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Abstract

Background: Generalised supply-demand analysis is a conceptual framework that views metabolism as a molecular
economy. Metabolic pathways are partitioned into so-called supply and demand blocks that produce and consume a
particular intermediate metabolite. By studying the response of these reaction blocks to perturbations in the
concentration of the linking metabolite, different regulatory routes of interaction between the metabolite and its
supply and demand blocks can be identified and their contribution quantified. These responses are mediated not
only through direct substrate/product interactions, but also through allosteric effects. Here we subject previously
published kinetic models of pyruvate metabolism in Lactococcus lactis and aspartate-derived amino acid synthesis in
Arabidopsis thaliana to generalised supply-demand analysis.

Results: Multiple routes of regulation are brought about by different mechanisms in each model, leading to
behavioural and regulatory patterns that are generally difficult to predict from simple inspection of the reaction
networks depicting the models. In the pyruvate model the moiety-conserved cycles of ATP/ADP and NADH/NAD+
allow otherwise independent metabolic branches to communicate. This causes the flux of one ATP-producing reaction
block to increase in response to an increasing ATP/ADP ratio, while an NADH-consuming block flux decreases in
response to an increasing NADH/NAD+ ratio for certain ratio value ranges.
In the aspartate model, aspartate semialdehyde can inhibit its supply block directly or by increasing the concentration
of two amino acids (Lys and Thr) that occur as intermediates in demand blocks and act as allosteric inhibitors of
isoenzymes in the supply block. These different routes of interaction from aspartate semialdehyde are each seen to
contribute differently to the regulation of the aspartate semialdehyde supply block.

Conclusions: Indirect routes of regulation between a metabolic intermediate and a reaction block that either
produces or consumes this intermediate can play a much larger regulatory role than routes mediated through direct
interactions. These indirect routes of regulation can also result in counter-intuitive metabolic behaviour. Performing
generalised supply-demand analysis on two previously published models demonstrated the utility of this method as
an entry point in the analysis of metabolic behaviour and the potential for obtaining novel results from previously
analysed models by using new approaches.
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Background
The primary concern of molecular biology is to identify
and characterise the individual components of biologi-
cal systems. By focussing on the component level, this
approach has generated an enormous amount of knowl-
edge, but at the expense of disregarding emergent phe-
nomena that arise from the multitude of interactions
between these components. One way of overcoming this
limitation is to construct, and subsequently study, mathe-
matical models of these biological systems. This technique
has become increasingly common, withmodels describing
systems ranging in complexity frommetabolic subsystems
to genome-scale reconstructions of metabolism [1, 2]
being available on various online databases [3–5]. More
recently the goal of building a silicon cell [6] was arguably
realised with the construction of a whole-organismmodel
of Mycoplasma genitalium [7]. With models growing in
size and complexity, approaching that of themodelled sys-
tems themselves, it has become more difficult to extract
biological knowledge and understanding from them with-
out extensive analysis. Model construction is therefore
only the first step in the study of biological systems using
the ‘modelling approach’.
Generalised supply-demand analysis (GSDA) is a con-

ceptual framework that views metabolic pathways as a
molecular economy [8]. It is built on the principles of
metabolic control analysis (MCA) [9, 10], which is itself
a framework that allows for the quantification of the
control that any step in the system exercises over the
variable steady-state properties such as fluxes or interme-
diate metabolite concentrations. The basic procedure of
supply-demand analysis is to divide a metabolic pathway
into separate reaction blocks around a chosen variable
metabolite by fixing its concentration; the ‘generalised’ in
GSDA implies that this is done in turn for each metabo-
lite in the system. The supply and demand blocks, which
respectively produce and consume the fixed metabolite,
are subsequently treated as separate metabolic units, and
MCA is performed on each reaction block. This approach
allows for the identification of certain regulatory fea-
tures of the pathway and for the quantification of the
behaviour of the reaction blocks towards to changes in
the concentration of the fixed metabolite. One such fea-
ture that GSDA helps to identify and quantify is the
effect of different routes of interaction between the vari-
able metabolites and their supply and demand reaction
blocks.
The simplest way that reaction blocks can interact is

