ rwn
(5)

where wij is the original weight of the interaction and n
is the number (0-2) of lowly-expressed genes in tissue t
out of {Pi,Pj}. Thus, conversion of the generic PPI weight
to a tissue specific PPI weight using the edge reweight
method involves multiplying an edge’s weighted by rw if
one of its adjacent genes is not expressed in the tissue, and
by rw2 if neither of the edge’s adjacent genes are expressed
in the tissue [38]. Finally, BlockRank method [39] con-
structs the tissue-specific PPI network by considering only
the known disease genes and the 1-order neighbors of
these disease genes for a particular tissue related to each
disease. Thereafter, the topology of this PPI network can
be formulated as a square symmetric matrix L = (Lij)
(adjacent matrix of graph G), where Lij = 1 if protein pi
can interact with protein pj, and Lij = 0 otherwise. From
Markov chain perspective, the PPI network can be
explained by a probability transition matrix that one pro-
tein may interact with other proteins in this network with
a certain degree of probability. Thus, they obtained the
transition matrix of Markov model P = (Pij) from the
adjacent matrix L as follows:

Pij =
Lij∑
j Lij

(6)

According to the research of Jiang, et al [39] this tran-
sition matrix has been used to predict candidate disease
genes. In order to check the effectiveness of each
method created tissue-specific protein-protein network
is forward to the tissue-specific Katz method to predict
disease-gene associations for each query disease. Addi-
tional file 1 illustrates the top ten genes predicted by
each method for each query disease. From the results it
concludes that TSG network enables to predict more
disease-gene associations than other three methods.
Evaluation process was carried out by conducting

leave-one-out cross validation technique for each
method. With each cross validation trial, it will hide all
associations between a given gene and diseases. There-
fore, validation will be done for all the known disease-
gene association as well as enabling the calculation of
the percentages of the true disease genes for each
method. By using this evaluation method it will find out
the best tissue-specific network to be used to predict
and detect known disease genes for a particular disease.
The percentage of true disease gene detection for each
method is shown in Table 1. TSG method was able to
predict disease genes; 76%, 73%, 66%, 78%, 75% and 80%
for breast cancer, colorectal cancer, prostate cancer,
lung cancer, diabetes mellitus and Alzheimer disease,
respectively.
We further inspect the mean enrichment value for

each method. In general, the mean enrichment formula
is: enrichment = 50 / (rank), for an interval of

Figure 4 Percentage of true disease genes detection for PRINCE
methods. Percentage values of true disease genes detection by
using generic PPI and TSG networks for PRINCE method. Testing is
carried for breast cancer, colorectal cancer, prostate cancer, lung
cancer, diabetes mellitus and Alzheimer disease separately.

Figure 5 Percentage of true disease genes detection for RWRH
methods. Percentage values of true disease genes detection by
using generic PPI and TSG networks for RWRH method. Testing is
carried for breast cancer, colorectal cancer, prostate cancer, lung
cancer, diabetes mellitus and Alzheimer disease separately.
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100 genes [40]. Based on ranking values, by using the
leave-one-out cross validation process, it was possible to
identify the rank of true disease genes for each method.
The final results are shown in Table 2. By analyzing the
results it is clear that our novel method comes first in
all case studies. BlockRank method comes in the second
place. For prostate cancer and diabetes mellitus NR
method is in third place and for other disease ERW
method comes on third.
Furthermore, ROC curves are drawn by considering

the sensitivity and specificity, measures for each method.
Sensitivity is defined as the percentage of true disease
genes that are ranked above a specified threshold while
specificity is defined as percentage of all non related dis-
ease genes that are ranked below a specified threshold.
In other words, ROC values can be interpreted as a plot
of the frequency of the disease genes above the thresh-
old versus the frequency of disease genes below the
threshold, where the threshold is a specific position in
the ranking. Thus it enables to calculate the sensitivity
and specificity for each case. In this scenario top 200
genes were taken into consideration. Hence the thresh-
old value is set as 200 for the study. For breast cancer
TSG method had the highest area coverage in ROC
curve as illustrate in Figure 6. ROC curves for other
case studies are given in additional file 2.
By considering the results, tissue-specific gene-gene

