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Abstract

Background: The chemical master equation is the fundamental equation of stochastic chemical kinetics. This
differential-difference equation describes temporal evolution of the probability density function for states of a
chemical system. A state of the system, usually encoded as a vector, represents the number of entities or copy
numbers of interacting species, which are changing according to a list of possible reactions. It is often the case,
especially when the state vector is high-dimensional, that the number of possible states the system may occupy is too
large to be handled computationally. One way to get around this problem is to consider only those states that are
associated with probabilities that are greater than a certain threshold level.

Results: We introduce an algorithm that significantly reduces computational resources and is especially powerful
when dealing with multi-modal distributions. The algorithm is built according to two key principles. Firstly, when
performing time integration, the algorithm keeps track of the subset of states with significant probabilities (essential
support). Secondly, the probability distribution that solves the equation is parametrised with a small number of
coefficients using collocation on Gaussian radial basis functions. The system of basis functions is chosen in such a way
that the solution is approximated only on the essential support instead of the whole state space.

Discussion: In order to demonstrate the effectiveness of the method, we consider four application examples: a) the
self-requlating gene model, b) the 2-dimensional bistable toggle switch, ¢) a generalisation of the bistable switch to a
3-dimensional tristable problem, and d) a 3-dimensional cell differentiation model that, depending on parameter
values, may operate in bistable or tristable modes. In all multidimensional examples the manifold containing the
system states with significant probabilities undergoes drastic transformations over time. This fact makes the examples
especially challenging for numerical methods.

Conclusions: The proposed method is a new numerical approach permitting to approximately solve a wide range of
problems that have been hard to tackle until now. A full representation of multi-dimensional distributions is
recovered. The method is especially attractive when dealing with models that yield solutions of a complex structure,
for instance, featuring multi-stability.

Keywords: CME, Adaptivity, Toggle switch, Multi-stability, Cell differentiation

*Correspondence: i.kryven@uva.nl

1 University of Amsterdam, Science Park 904, 1098 XH Amsterdam,
The Netherlands

Full list of author information is available at the end of the article

- © 2015 Kryven et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() BioMed Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-015-0210-y-x&domain=pdf
mailto: i.kryven@uva.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Kryven et al. BVIC Systems Biology (2015) 9:67

Background

Temporal evolution of biological systems is often driven
by the interaction between different types of particles
which, depending on the applications, can represent
molecules, bacterias, animals, or other discrete units. In
nature, in nearly every process, particle numbers are sub-
ject to random fluctuations caused by inherent stochastic
noise. Simulations of such systems are usually based on
Monte Carlo (MC) simulations of the underlying Markov
jump processes, such as Gillespie’s famous stochastic sim-
ulation algorithm (SSA) [1]. These methods share some
common disadvantages: there is always a sampling error
that, in general, is difficult to estimate; the convergence
can be quite slow too. Even computing single realisations
can be quite costly if many fast reactions are present;
therefore approximate MC methods like 7-leaping [2],
averaging approaches [3, 4], and deterministic-stochastic
hybrid formulations [5-7] have been introduced. The
applicability of these approaches depends on the exis-
tence of a permanent timescale gap that allows to clearly
distinguish between fast and slow reactions.

An alternative approach is to directly compute the prob-
ability density function (PDF) as a solution of the chemical
master equation (CME). Solving the CME numerically on
a large state space with a huge number of unknowns is
known to be difficult [8]. Various hybrid methods were
proposed to cope with the curse of dimensionality, a
phenomenon that refers to the rapidly increasing num-
ber of unknowns when parametrising a multidimensional
system [9-11].

However, in many cases the probability distribution has
‘significant’ values only on a very small portion of the
whole state space. Here, ‘significant’ means being distin-
guishable from zero and refers to a value that is larger
than a predefined small tolerance. This fact has moti-
vated an exploration towards special numerical meth-
ods that exploit this feature. For example, Deuflhard
et al. (two-dimensional case) [12] and Cotter et al.
(three-dimensional case) [13] applied sophisticated adap-
tive finite element methods to solve the CME, but their
approach is limited to low-dimensional problems. To
cope with multi-dimensional problems, methods based
on truncation of the CME to finite state space have
been developed, such as the Finite State Projection (FSP)
method [14-16] or the finite buffer discrete chemical
master equation (dCME) [17, 18]. Based on the FSP,
Kazeev et al. used Quantized Tensor Trains for a direct
solution of the CME [19].

A very different approach has been taken by Wolf et al.
[20], who suggested an algorithm defining a rectangular
window in the state space, enclosing the essential part of
the distribution that allows to perform parametrisation of
the distribution with a small number of parameters. In
the current paper we will try to take the latter idea even
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further. Firstly, we consider cases that are not restricted
to one or two dimensions but try to develop a general
approach. Secondly, we allow an arbitrary shape of the
‘window’ by considering a manifold that contains sys-
tem states with probabilities greater than a pre-defined
threshold. Thirdly, we employ the projection on Gaussian
basis functions (GBF) to further reduce the computational
costs.