through the common intermediate that links them, which
can serve as either substrate or product or allosteric
effector of supply and demand enzymes. If the only
interactions are via the linking metabolite the situation
is easy to analyse. However, it is possible that reac-
tion blocks also interact indirectly through allosteric

effects of a metabolite in one reaction block on an
enzyme in the other reaction block; such a situation is
quite common and it is here that GSDA is particularly
useful in that it dissects all the routes of communi-
cation between supply and demand, both direct and
indirect.
Another common situation is where cofactor cycles

such as ATP–ADP or NADH–NAD+ link supply and
demand reaction blocks. These cycles are called moiety-
conserved cycles because they interconvert different
forms of a chemical subgroup or moiety, the total
concentration of which remains constant. For exam-
ple, in the ATP/ADP cycle the moiety is ADP, which
is interconverted between its free and its phosphory-
lated form. When there is no de novo synthesis or
degradation of the ADP-moiety during the time-scale of
observation, the sum of ADP and ATP remains con-
stant even while their individual concentrations change,
and the cycle is therefore moiety-conserving. In supply-
demand analyses of such cycles the relevant variable
that links the supply and demand reaction blocks is
not a single concentration but rather a concentra-
tion ratio such as ATP/ADP or NADH/NAD+. These
cycles usually form metabolic hubs where many func-
tionally distinct pathways are integrated; an analysis of
the interplay between supply and demand around these
cycles is crucial for our understanding of metabolic
regulation.
In this paper we use GSDA to investigate the regula-

tory effects brought about by multiple routes of inter-
action between supply and demand reaction blocks. We
have chosen to analyse models of two metabolic path-
ways that differ from each other in terms of their reg-
ulatory mechanisms. The first is a model of pyruvate
metabolism in lactic acid bacteria [11] where multi-
ple interactions are brought about through the moiety-
conserved cycles of ATP/ADP and NADH/NAD+. We
show that changes in the ratios of the different forms of
a moiety can cause counter-intuitive responses in reac-
tion block fluxes. The second is a model of aspartate-
derived amino acid synthesis in Arabidopsis thaliana [12]
in which we analyse the routes of interaction brought
about by allosteric effectors in combination with mul-
tiple isoenzymes. Here we explore the functions of the
various isoenzymes and construct a map that shows
the importance of the routes of regulation between a
fixed metabolite and its supply block. In both models
the importance of each route of interaction originating
from a change in the fixed metabolite will be quanti-
fied and compared, illustrating that the direct route of
interaction is not necessarily the most important. More
generally we demonstrate the utility of investigating pre-
viously publishedmodels with a new analytic tools such as
GSDA.
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Methods
Metabolic control analysis
Metabolic control analysis (MCA) is a form of sensitivity
analysis in which the control properties of a steady-state
metabolic system are quantified in terms of the responses
of the system fluxes and metabolite concentrations to per-
turbations in the rates of the reactions [9, 10]. Because
this framework plays a central role in generalised supply-
demand analysis [8], we here define its three main coeffi-
cients and their relation to each other.
An elasticity coefficient describes the sensitivity of a

reaction rate towards a change in any entity x that can
affect that rate directly, such as a substrate, product, mod-
ifier or enzyme parameter. It is therefore a property local
to a particular reaction and is defined as the ratio of the
relative change in the rate of reaction i, vi, to the relative
change in x:

εvix = ∂ ln vi
∂ ln x

(1)

A control coefficient describes the sensitivity of a steady-
state system variable, such as flux or concentration,
towards a change in a local reaction rate. This coefficient
is a systemic property that depends not only on the prop-
erties of the perturbed reaction but also on those of the
other reactions and the topology of the network struc-
ture of the entire pathway. The flux-control coefficient is
defined as the ratio of the relative change in a flux, J, to the
relative change in a reaction rate, vi:

CJ
vi = d ln J

d ln vi
(2)