network predicts more new disease genes than the

generic protein-protein interaction network. By using the
TSG method it is predicting that NME1, MSH2, RAF1,
HDAC1 genes in ovary, prostate and skin tissues cause
breast cancer disease [41-43]. As well as STK11, HNF1A,
TSG101, KPNA2, MDM2, APEX1 genes in lungs, liver and
ovary tissues are also tumor progression genes for colorec-
tal cancer [44-46]. Furthermore INS, INSR, RXRA, MAPK8
genes in liver and pancreatic islets tissues is effective for
diabetes mellitus disease. For Alzheimer disease HTT,
PRNP, KAT5 genes in brain tissues are stimulating the dis-
ease [47-51]. TP53, AKT1, BARD, MUC4 genes [52-54] in
lung and skin tissues are effective for lung cancer and
TP53, NTRK1, BARD1, MDM4, E2F1 and CASP8 genes
[55-57] in prostate and skin tissues are tumor progression
genes for prostate cancer. As well as for breast cancer by
using the TSG method it enables to detect some genes
that help for breast cancer recovery. Namely: MDM4,
SMARCA4, E2F1 and SMAD3 [58,59] are some of the
tumor suppression genes that help for drug discovery and
therapy. BID and PEA15 are two genes [60,61] that detect
in lung cancer that help for drug discovery and therapy.

Conclusions
The purpose of the research was to find out the impor-
tance of using tissue-specific details in predicting dis-
ease-gene associations and to check whether it is
appropriate to use tissue-specific gene-gene network
instead of generic protein-protein network at all time in
predicting disease-gene associations.
A novel method was therefore proposed to construct

tissue-specific gene-gene networks. The performance of

Table 1 Percentage of true disease genes for various
methods.

Disease Name TSG NR ERW BlockRank

Breast Cancer 76% 42% 46% 55%

Colorectal Cancer 73% 52% 53% 61%

Prostate Cancer 66% 57% 55% 63%

Lung Cancer 78% 55% 57% 68%

Diabetes Mellitus 75% 58% 52% 66%

Alzheimer Disease 80% 68% 70% 76%

Percentage values of true disease genes detection for TSG, NR, ERW and
BlockRank methods. Testing is carried for breast cancer, colorectal cancer,
prostate cancer, lung cancer, diabetes mellitus and Alzheimer disease separately.

Table 2 Calculation of mean enrichment for various
methods.

Disease Name TSG NR ERW BlockRank

Breast Cancer 5.366 0.217 0.236 1.778

Colorectal Cancer 4.365 0.210 0.238 0.613

Prostate Cancer 1.590 0.417 0.389 1.089

Lung Cancer 10.694 1.082 1.096 3.596

Diabetes Mellitus 5.716 0.571 0.513 2.532

Alzheimer Disease 12.759 2.655 4.186 11.997

Mean enrichment values for TSG, NR, ERW and BlockRank method in the case
of breast cancer, colorectal cancer, prostate cancer, lung cancer, diabetes
mellitus and Alzheimer disease.

Figure 6 ROC curve for Breast cancer. Sensitivity and specificity
values for TSG, NR, ERW and BlockRank network in the case of
breast cancer.
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the proposed method was evaluated and compared with
three other methods, NR, ERW and BlockRank. The pro-
posed method outperforms above mentioned methods. At
the same time experiments were carried out to check the
effectiveness of using tissue-specific gene-gene networks
instead of generic protein-protein networks to predict dis-
ease-gene associations. With the results it was clear that
tissue-specific gene-gene networks performed better than
any other methods. It was also able to predict more
known and new disease-gene associations for a particular
disease. Hence the study was able to omit the use of gen-
eric protein-protein networks in predicting disease-gene
associations. Even though it outperforms existing methods
considered, further experiments need to be carried out to
tune its performance in prioritizing candidate genes.
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Additional File 1: Top ten genes. Title: Illustrate the top ten genes
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Additional File 2: ROC curves. Title: ROC curves for other diseases.
(a) Colorectal cancer (b) lung cancer (c) prostate cancer (d) diabetes
mellitus (e) Alzheimer disease

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
GUG obtained the protein-protein interaction data and tissue-specific details,
developed the method and analysed the results. GUG and JXW designed
the method. GUG, JXW and ML discussed extensively about the study and
drafted the manuscript together. JXW, FXW and ML participated in revising
the draft. All authors have read and approved the manuscript.