The concept of GBF approximation has formerly been
applied to various problems in polymer chemistry [21-23]
and colloidal physics [24]. In this paper it is extended to
the CME. To account for the fact that at a specific time
point only a small part of the system states has to be
considered, the system of basis functions is adapted on
every time step. The idea behind the adaptation is that the
unknown distribution is parametrised using only those
GBFs that contribute to probability values that are sig-
nificantly greater than zero. This procedure allows for a
smart approximation with a very low number of approxi-
mation parameters even in the case of multi-dimensional
distributions. The total number of parameters is not con-
stant in time but changes according the distribution’s
complexity. This approach also allows to capture multi-
modal cases where a time-dependent process leads to
splitting/merging of a few disjoint parts of the distribu-
tion. One example for such a process is the genetic toggle
switch model that typically leads to multi-stable solu-
tions [25]. Even a more comprehensive behaviour can be
observed in CMEs that model cell differentiation.

Mesenchymal stem cells (MSCs) are multipotent stro-
mal cells that can differentiate into a variety of cell types,
including osteoblasts (bone cells) and chondrocytes (car-
tilage cells). When derived form adults, one of the appli-
cations is related to transplantation, namely either to
promote regeneration of diseased or damaged tissue or
to rescue defective genes [26]. Foster et al. developed a
mathematical model for cell differentiation that predicts
presence of multiple stable states for differentiated cells,
bifurcations and switch-like transitions [27, 28]. Later,
Schittler et al. expanded the model to include the progen-
itor state and studied the system of binary differentiation
with respect to various stimuli [29]. Despite an advanced
level of the mathematical description, models presented
in Refs. [26, 29] recover single trajectories for the evolu-
tion of biological systems, while realistic systems of that
kind are known to be composed of a whole population of
cells. In theory, the transition from an ordinary differen-
tial equation model, that results in single trajectories, to a
CME, that describes the evolution for the whole popula-
tion of cells, is a matter of pure formalism. However, it is
the complexity of algorithms one has to cope with when
solving the equations numerically, that kept researchers
out from the full, three-dimensional solution to the CME
problem until now.
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Methods

Suppose that the evolution of d species interacting via
K reaction channels is described by a Markov jump pro-
cess on the state space Q@ = N¥, whereby N denotes the
set of all non-negative integers including zero. The entry
Xi(t) € N of a realisation X(¢) € N7 is the number of
particles of species i at time £. Our goal is to compute
the distribution u(x), x € £, the probability that there
are exactly x; particles of the i" species, i = 1,...,d. In
particular we are interested in the time dynamics of the
distribution u(x, t),

ux,t) =P X@®) =x),x€Q, (1)
lu(x, £)|| =1, t €[ 0, 00).

The distribution u evolves according to the CME [8]

WD — fu(x,t)
{ u(x,0) = o), @
where £ : L — L denotes the operator,
K
(Lu(x, 1) ®) = Y (aix — vu(x — v, 1) — a;(xX)u(, 1))
i=1
(3)

In Eq. (3), v; € Z% denotes the stoichiometric vector
that defines jumps to new states x + v; via the /™" reaction
channel. The x-dependent coefficients a;(x) indicate the
ith propensity function.

Let Ty, T, : L — L be shift operators that act along the
k™ dimension of L,

(Tru(x)) (x) = ulx1,x2,...,x6c— 1,...,x9), (x;) € L,
(Tru@®)) %) = uxr,x,. .., % +1,.. ., %), (%) € Q.
(4)

Let us define the n*-power for operators (4) as an n-
folded composition

¢ = T,f_l oTyx, n>0;
= (T7)", n<0 (5)
T} =1, n=0,

where [ is the identity operator. Now, the CME operator
(3) can be rewritten as

K d
L= T -1|Wa. (6)

i=1 \k=1

Here, v;; denotes the K component of the stoichio-
metric vector v;, and W, : L — L is a multiplicative
operator that takes the probability distribution u(x) to its
weighted form a(x)u(x). The representation (6) is espe-
cially convenient when implementing the approximation
technique.
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Results
Let S C € be a fixed and enumerated system of
points {x'}i—1,. , & = (x‘l,,x;) Here the lower

index denotes dimension, the upper index is a counter.
Each point #* € S has one radial basis function, ¢;(x),
associated,

a _(xd)’

pix) =[]e = i=1,...,n 7)
k=1

where the choice of the connectivity parameters O’li is a
tradeoff between coverage of the whole €2 and sufficiently
small condition number of the following matrix,

(A);j = (). ®)

The approximate solution u#(x,t) to the CME (3) is
searched in the form

WG t) = ) ai®gi), @ = (@az,..,0) . (9)

i=1

The matrix A is composed in such a way that the value
of approximation sum (9) at points x* can be simply writ-
ten as a column vector: i(x’, £) = Aa. Multiplying the last
expression with A~! on the left yields, @ = A~ lii(x/, t).
Thus A is an interpolation matrix. It is easy to see that the
CME is a linear differential equation and the discretiza-
tion £ : R” — R” to the CME operator (6) can be directly
used to implement a collocation scheme on nodes x/,

i(xt) = e“ay,

ao = A" (o)) ;

L= [ 1] W, (10)