Concentration-control coefficients are defined similarly,
the flux being replaced by a metabolite concentration.
The use of a total derivative signifies that the entire sys-
tem is allowed to relax to a new steady state after the
perturbation in vi.
A response coefficient differs from a control coefficient

in that it is defined with respect to a change not in a local
reaction rate but in a system parameter, such as enzyme
concentration or the fixed concentration of metabolite
external to the system. A flux-response coefficient is
defined similarly to a control coefficient as the ratio of
the relative change in a flux, J, to the relative change in
parameter x:

RJ
x = d ln J

d ln x
(3)

Again, in a concentration-response coefficient metabo-
lite concentration replaces flux.
The so-called partitioned response (or combined-

response) equation describes the relationship between
these three coefficients:

RJ
x = CJ

viε
vi
x (4)

The overall flux-response to a perturbation in parameter x
is channelled through the reaction i directly affected by x:
the effect of δx on vi is described by ε

vi
x , and the resulting

change δvi then propagates through the system resulting
in a change in flux described by CJ

vi . If the parameter x
affects more than one reaction, the overall flux-response
is given by

RJ
x =

∑

i
CJ
viε

vi
x (5)

for all reactions i that are influenced directly by x.

Generalised supply-demand analysis
Generalised supply-demand analysis (GSDA) is an exten-
sion of metabolic supply-demand analysis [13]. In GSDA
a metabolic pathway is partitioned into reaction blocks
around each variable metabolite, as shown for the
metabolite P in the linear pathway in Fig. 1a. The produc-
ing and consuming blocks of this intermediate are termed
the supply and demand blocks, respectively. The concen-
tration of each variable is fixed and, in turn, varied over a
range to generate combined rate characteristic plots [14]
of the supply and demand blocks linked to the metabo-
lite as shown in Fig. 1b. The response coefficients of the
supply and demand blocks towards the linking metabolite
are calculated, along with the elasticity coefficients of the
reactions in these blocks that are directly connected to the
intermediate (i.e., the last reaction in the supply block and
the first in the demand block).
This approach can be used to determine which block

has the most control over the system flux and which
block determines the degree of homoeostasis of the link-
ing intermediate by comparing the response coefficients
(or gradients of the rate characteristics at steady-state) of
the supply and demand blocks towards the intermediate.
In the case where

∣∣∣∣∣
RJsupply
p

RJdemand
p

∣∣∣∣∣ > 1 (6)

as in Fig. 1b, the flux is predominantly controlled by
the demand block, while in the opposite case where
the ratio is < 1, the flux is controlled by the sup-
ply. The degree of homoeostatic maintenance of the P
concentration (denoted by p) depends on the value of
RJdemand
p − RJsupply

p ; the larger this value the smaller the
absolute value of the concentration-control coefficients of
the supply and demand blocks on p, and the better its
homoeostasis [13, 15].

Multiple routes of interaction
GSDA can also be used to identify the different routes
of interaction between an intermediate and a reaction
block and to quantify the relative contribution of each of
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Fig. 1 An example of generalised supply-demand analysis of three metabolic systems. a An example of a simple linear pathway partitioned into
supply and demand blocks around intermediate P. b A rate characteristic plot that shows how the fluxes local to the supply and demand blocks of P
respond to a change in p over a large concentration range. The vertical dotted line indicates the steady-state concentration of P (p̄), while the
steady-state flux of the system as a whole obtains where the rates of the supply and demand blocks intersect. Elasticity coefficients of the reactions
in the supply and demand blocks that interact directly with P (reactions 2 and 3 respectively) are indicated with solid lines while response
coefficients of the blocks towards p are indicated by dashed lines. c The pathway in (a) with the addition of allosteric inhibition of enzyme 1 by P,
which creates an additional direct route of interaction between P and its supply block via reaction 1. d The rate characteristic plot for the supply and
demand blocks of the intermediate P in (c). e The pathway in (a) with the addition of allosteric inhibition of enzyme 1 by S2, which creates an
indirect route of interaction between P and its supply block via reaction 3. f The rate characteristic plot for the supply and demand blocks of the
intermediate P in (e). In (d) and (f) only the total and partial response coefficients of the supply block towards p are shown and the slopes of the
partial response coefficients (solid lines) add up to that of the total response coefficient (dashed line)