Acknowledgements
This work is supported in part by the National Natural Science Foundation
of China under Grant No.61232001, No.61070224, No.61379108 and No.
61370024 the Program for New Century Excellent Talents in University(NCET-
12-0547).

Declarations
The publication costs for this article were funded by the National Natural
Science Foundation of China under Grant No.61232001.
This article has been published as part of BMC Systems Biology Volume 8
Supplement 3, 2014: IEEE International Conference on Bioinformatics and
Biomedicine (BIBM 2013): Systems Biology Approaches to Biomedicine. The
full contents of the supplement are available online at http://www.
biomedcentral.com/bmcsystbiol/supplements/8/S3.

Authors’ details
1School of Information Science and Engineering, Central South University,
Changsha, China. 2College of Engineering, University of Saskatchewan, 57
Campus Dr., Saskatoon, SK Canada.

Published: 22 October 2014

References
1. Wang J, Li M, Wang H, Pan Y: Identification of essential proteins based

on edge clustering coefficient. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 2012, 9(4):1070-1080.

2. Zhong J, Wang J, Peng W, Zhang Z, Pan Y: Prediction of essential proteins
based on gene expression programming. BMC Genomics 2013, 14(4):1-8.

3. Peng W, Wang J, Wang W, Liu Q, Wu FX, Pan Y: Iteration method for
predicting essential proteins based on ontology and protein-protein
interaction networks. BMC Systems Biology 2012, 6(1):87.

4. Wang J, Peng W, Wu FX: Computational approaches to predicting essential
proteins: A survey. PROTEOMICS-Clinical Applications 2013, 7(1-2):181-192.

5. Wang J, Li M, Deng Y, Pan Y: Recent advances in clustering methods for
protein interaction networks. BMC Genomics 2010, 11(Suppl 3):S10.

6. Li M, Chen JE, Wang JX, Hu B, Chen G: Modifying the DPClus algorithm
for identifying protein complexes based on new topological structures.
BMC Bioinformatics 2008, 9:398.

7. Ding X, Wang W, Peng X, Wang J: Miming protein complexes from PPI
Networks using the minimum vertex cut. Tsinghua Science and Technology
2012, 6:674-681.

8. Wang J, Li M, Chen J, Pan Y: A fast hierarchical clustering algorithm for
functional modules discovery in protein interaction networks. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 2011, 8(3):607-620.

9. Barabási AL, Gulbahce N, Loscalzo J: Network medicine: a network-based
approach to human disease. Nature 2011, 12:56-68.

10. Peng W, Wang J, Zhao B, Wang L: Identification of protein complexes
using weighted PageRank-Nibble algorithm and core-attachment
structure. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 2014.

11. Zhao B, Wang J, Li M, Wu FX, Pan Y: Detecting Protein Complexes Based
on Uncertain Graph Model. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 2014, doi 10.1109/TCBB.2013.2297915.

12. Tang X, Feng Q, Wang J, He Y, Pan Y: Clustering based on multiple
biological information: approach for predicting protein complexes. IET
Systems Biology 2013, 7(5):223-230.

13. Goh K, Cusick M, Valle D, Childs B, Vidal M, lbert-La Szlo B: The human
disease network. In Proceedings of the National Academy of Sciences: May
2007. Boston University;H. Eugene Stanley 2007:8685-8690, April.

14. Tian W, Zhang LV, Taan M, Gibbons FD, King OD, Park J, Wunderlich Z,
Cherry JM, Roth FP: Combining guilt-by-association and guilt-by-profiling
to predict Saccharomyces cerevisiae gene function. Genome Biology 2008,
9(Suppl1):S7.

15. Ulitsky I, Shamir R: Identification of functional modules using network
topology and high throughput data. BMC systems biology 2007, 1-8.

16. Wu X, Jiang R, Zhang MQ, Li S: Network-based global inference of human
disease genes. Molecular Systems Biology 2008, 4:189.