Here, T} is an approximated shift operator that, together
with its powers, is defined analogously to (5) using
T, T 7,

Ty =ATYA1A, (A)ij = ¢y (6, xh, . oxk — 1,...,4Y),
T, = A7'AA, (A2)ij = ¢ (¥, xh, .., xh + 1,40,
(11)

and W, is the approximation to multiplicative operator

W, = A" diag {a (x'),a (+*),...,ax™)} A. (12)

Even though. the matrix exponentiation is used in
(10), there are sufficiently fast algorithms that compute a
matrix exponent with up to machine precision in compa-
rably short time, e.g. [30]. Consequently, the error is pre-
dominantly introduced by the choice of the discretization
nodes x'.
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The essential support is defined as those states x € Q2 for
which u(x) > 0 is greater than a certain threshold,

esupp{u(x)} := {x : u(x) > Pthreshold}- (13)

It is often a case that the probability density u(x,?)
at time ¢t has a small essential support not only when
comparing with the whole state space €2, but also when
comparing with the union of all essential supports over
the whole period of time,

wesupp{u(x, t)} < u U essup{u(x, )} < u2, t €0, teuql.
¢

(14)

where 1 : R4 —[0,00) is a Lebesgue measure. Although
for a fixed system of basis functions the matrix expo-
nentiation (10) provides the exact solution avoiding time
discretisation at all, the condition (14) motivates to con-
sider the CME on sequential time steps, not as means of
time approximation, but as a way of economy of compu-
tational resources. Indeed, if the system of basis functions
(7) is chosen to correspond to the current location of
the essential support, the total number of discretisation
coefficients «;(£) will be small.

In order to associate a set of essential supports with a
boundary line, the concept of the «-hull presented in Ref.
[31] is employed. The alpha hull S, is a generalisation of
the convex hull of a finite set of points S. It provides a
possibility to associate the signed distance function with
a set of points as illustrated in Fig. 1. A distance opera-
tor D : S — L takes a set of points from €2 to the signed
distance function
—min|x —y|, x € Sy,

YESa

min |x — y|, x ¢ Sq, (15)
y€Sy

(D(S)) (%) =

where |x—y| is an Euclidean distance. The operation (15) is
reversible: by knowing a signed distance function d(x) =
D(S) one may recover the set of points S,

S=D"'d(x) = {x:d(x) <0}. (16)
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Equations (15) and (16) allow applying the usual
numerical toolbox, that is well defined on functions, to
essential support sets. Various transformations of the
signed distance function lead to changes in the set of
points. For instance, let d; (x) and d3(x) be signed distance
functions, then d(x) = min(d;(x),d2(x)) is the signed
distance function representing the union of the interior
regions [32].

Let us assume that the essential support evolves con-
tinuously in time. This means that there exists a finite
vector valued function |v(x, t)| < oo that defines the nor-
mal direction speed for the essential support boundary.
Moreover, v(x,t) also defines the evolution of the cor-
responding time-continuous distance function d(x,¢) in
terms of the level-set equation [32],

ad(x,t)
ot

where | - | is an Euclidian norm. Suppose that the time
interval [0, £,,,4] is divided into subintervals with k ordered
time points

=v(x,0)|Vd(x, )], (17)

to =0, tx=tenas (18)

ti < ti+1, t; €[0,teuq], i=0,1,...,k.

As the pairwise distances between three sequential time
points t;_1, t;, tiy1 approaches zero, the time variation of

the speed v(x, ) vanishes as well,
[vx ti2) — v(x, t)|, [v(x, ;) — v(x, ti-1)| — 0. (19)

Writing the level-set Eq. (17) for time point ¢; using left
and right finite differences to replace the time differentia-
tion yields,

d(x, tiv1) —dx, t)

v 8 VdE ), (20)
tiv1 — &
il i f(x’ Gy )V 5.
i — -1

The last equation can be directly used to extrapo-
late the essential support essup{u(x, ti+1)}, provided the

300 300
250 250
200 200
150 150
100 100

50 50

0 0
0 50 100 150 200 250 300 0 50

0
100 150 200 250 300 0 50

Fig. 1 Three examples of the a-hull, a generalisation to the convex hull. Various values for parameter « yield different shapes of the domain for the
same set of points: a two disjoint rings, b two disjoint disks, € actual convex hull
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probability density u(x, t) is known in time points ¢;_; and
Lis

S =p1 (D essup{u(x, ¢;)}

b (i — ti)Dessup{u(x, t;)} — Dessup{u(x, t,'_l)})

Li—ti—1
(21)

The estimation provides a possibility to approximate the
actual density u(x, t;41) with the numerical scheme (7-10)
involving nodes exclusively from

S:=D7! <D (essup{u(x, t)} US’) — y) . (22)

Here the parameter y > 0 extends the subdomain as
there should be a sufficient layer of basis functions around
the essential support. This is necessary to interpolate the
density u(x, £) on the boundary. Having the approximation
u(x, t;+1) in turn permits to compute essup{u(x, £;+1)} and
to evaluate the reliability of the prior estimate S’. On the
basis of this information we can accept results at £;;; or
decide to use a smaller time step.