Christensen et al. BMC Systems Biology  (2015) 9:89 Page 5 of 18

these routes to the total response. In Fig. 1c an additional
interaction of P with its supply block occurs through the
allosteric inhibition of reaction 1 by P. The flux-response
coefficient of the supply block to P is now the sum of two
terms, called partial response coefficients:

RJsupply
p = v1RJsupply

p + v2RJsupply
p

= CJsupply
v2 εv2p + CJsupply

v1 εv1p

(7)

According to the partitioned-response property (Eq. 5),
each partial response coefficient is the product of an elas-
ticity coefficient and a control coefficient. These control
coefficients represent the sensitivities of flux local to the
supply block, and must be distinguished from the flux-
control coefficients of the full supply-demand system, i.e.,
CJsupply
vi �= CJ

vi . The partial responses can be represented
visually in the form of a rate characteristic plot as shown
in Fig. 1d.
Whereas in Figs. 1a and c the metabolite P is the

sole link between the supply and demand blocks, it is
of course also possible, as in Fig. 1e, for an intermedi-
ate within one reaction block to provide a link to the
other reaction block. Here, reaction 1 is inhibited by
S2, so that a change in P will be transmitted via reac-
tion 3 in the demand block to S2, affecting its concen-
tration, which, in turn, affects reaction 1. The overall
effect (as shown in Fig. 1f) is similar to that in Figs. 1b
and d, except that P also affects the supply block indi-
rectly via S2. This indirect effect of P via S2 is made
explicit in the second right-hand term of the following
expression:

RJsupply
p = v1RJsupply

p + v3RJsupply
p

= CJsupply
v2 εv2p + CJsupply

v3 εv3p

= CJsupply
v2 εv2p + CJsupply

v1 ε
v1
S2C

S2
v3 ε

v3
p

(8)

The fixed metabolite can also interact with a particular
reaction block through indirect stoichiometric linkages.
In this case a change in the fixed metabolite concentration
is transmitted via one reaction block to another through
stoichiometric connections in the rest of the network, in
a similar manner to the previously described allosteric
interaction (Fig. 1e). The difference here is that, instead
of an allosteric interaction, metabolites and reactions can
link both reaction blocks via a stoichiometric route that
does not involve the fixed metabolite. The members of a
moiety-conserved cycle (discussed below) are an example
of intermediates that can link reaction blocks in this way
because of their stoichiometric involvement in numerous
reactions at various points in the network.

Moiety-conserved cycles
Moiety-conserved cycles require special consideration in
GSDA as the total concentration of the members of the
conserved cycle must remain constant. The individual
member concentrations are therefore not free to vary in
the same way as other metabolites.
In order to perform parameter scans on the members

of the moiety-conserved cycles without breaking moi-
ety conservation, the individual members of a cycle can
be substituted with a single metabolite representing their
ratio to one another. The concentrations of the mem-
bers of each cycle are calculated using the total moi-
ety concentration and the value of the ratio. Using the
ATP/ADPmoiety-conserved cycle as an example, with φA
representing the ratio of ATP to ADP and CA the total
moiety concentration, the equations below illustrate this
principle:

φA = [ ATP]
[ ADP]

CA = [ ATP]+[ ADP]

∴[ ATP] = φA · CA
1 + φA

and [ADP]= CA
1 + φA

Software
The Python simulator for cellular systems (PySCeS)
[16] together with the RateChar [8] module that forms
part of the PySCeSToolbox package (https://github.com/
PySCeS/PyscesToolbox) was used to perform the mod-
elling experiments and metabolic control analysis and to
generate the resulting rate characteristic plots. RateChar
automatically performs supply-demand analysis and pro-
duces rate-characteristic plots for each metabolite in a
metabolic model.