17. Kohler S, Bauer S, Horn D, Robinson PN: Walking the Interactome for
Prioritization of Candidate Disease Genes. The American Journal of Human
Genetics 2008, 82(4):949-958.

18. Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R: Associating genes and
protein complexes with disease via network propagation. PLOS
Computational Biology 2010, 6:e1000641.

19. Li Y, Patra JC: Genome-wide inferring gene-phenotype relationship by
walking on the heterogeneous network. Bioinformatics 2010,
26:1219-1224.

20. Winter EE, Goodstadt L, Ponting CP: Elevated rates of protein secretion,
evolution, and disease among tissue-specific genes. Genome Res 2004,
14(1):4-61.

21. Guan Y, Gorenshteyn D, Burmeister M, Wong AK, Schimenti JC, Handel MA,
Bult CJ, Hibbs MA, Troyanskaya OG: Tissue-Specific Functional Networks
for Prioritizing Phenotype and Disease Genes. PLOS Computational Biology
2012, 9:e1002694.

22. Bossi A, Lehner B: Tissue specificity and the human protein interaction
network. Molecular Systems Biology 2009, 5:260.

23. Emig D, Albrecht M: Tissue-specific proteins and functional implications.
J Proteome Res 2011, 10:1893-1903.

24. Wang J, Peng X, Peng W, Wu FX: Dynamic protein interaction network
construction and applications. Proteomics 2014, 14(4-5):338-352.

25. Li M, Wu X, Wang J, Pan Y: Towards the identification of protein
complexes and functional modules by integrating PPI network and gene
expression data. BMC Bioinformatics 2012, 13.

26. Wang J, Peng X, Li M, Pan Y: Construction and application of dynamic
protein interaction network based on time course gene expression data.
Proteomics 2013, 13(2):301-312.

27. Gene expression data set for GSE 7307:[http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE7307].

28. Lagea K, Hansen NT, Karlberg EO, Eklund AC, Roque FS, Donahoe PK,
Szallasi Z, Jensen TS, Brunak S: A large-scale analysis of tissue-specific

Ganegoda et al. BMC Systems Biology 2014, 8(Suppl 3):S3
http://www.biomedcentral.com/1752-0509/8/S3/S3

Page 8 of 9

http://www.biomedcentral.com/content/supplementary/1752-0509-8-S3-S3-S1.xlsx
http://www.biomedcentral.com/content/supplementary/1752-0509-8-S3-S3-S2.pdf
http://www.biomedcentral.com/bmcsystbiol/supplements/8/S3
http://www.biomedcentral.com/bmcsystbiol/supplements/8/S3
http://www.ncbi.nlm.nih.gov/pubmed/22084147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22084147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20733244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20733244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17408515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17408515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14707169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14707169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23028291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23028291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22621308?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22621308?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22621308?dopt=Abstract
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307
http://www.ncbi.nlm.nih.gov/pubmed/19104045?dopt=Abstract


pathology and gene expression of human disease genes and
complexes. Proceedings of the National Academy of Sciences 2008,
20871-20875, December 2008.

29. Li M, Zheng R, Zhang H, Wang J, Pan Y: Effective identification of
essential proteins based on priori knowledge network topology and
gene expressions. Methods 2014, doi: 10.1016/j.ymeth.2014.02.016.

30. Tang X, Wang J, Zhong J, Pan Y: Predicting essential proteins based on
weighted degree centrality. IEEE /ACM Transactions on Computational
Biology and Bioinformatics 2014.

31. Li M, Zhang H, Wang J, Pan Y: A new essential protein discovery method
based on the integration of protein-protein interaction and gene
expression data. BMC Systems Biology 2012, 6(1):15.

32. van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JAM: A text-
mining analysis of the human phenome. European Journal of Human
Genetics 2006, 14:535-542.

33. Ganegoda GU, Wang JX, Wu FX, Li M: Prioritization of Candidate Genes
Based on Disease Similarity and Protein’s Proximity in PPI Networks. IEEE
International Conference on Bioinformatics and Biomedicine: 18-21 December
2013 2013, 103-108.