The complete numerical strategy shapes as a sequence
of the following steps:

e compute the essential support So = essup{ug(x)} for
the initial condition ug(x); choose a system of basis
functions with centres ' € D™1(D Sy — y) that
provides a sufficient approximation to
ll220(x) — uo(*)|l < Pthreshold;

e using (10) perform integration of the approximation
to u(x, £) on a small interval [ 0, £;] and compute the
new essential support Sy; seti = 1;

o ift; <ty choose tiy1 = t; + h; using (22),
extrapolate the value for S;4 utilising (22) and
compute the corresponding basis; integrate the
system up to t;4+1; validate S;+1 by computing
[ID(essup #(x, tiy1)) — D(Si+1)||; in the case of
satisfactory choice for S;;1, increase i by one and
repeat the step, otherwise repeat the step with a
smaller value for h.

Here, essential support threshold piyeshold, initial time
step /1, and density of the basis coverage y are parameters
of the method. The parameter of «-hull has grid step / as
the lower bound and is chosen to be 2/ in the numerical
examples that follow.

Discussion

Self-regulating gene

One of the simplest models of a gene regulatory network
consists of a single gene regulated by a self-generated pro-
teomic atmosphere. In this model the gene is represented
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by a master equation governing evolution of two proba-
bility distributions: uon(x,t) corresponding to situations
when the DNA is free (on state), uogf(x, t) corresponds to
cases when DNA has a repressing protein bound to it (off
state). Here x denotes copy numbers of proteins, ¢ repre-
sents time. The master equations for the self-regulating
gene model read as [33],

d
%uon(x» t) = gon(Mon(x — 1,t) — uon(x, )

+ k ((x + Duon(x + 1, ) — Xtton (%, £))
— h(®X)ton (%, £) + futofr(x, 1), x> 0;
0
5uon(xr t) = _gonuon(x¢ 1)+ k(uon(x +1,t)
+ uot(x + 1,¢)), x=0;
0
ﬁuoff(x, t) = Gott(Uoft(x — 1, 1) — Uoft(x, £))
+ k(% + Duor(x + 1, ) — xuofe(x, £))
+ h(®) ot (%, t) — fuon (%, 1), x> 1;
d
auoff(x: t) = — Goftott (¥, £) + k Quiogr(x + 1, 1)
—Uoft(x, 1)) + h(x)lflon(xr t)
— fuore(x, 1), x=1.
(23)

Here, gon, Zoff are rates of protein production in the free
and bound states, k is a rate of protein degradation, and
f is the rate of the repressor protein releasing from the
repressor site. In case of monomers, the net binding rate is
simply proportional to the number of proteins, /#(x) = hx.
In a biologically more relevant case - the dimerisation
upon binding, the rate is defined as h(x) = h/2x(x — 1)
[34]. The master equations presented in (23) can be refor-
mulated in the operator form (6),

d
&uon(x; ) = gon(T1 — Duton(x, )

+ k(Tl_ — D Witton (%, £) — Wi Uon (%, 1)
+ Wroft (%, £) + kWiy=ottot (x + 1, £);
] _
&uoff (%, £) = goft (T1 — Ditron(x, 1) +k(T1 — D Witoft (%, £)
+ Wh(x)uoff (x, 1) — VVfuon (x,8).
(24)

Here W,—o acts as unity operator for x = 0 and zero
operator for x > 0. The values of the probability distri-
butions that contradict the physical nature of the process
are defined to vanish, that is uon(x, ) = 0,x < 0, and
uof (v, t) = 0,x < 1. Since extra terms are present,
i.e Wi ), this important system of two one-dimensional
master equations does not fall into the class of CMEs;
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nevertheless it can be discretized by the proposed numer-
ical toolbox. In order to compare the numerical results
with the previous findings it is convenient introduce the
following unitless parameters:

(gon +g0ff)‘ xed :f w :_i'

ad .
=T n k

As can be concluded form the stationary solutions pre-
sented in the top panels in Fig. 2, small @ provokes
emergence of two distinct peaks in the overall probability
distribution, gon +gofr, for both cases: monomer and dimer
binding. One peak corresponds to the repressed protein
production, the other to a much higher protein produc-
tion (due to free DNA). As protein binding/unbinding
becomes faster (i.e. augmented w) the peaks tend to fuse.
In the case of monomer binding the exact analytical solu-
tion is known [33]. This gives the possibility to test the
method’s convergence on the self-regulatory protein prob-
lem. The convergence diagram of relative error of the
approximation measured in the /-norm is presented in
the lower panel in Fig. 2. In this example the approxima-
tion grid has been kept constant due to a small number
of system states. As will be shown in the next case studies
a much bigger computational challenge can be encoun-
tered when treating problems of dimensionality greater
then one.
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Bistable toggle switch