Models
Pyruvate branchmetabolism
To investigate the effects of multiple routes of regula-
tion through moiety-conserved cycles we used a kinetic
model of pyruvate metabolism in lactic acid bacte-
ria. The model was originally constructed by Hoefnagel
et al. [11] and retrieved from JWS online [5] in the
PySCeS model descriptor language format [16, 17]. The
structure of the model is outlined in Fig. 2. This model
was chosen for our investigation on the basis of its
three different moiety-conserved cycles that interact with
a variety of reactions across different branches in the
pathway.
The members of the ATP/ADP, acetyl-CoA/CoA and

NADH/NAD+ conserved moieties were treated as out-
lined previously, with the symbols φA, φC and φN repre-
senting the metabolite ratios. The values of φA and φN
were fixed and varied over the ranges shown in Table 1.

https://github.com/PySCeS/PyscesToolbox
https://github.com/PySCeS/PyscesToolbox
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Fig. 2 The pyruvate branch pathway as defined by Hoefnagel et al. [11]. Reactions are numbered according to the key. The stoichiometry of each
reaction is 1 to 1, except for reaction 1 where Glc + 2ADP + 2NAD+ → 2Pyr + 2ATP + 2NADH and reaction 8 where 2Pyr � Aclac. Intermediates
are abbreviated as follows: Ac: acetate; Acal: acetaldehyde; Acet: acetoin; Aclac: acetolactate; Acp: acetyl phosphate; Glc: glucose; Lac: lactate; But:
2,3-butanediol; Pyr: pyruvate; EtOH: ethanol

Together with the results from metabolic control analysis
these data were used to generate Figs. 4, 5, 6, 7 and 8.

Aspartatemetabolism
A kinetic model of aspartate-derived amino acid synthesis
in Arabidopsis was used to investigate the effects of multi-
ple routes of regulation brought about by allosteric effec-
tors and multiple isoenzymes. The model was originally
constructed by Curien et al. [12] in BerkeleyMadonna for-
mat and was translated to the PySCeS MDL format. The
structure of this pathway is outlined in Fig. 3.
For this case study the focus was to identify and

quantify the different routes of regulation of aspartate-
semialdehyde (ASA) with its supply block for the wild type
as well as for knockouts of AKI and AKII. ASA, lysine
(Lys) and threonine (Thr) were fixed and varied over the
ranges shown in Table 2 and used, together with results
fromMCA, to generate Figs. 9, 10, 11, 12 and 13.
The knockouts of AKI, AKII and both AKI and AKII

were simulated by setting their respective enzyme concen-
trations to zero in the model.

Model code
Code for both models is provided in PySCeS model
descriptor language (Additional files 1 and 2) and in the

Table 1 Pyruvate metabolism model scan ranges

Metabolite Scan range Steady-state ratio

φA 0.06–457.51 5.08

φN 0.0002–1.77 0.02

The ranges over which the variable metabolite concentration ratios of the pyruvate
metabolism model [11] were varied to generate Figs. 4, 5, 6, 7 and 8

standard Systems Biology Markup Language (SBML) for-
mat [18] (Additional files 3 and 4). An IPython notebook
containing instructions and scripts to reproduce the anal-
yses from this paper is provided as Additional file 5.

Results
Regulatory connections via moiety-conserved cycles
The pyruvate branch model in Fig. 2 contains three
moiety conserved cycles, ATP/ADP, NADH/NAD+ and
acetyl-CoA/CoA, with their members modelled as vari-
able species. These species take part in a number of
reactions across the three main branches leading from
pyruvate, thereby enabling the branches to communicate
with each other. This model is therefore an ideal candidate
for investigating the type of behaviour that can occur due
to the presence of moiety-conserved cycles in general, and
more specifically due to the ATP/ADP and NADH/NAD+
cycles, which are ubiquitous in metabolism. In this
section we show how the presence of ATP/ADP and
NADH/NAD+ causes unexpected and non-monotonic
flux response behaviour.