34. Human Protein Reaction Database:[http://www.hprd.org].
35. Liben-Nowell D, Kleinberg J: The link-prediction problem for social

networks. Journal of the American Society for Information Science and
Technology 2007, 58:1019-1031.

36. Katz L: A new status index derived from sociometric analysis.
Psychometrika 1953, 18:39-43.

37. Singh-Blom UM, Natarajan N, Tewari A, Woods JO, Dhillon IS, Marcotte EM:
Prediction and Validation of Gene-Disease Associations Using Methods
Inspired by Social Network Analyses. PLOS One 2013, 8(5):e58977.

38. Magger O, Waldman YY, Ruppin E, Sharan R: Enhancing the Prioritization
of Disease-Causing Genes through Tissue Specific Protein Interaction
Networks. PLOS Computational Biology 2012, 8(9):e1002690, September.

39. Jiang BB, Wang JG, Xiao JF, Wang Y: Gene Prioritization for Type 2
Diabetes in Tissue-specific Protein Interaction Networks. The Third
International Symposium on Optimization and Systems Biology: 20-22
September 2009 2009, 319-328.

40. Kohler S, Bauer S, Horn D, Robinson PN: Walking the Interactome for
Prioritization of Candidate Disease Genes. The American Journal of Human
Genetics 2008, 82:949-958.

41. Qu S, Long J, Cai Q, Shu XO, Cai H, Gao YT, Zheng W: Genetic
Polymorphisms of Metastasis Suppressor Gene NME1and Breast Cancer
Survival. Clin Cancer Res 2008, 14(15):4787-4793.

42. Callans LS, Naama H, Khandelwal M, Plotkin R, Jardines L: Raf-1 protein
expression in human breast cancer cells. Ann Surg Oncol 1995, 2(1):38-42.

43. Westenend PJ, Schutte R, Hoogmans MMCP, Wagner A, Dinjens WNM:
Breast cancer in an MSH2 gene mutation carrier. Human Pathology 2005,
36:1322-1326.

44. Bélanger AS, Tojcic J, Harvey M, Guillemette C: Regulation of UGT1A1and
HNF1transcription factor gene expression by DNA methylation in colon
cancer cells. BMC Molecular Biology 2010, 11:9.

45. Resta N, Simone C, Mareni C: STK11 Mutations in Peutz-Jeghers
Syndrome and Sporadic Colon Cancer. Cancer Research 1998,
58:4799-4801.

46. Ma XR, Sim UHE, Pauline B, Patricia L, Rahman J: Overexpression of WNT2
and TSG101 genes in colorectal carcinoma. Tropical biomedicine 2008,
25(1):46-57.

47. Bodhini D, Sandhiya M, Ghosh S, Majumder PP, Rao MR, Mohan V, Radha V:
Association of His1085His INSR gene polymorphism with type 2
diabetes in South Indians. Diabetes Technol Ther 2012, 14(8):696-700,
August.

48. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C,
Rodford J, Slater-Jefferies JL, Garratt E, Crozier SR, Emerald BS, Gale CR,
Inskip HM, Cooper C, Hanson MA: Epigenetic Gene Promoter Methylation
at Birth Is Associated With Child’s Later Adiposity. diabetesjournals 2011,
60:1528-1534.

49. Baliab J, Gheinania AH, Zurbriggena S, Rajendrana L: Role of genes linked
to sporadic Alzheimer’s disease risk in the production of β-amyloid
peptides. In Proceedings of National Academy of Science of the United States
of America. Max Planck Institute of Molecular Cell Biology and Genetics,
Dresden;Simons K 2012:15307-15311, 18 September 2012.

50. Mun˜oz-Nieto M, Ramonet N, Lo´ez-Gasto´n JI, Corrales NC, Calero O, Díaz-
Hurtado M, Ipiens JR, Cajal SR, Pedro-Cuesta J, Calero M: A novel mutation

I215V in the PRNP gene associated with Creutzfeldt-Jakob and
Alzheimer’s diseases in three patients with divergent clinical
phenotypes. Journal Neurol 2013, 260:77-84.