A classical example of a bistable genetic toggle switch
has been both, a comprehensive model explaining exper-
imental data, for instance on E. coli as in Ref. [25], and
a challenging test for various numerical methods to solve
the CME [8, 12, 35, 36]. In the context of the current
paper, we consider the model for its peculiar tendency to
form probability landscapes with two maxima. The model
describes a pair of mutually repressing genes A and B.
Each of the species inhibits the production of the com-
peting repressor by binding to the corresponding genetic
control sequences of the promoter. If A becomes abun-
dant the production of B is inhibited and the system is in
a stable state of high A and low B. If due to stochastic fluc-
tuations the amount of A decreases or the amount of B
is sufficiently high, the switch might flip and B becomes
abundant and A repressed. More formally, at every point
in time the state of the system is characterised by a 2-
dimensional vector (x,y), where x represents the copy
numbers of A and y represents the copy numbers of B. The
model consist of the following reaction channels,

) 2 @+ 1)

as(x,y)
Ry: (%,9) =5 (x — 1,9);

Ry :

25
az(x,y) (25)
R3: (x,y) —— (x,y+1);

ag(x,y)
Ry: (x%,9) —2 (2,9 — 1);

Monomer binding
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Fig. 2 Self-regulating gene model. Top panels depict probabilities of gene expression as a function of protein number, x, obtained for monomer
and dimer binding cases and various values of w. The bottom panel depicts convergence of the error as a function of approximation parameter -
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where the propensities are defined as follows,

C
ai(x,y) =m; a(x,y) = c3x;
(26)
4
@mw=%+ﬂ;mmw=%y

Let’s denote u(x,y,t) the probability of the system to
be in a state (x,y) at time £. Rephrasing mechanisms (25)
in terms of the CME presented in the operator form (6)
yields

0 _
&u(x,y, 1) = (T _I)Wal(x,y) + (T1 - I)Waz(x,y)

+ (TZ - I)Wag(x,y) + (Tz_ - I)WM(?CJ’)’
u(x,5,0) = uo(x,y).
(27)

The probability distribution that solves the CME (25)
equipped with the parameter set

€1 =ci=3-10%

¢ =cs =1.1-10%
2 5 (28)
3 =Cg = 1073,

B=y =2

is known to develop two peaks that correspond to the two
semi-stable states [12, 36]. In principle, Eq. (27) can be
considered on the state space (x,y) € [0,300] x [0,300]
and integrated in time up to a very high precision
by numerical exponentiation. This approach, however,
employs matrices of a size 90601 x 90601, and is far from
being optimal if an objective is to recover only probabili-
ties that are significantly greater than zero. The stationary
solution u(x,y), depicted in Fig. 3a, demonstrates that
the essential support corresponding to pihreshold = 0.01 -
max u(x, y) occupies only a small fraction of states.
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In contrast to the full-state-space approach, the numer-
ical algorithm proposed in the previous section employs a
much smaller number of the degrees of freedom. Let the
approximation basis consist of radial basis functions (7)
centred in grid points x* € [0, 4, 2Ak,...300]%, where / is
the grid step. Running the algorithm starting with initial
condition

_ @=133)24(y-133)2
6

up(x,y) =e , (Y €L, (29)

provides us with a succession of domains that support
only the part of the solution that has values greater than
Pthreshold- As illustrated in the bottom panels of Fig. 4, the
threshold can be chosen so as to make the final essential
support two-connected (see also Additional file 1). The
degrees of freedom required for the parametrisation of
the solution remain relatively small; the number gradu-
ally increases as the distribution progresses from its initial
state, but decreases after the essential support evolves
into a two-connected domain, see the top panel in Fig. 4.
Another example regards asymmetrical initial conditions

(x—133)%+y2
266

uo(x,y) = e (%) € Q, (30)

Such initial conditions force the distribution to evolve
in time into one mode of the bistable solution at first,
and eventually, equilibrating into the bistable solution as
depicted in Fig. 5. In this case setting pihreshold to a large
value might lead to discovering only one mode of the solu-
tion. Therefore, it is important to ensure the deviation
between total probabilities of the initial conditions and the
approximate solution is kept small,

Zu(x, u,t) /Zuo(x,y,t) < €.

xy xy

> uox,y,) —
2y

Shall the deviation increase over a certain level, the
value of pereshold should be lowered. As depicted in the

Y 150

100}

250 300

50 100 150

X

200

corresponds to one order of magnitude of the exact steady state solution; i

Fig. 3 Exact steady-state solution to the bistable toggle switch problem and convergence diagram for approximations (Left:) each level line

versus the cutoff parameter pipreshold for various numbers of basis functions, n

10°

b threshold

n total, 20 level lines presented. (Right:) approximation error plotted
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Fig. 4 Numerical solution to the bistable toggle switch problem with splitting topology. The threshold parameter pihreshold has been chosen to
force the essential support evolve from a simple connected into a two-connected domain: (top) degrees of freedom (vertical axis) as a function of
time (horizontal axis); (bottom) four panels represent the solution on various time stages: the initial conditions; solution shortly after the start;
solution just before the split; and the final, steady state distribution supported on a two-connected domain

right panel of Fig. 3, both pyesnors and number of basis
functions, #, have a direct influence on the error of the
approximation. As can be seen in Fig. 3, decreasing the
value of pyresnols lowers the approximation error up to
a certain saturation point. The further improvements are
possible only by increasing the number of basis functions.

Comparison with Gillespie SSA

Since the proposed method deals with a CME, that pro-
duces a complete probability distribution, it cannot be
thought as an alternative to Monte Carlo algorithms,
which simulate a single trajectory of a stochastic process.
That said, it is possible to extract the frequency of vis-
iting each of the system states by a stochastic process
(e.g. generated by Gillespie SSA), and eventually relate
it asymptotically to the probability distribution provid-
ing the trajectory is long. On practice, this might be a
formidable task: producing a long enough trajectory may
consume considerable cpu-time, even more, in cases of
multi stability the convergence of the SSA may be hard to
estimate. For example, an error diagram of the probability
distribution extracted from SSA simulations for the tog-
gle switch problem is given in Fig. 6a. Initially, the error

decreases with increasing number of SSA steps, but as
soon as the system switches the mode for the first time
(as indicated by the vertical bars), the error decrease slows
down considerably. The result extracted form a trajectory
with 107 SSA steps deviates form the exact solution by
0.02 in /5 norm, and even after being smoothed out by a
rectangular 3 x 3 window the level lines of the probabil-
ity distribution contain considerable artefacts, see Fig. 6b.
The trajectory itself is depicted in Fig. 6¢. The probability
distribution obtained by the approximation on Gaussian
basis functions with interface tracking demonstrates a
much better accuracy for even lower cpu-time. As can be
seen in Fig. 6d, the error of two magnitudes lower then
the one provided by the SSA is obtained for the same cpu-
time, 200 sec. It is important to note that comparison of
cpu-time might be weakly biased by a particular imple-
mentation of the algorithms, that have such a different
nature.

Tristable toggle switch

Analogously to the bistable toggle switch a theoreti-
cal tristable system describing three mutually competing
species A, B, C is considered. In this case the state of the
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Fig. 5 Numerical solution to the bistable toggle switch problem with asymmetrical initial conditions. (top) Relative degrees of freedom (vertical axis)
as a function of time (horizontal axis); (bottom) four panels representing the solution on various stages: asymmetric initial conditions
(x7 = 133, x, = 0,); unimodal distribution; bimodal asymmetric distribution; the steady state resulting in a symmetric bimodal structure
system is characterised by three copy numbers (x,7,z2), The distribution u(x,y,z,¢) associates a probability to

and the model consist of the following reactions channels,  each system state defined by the vector of copy numbers
(x,9,2z) at time t. The distribution obeys the following
CME,
Ri:(np2) 5 1 1,y,2),
a2(%,9,2)
Ry: (x,9,2) —— (x— 1,%,2), 0 _
25 002) G=br2 S 20 = (T = DWapa + (T =D Wastepa

az(x,y,z)

Re:(wyz) = @y +12) (31) + (T2 = DWaseyo) + (T — DWayy2)
a4 (%,y,2) _

Ry: (x,9,2) Lmre, xy—1,2), + (T3 = DWasyo + (T3 — D Wag 2
as (x,y,2) u(x,9,z,0) = uo(x,y,2).

Rs: (%,y,2) —— x,5,z+1), 3

Re: (x,9,2) M xy,z—1),

Similarly to the previous example, we employ a parame-

where the propensities are defined as follows, ter set that yields a symmetric solution,
*,3,2) 2 *,,2)
ar\x,y,2) = ——————, a2(X,),2) = C3%,
1% Cz+(y+2)ﬁ 2y 3 Cl=C4=C7=3~103
Ca 4
az(x,y,z2) = ——, aas(x,9,2) = Y, ¢ =c5 =cg=1.1-107%
3(%.3,2) ¢+ (x +2)7 4®.5,2) = oy (82) 5 (34)
Ccy 63206=C9=10 B
as(x,y,z) = ae(%,y,2) = coz.

cs + (x+ )¢’ B=y=(=2.
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Fig. 6 Probability distribution via Gillespie SSA a Error of the probability distribution obtained form a SSA-generated trajectory is plotted versus
number of steps. The upper axis indicates cpu-time. The vertical bands represent switching of the two-stable system. b The level lines of the
probability distribution recovered by analysing frequency of a single SSA trajectory visiting each of the states followed by smoothing with a
rectangular 3 x 3 window. € x-coordinate of a single SSA trajectory plotted versus number of steps demonstrates the switching nature of the
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Fig. 7 Solution to the tristable toggle switch problem. The panels illustrate isosurfaces of three consecutive time-stages of the solution: a initial
conditions, unimodal distribution; b intermediate distribution; ¢ the steady state, a trimodal distribution
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The stationary solution to Eq. (33) constitutes an inter-
esting example of how complex the essential support
might be. Indeed, as can be seen in Fig. 7, depending
on the value of the significance level pihreshold, the three
dimensional domain is exhibiting various types of topol-
ogy: it is non-convex, either simple connected or three-
connected. In both cases a highly adaptive parametrisa-
tion is essential for saving computational resources. Fig. 8
shows the inner structure of enclosed isosurfaces on the
left panel, while the basis function centres used for the sta-
tionary solution are presented on the right panel. See also
Additional file 2.