51. Forero DA, Arboleda G, Yunis JJ, Pardo R, Arboleda H: Association study of
polymorphisms in LRP1, tau and 5-HTT genes and Alzheimer’s disease in
a sample of Colombian patients. Journal of Neural Transmission 2006,
113(9):1253-1262.

52. Blanco R, Iwakawa R, Tang M, Kohno T, Angulo B, Pio R, Montuenga LM,
Minna JS, Yokota J, Sanchez-Cespedes M: A Gene-Alteration Profile of
Human Lung Cancer Cell Lines. Human Mutation. 2009, 30(8):1199-1206.

53. Zhang Z, Wang J, He J, Zheng Z, Zeng X, Zhang C, Ye J, Zhang Y,
Zhong N, Lu W: Genetic Variants in MUC4 Gene Are Associated with
Lung Cancer Risk in a Chinese Population. PLOS One 2013, 8(10):e77723.

54. Dai S, Mao C, Jiang L, Wang G, Cheng H: P53 polymorphism and lung
cancer susceptibility: a pooled analysis of 32 case-control studies. Hum
Genet 2009, 125:633-638.

55. Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA, Day ML:
Elevated E2F1 Inhibits Transcription of the Androgen Receptor in
Metastatic Hormone-Resistant Prostate Cancer. American Association for
Cancer Research 2006, 66(24):11897-11906.

56. Parry M, Elliott G, Abo R, Camp NJ, Neal DE, Donovan JL, Hamdy FC, Cox A:
Caspase-8 gene SNPs in prostate cancer susceptibility a replication
study [abstract]. Journal of Medical Genetics 2010, 70(8):2843.

57. Ecke TH, Schlechte HH, Schiemenz K, Sachs MD, Lenk SV, Rudolph BD,
Loening SA: TP53 gene mutations in prostate cancer progression.
Anticancer Research 2010, 30(5):1579-1586.

58. Lam S, Lodder K, Teunisse AFAS, Rabelink MJWE, Schutte M, Jochemsen AG:
Role of Mdm4 in drug sensitivity of breast cancer cells. Oncogene 2010,
29(16):2415-2426.

59. Worku D, Jouhra F, Jiang GW, Patani N, Newbold RF, Mokbel K: Evidence of
a Tumor Suppressive Function of E2F1Gene in Human Breast Cancer.
Anticancer Research 2008, , 28: 2135-2139.

60. Fukazawa T, Maeda Y, Matsuoka J, Tanaka N, Tanaka H, Durbin ML,
Naomoto Y: Drug-regulatable cancer cell death induced by BID under
control of the tissue-specific, lung cancer-targeted TTS promoter system.
International Journal of Cancer 2009, 125(8):1975-1984.

61. Incoronato M, Garofalo M, Urso L, Romano G, Quintavalle C, Zanca C,
Iaboni M, Nuovo G, Croce CM, Condorell G: miR-212 Increases Tumor
Necrosis Factor-Related Apoptosis-Inducing Ligand Sensitivity in Non-
Small Cell Lung Cancer by Targeting the Antiapoptotic Protein PED.
American Association for Cancer Research 2010, 70(9):3638-46.

doi:10.1186/1752-0509-8-S3-S3
Cite this article as: Ganegoda et al.: Prediction of disease genes using
tissue-specified gene-gene network. BMC Systems Biology 2014 8(Suppl 3):S3.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Ganegoda et al. BMC Systems Biology 2014, 8(Suppl 3):S3
http://www.biomedcentral.com/1752-0509/8/S3/S3

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/19104045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19104045?dopt=Abstract
http://www.hprd.org
http://www.ncbi.nlm.nih.gov/pubmed/21471513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21471513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22949636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22949636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22949636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17178887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17178887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20388802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20388802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20388802?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Tissue specific gene expression
	Disease-tissue relationship
	Selection of tissue-specific gene interaction pairs
	Weighted TSG network
	Construction of gene-phenotype network
	Construction of phenotype-phenotype network
	Implementation of prioritization methods on TSG network
	Random Walks with Restart on Heterogeneous network
	PRINCE and ProSim
	Data sources

	Results and discussion
	Prediction of disease cause genes using Katz method
	Comparison with other network construction methods

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