Stem cell differentiation problem
Let us consider the osteochondro switch (OCS) model
introduced by Schittler et al. [29]. The model represents
a particular example of two mutually inhibiting key tran-
scriptional regulators (TRs), which determine the cell fate
of osteochondro progenitor cells, see Fig. 9. The system
state is represented by the three state variables x, y, z, cor-
responding to the progenitor (z), osteogenic (x), and chon-
drogenic (y) TRs. Relating to experimental data, these
would be (a rough measure) of mRNA levels, or a more
precise measure of transcription factor activated from
reporter genes [29].

In stimuli-free setup Schittler et al. considered the set of
ordinary differential equations

agxP (t)+b,

/ = —

x (t) - mo""cooxﬁ(t)"l‘coc}’ﬁ(t)"'copzﬁ(t) kox(t)’
]

'(f) = acy® (t)+be B

YO = e PO e Oreg@ kYD (35)
]

'(p) = 2 OFbp

Z(t) = I kpz(t),

where the meaning and values of the coefficients are
given in Table 1. A detailed bifurcation analyses of (35)
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Fig. 9 The conceptual model for the osteochondro switch. Interactions
between progenitor maintenance factor (P) osteogenic (O), and
chondrogenic (C) TRs are depicted with arrows: activation is denoted
with a sharp arrow —, inhibition is denoted with a stump arrow =

performed in [29] reveals that depending on the param-
eter set the system may operate in bistable or tristable
regimes. The solution to the differential equation system
(35), however, does not provide an appropriate descrip-
tion since a single trajectory can only converge to one
of the stationary states, whereas in practice, the system
is flipping between stable states due to chemical or ther-
mal noise. Hence, the switching behaviour can only be
reproduced employing a distributional description of the
system state.

200 T 71
| ) x10
0.2693
| 0.1460

150 e

1 0.0791
T TT0.0429
{0 0.0233
{0 ———0.0126
z 100| ~———0.0068

B ———0.0037
———0.0020

|
50 |

isosurfaces. (right)The final discretisation mesh is highlighted
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Fig. 8 The steady state solution to symmetrical tristable toggle switch. (left) a part of the distribution is removed to reveal the inner structure of the
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Table 1 Parameter set used for simulations of the cell
differentiation model, as suggested in Ref. [29]

Cell type Parameter Value Description
* B 2 Hill coefficient

dp 0.2 Auto-activation

by 05  Basal activity
Progenitor, (P) mp {8,10} Inflection point

Cop 0.1 Self-inhibition strength

Copi Cp 05 Inhibition strength on xo, X¢

kp 0.1 Decay rate

Ao, Ac 0.1 Autoactivation

bo, be 1 Basal activity
Osteoblast and mo, me 1 Inflection point

Chrondrocyte, (O, C)

Coor Cec 0.1 Self-inhibition strength

Cocr Ceo 0.1 Mutual inhibition strength

ko, ke 0.1 Decay rate

Rewriting the cell differentiation mechanism expressed
in (35) in terms of the CME yields the same differential
equations as in (33) equipped with a specific set of asym-
metric propensities a;(x, y, z),

aoxP(t) + b,

ay(x,y,z) = 5 as(x,9,2) = kox;
) P (O) + ot (0) + e ey 2D =
B
acyP (t) + b
asz(x,y,z) = 5 as(x,y,z) = key;
3022) mc+Cccy5(t)+Ccoxﬂ(t)+fcpzﬂ(t) 4®5,2) <
Pty +b
as(y,2) = 22D L0 as(x,,2) = kpz.

My + cppzP ()
(36)

Equation 33 is linear, hence any initial condition leads
to a unique stationary solution. Various parametric sets
for the OCS model may yield solutions with very different
essential supports. This is demonstrated in Fig. 10 where
isosurfaces of the three-dimentional probability distri-
bution u(x,y,z, t.,4) are presented (see also Additional
file 3). A bistable solution corresponding to the basic
parameter set as used in [29] is depicted in Fig. 10a.
Choosing a smaller value for the inflection point m1, = 8
forces the solution to become tristable, Fig. 10b. Scal-
ing up the auto-activation and basal activity parameters
Ap,o,c» bp,o,c by afactor 2.5 produces more segregated max-
ima in the solution, additionally, the absolute values of the
copy numbers, x,y,z, are higher as depicted in Fig. 10c.
Finally, an effect of biased differentiation is modelled by
modifying the Hill function associated with osteogenic
cells to include a pro-osteogenic stimulus z, > 0,
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agxP (£) + by + 2,
Mo + CooxP (£) + cocyP () + copzP ()

ai(x,9,2) =

Figure 10d illustrates the three dimensional probability
density corresponding to stimulus z, = 6; the remain-
ing parameters are identical to those in Fig. 10c. An
effect of pro-osteogenic stimuli is further explored in
Fig. 11, where the two-dimensional marginal distribution
> u(x, 9,2 tenq) is plotted for two cases: z, = 0 (panel a),

z
and z, = 6 (panel b).

When considering the time evolution of the solution to
the OCS problem, it is natural to expect that the num-
ber of degrees of freedom required by the approximation
scheme is not constant. For instance, if the simulation for
the case study presented in Fig. 10c is started with the
initial condition

_ 6=)24 -2+ -1
uo(x,y,z) = e 6 s

the essential support undergoes complex transformation
before the solution reaches the stationary solution, as
depicted in Fig. 12. The top panel of Fig. 12 shows
degrees of freedom as a function of time. Even though the
degrees of freedom increase initially, reach maximum, and
decrease before the system arrives to the steady state, only
a small fraction of the full grid nodes is employed at each
point of time. In fact, the maximum number of approx-
imation parameters, 2701, is only 7 % of the overall grid
nodes, and 1 % of the total number of states, assuming
x,%,z < 60. In the previous case study, these values are
even more dramatic: at most 3887 basis functions were
used for the approximations, which is 2 % of the full grid
and 0.05 % of the total number of states assuming the
upper bound x, y,z < 200.

Conclusions

We proposed a numerical method for the approximation
of the solution to a wide range of CME based prob-
lems that have been hard to tackle until now. The fact
that the method recovers a full representation of multi-
dimensional distributions makes it especially attractive for
cases of multi-stability.

In order to reduce the amount of computational
resources, the unknown distribution is searched as a lin-
ear combination of Gaussian radial basis functions. The
efficiency of the method is improved even further by pre-
dicting a manifold containing states with probabilities that
are greater than a certain significance threshold in every
time step. The prediction is done on the basis of informa-
tion available form previous time steps. It allows to keep
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Fig. 10 Three-dimensional steady state solutions to the cell differentiation model obtained for various parameter sets a two-stable mode

corresponds to the default parameter set. b three-stable mode corresponds to progenitor inflection point m, = 8. ¢, d Scaling up auto-activation
and basal activity parameters dpc, by, by a factor 2.5 leads to stronger separation of chrondrocyte and osteoblast states. d Pro-osteoblast
stimulus promotes P — O transition
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Fig. 11 Steady-state probability distributions defined over x, y- plane demonstrates the effect of the pro-osteoblast stimuli. a No stimulus case
corresponds to a symmetrical solution. b Application of the pro-osteoblast stimulus leads to an asymmetrical solution with a clear domination of
osteoblast states
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Fig. 12 Time evolution of the solution to the osteochondro switch problem. Model parameters have been chosen so the essential support of the
three-dimensional distribution progressively expands at early times, but eventually shrinks before reaching the steady-state, forcing the degrees of
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the degrees of freedom of the approximation very close
to the optimal value corresponding to the significance
threshold.

The method has been applied to the following examples
of two- and three-dimensional CMEs leading to multi-
stable solutions:

e A bistable genetic toggle switch describing two
competing species. This problem constitutes an

important case: when the normal distribution is
taken as initial condition, the manifold containing
highly probable states undergoes drastic
transformations. Its topology transits from simple
connected to a two-connected domain. Since the
exact solution is known for this problem, the
approximation error can be evaluated.

A tristable toggle switch, yielding a three-dimensional
symmetric solution, is introduced as a generalisation
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of the previous problem. Although this case
demonstrates a possible mechanism for three
competing species and constitutes an interesting test
for the algorithm, it remains a theoretical problem.

o A cell differentiation model, describing cell fate
determination of osteochondro progenitor cells. The
model considers two final cell types, osteoblast and
chondrocytes, and is a special case of the previous
example. It has been shown how variations of some
important parameters affect the stationary solution.
It has also been studied how a pro-osteogenic
stimulus leads to a non-symmetrical solution.

Besides CME, the method has been additionally applied
to a system of master equations describing a self-
regulatory gene.

We expect that the method can be applied to other
CME problems including those that have no a priori
information available on the shape, location, or upper
bound of the domain that contains states with significant
probabilities. The domain is constructed and tracked in
time using ideas from level set methods. The advantage
of the level set approach is that one can perform numer-
ical computations involving surfaces on a fixed Cartesian
grid without having to parameterise these objects. In addi-
tion, the level set method makes it very easy to follow
shapes that change topology, for example when a shape
splits into two, develops holes, or the reverse of these
operations.

Although the method features many advantages for
multi-stable systems or systems where rare events are
important, high-dimensional cases (d > 4) are hard to
tackle with the current implementation. In future work,
we plan to relax the condition that radial basis func-
tion centres are selected form a pre-defined grid in order
to reach the optimal number of degrees of freedom in
the approximation and extend the algorithm to high-
dimensional cases.

Additional files

Additional file 1: An animation illustrating the usage of the
numerical method for integration of the bistable toggle switch
problem. (MPEG 1352 kb)

Additional file 2: An animation depicting time evolution of the
solution to the tristable toggle switch problem. The solution is
represented by a series of isosurfaces. The set of basis function centres
used for approximation of the steady state solution is also given.
(MPEG 15872 kb)

Additional file 3: An animation depicting the time evolution of the

solution to cell differentiation problem with stimuli-free setup. The

solution is represented by a series of isosurfaces. The set of basis function
centres used for approximation of the steady state solution is also given.

(MP4 9902 kb)
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