Regulatory routes of ATP/ADP
The first conservedmoiety we shall investigate is ADP, due
to its relatively small number of interactions in this path-
way. The ‘metabolite’ φA represents the ratio of ATP to
ADP. An increase in φA implies an increase in ATP con-
centration and a concomitant decrease in ADP concentra-
tion within the constraint of their sum being constant. In
this pathway φA is produced by acetate kinase (reaction 5)
and a lumped glycolysis pathway (reaction 1), and is con-
sumed by ATPase (reaction 12). The supply and demand
blocks for φA are named according to the numbering of
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Fig. 3 The aspartate-derived amino acid synthesis pathway as defined by Curien et al. [12]. Reactions are numbered according to the key. Green
lines ending with solid arrows indicate activation of a reaction or potentiation of an allosteric effect, while red lines ending with daggers indicate
inhibition of reactions or damping of an allosteric effect. Strong allosteric effects are indicated with solid lines, while weak effects are shown with
dashed lines. The stoichiometry of each reaction is 1 to 1. Intermediates are abbreviated as follows: Ado-Met: S-adenosylmethionine; ASA:
aspartate-semialdehyde; Asp: aspartate; AspP: aspartyl phosphate; Cys: cysteine; Hser: homoserine; Ile: isoleucine; Lys: lysine; PHser:
phosphohomoserine; Thr: threonine; Val: valine

these consuming and producing reactions, i.e., block 1
and block 5 are φA supply blocks, while block 12 is a φA
demand block, with the fluxes of these blocks symbol-
ised by J1, J5 and J12 respectively (this naming convention
for reaction blocks and their corresponding fluxes is used
throughout this paper).
The rate characteristic plot (Fig. 4a) shows the effect

of a change in φA on its supply and demand blocks. In
steady-state all the reaction blocks respond as expected
towards increasing φA, with decreases in J1 and J5 and an
increase in J12. At φA values below 0.4, however, there was

an increase in J5 in response to increasing product (ATP)
and decreasing substrate (ADP) concentration. Consid-
ering that acetate kinase is not product-activated, this
positive flux response was unexpected.
The source of the flux response of block 5 towards

φA was investigated using partial response coefficients
(Fig. 4b) where a rate characteristic plot revealed that
two different routes of interaction are responsible for
the behaviour of this reaction block. At the steady-state,
the partial response coefficients representing the relative
importance of these two routes are both negative, leading

Fig. 4 Rate characteristic plots of the reaction blocks of φA in the pyruvate branch model. a The fluxes of the demand block 12, and the supply
blocks 1 and 5 of φA . The unlabelled dashed curve represents the total supply. b The rate characteristic plot of the φA-supply block 5 with partial and
total response coefficients indicated as lines intersecting the J5-curve at the steady-state value of φA . Partial response coefficients (solid lines)
indicate the relative contribution of each route of interaction of φA with block 5 towards the total response coefficient (dashed line). The steady-state
value of φA is indicated as a vertical dotted line in both (a) and (b) (see Table 1)
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Fig. 5 Partial and total response coefficients of J5 towards φA as a
function of φA . Partial response coefficients (solid lines) indicate the
relative contribution of each route of interaction of φA with reaction
block 5 towards the total response coefficient (dashed line) over the
φA-range as indicated in Table 1. The steady-state value of φA is
indicated as a vertical dotted line

to the observed negative total response coefficient of J5.
The first partial response (v5RJ5

φA
) is due to the direct

interaction of φA with block 5 via reaction 5. The sec-
ond, and more significant, partial response (v1RJ5

φA
) is due

to the interaction of φA with reaction 1, which also has
a negative elasticity towards φA and forms part of both
reaction blocks 1 and 5. The negative effect on J5 due
to the decrease in J1 is a result of the flux relationships
between these reaction blocks where a decrease in pyru-
vate production by block 1 leads to a decrease in flux of all
pyruvate consuming reactions.
When considering the partial response coefficients over

the complete range of φA-values (Fig. 5), we saw that

whereas v5RJ5
φA

is close to zero for φA-values below 0.4,
v1RJ5

φA
is positive, thereby being solely responsible for the

observed increase in J5 over this range of φA-values. This
positive response can again be traced to the flux relation-
ships between J1 and J3, but in this case J2 and J8 also play
a role.While J1 does decrease, the fluxes J2 and J8 decrease
even more, resulting in an increase in J3. Additionally, a
decrease in J6 causes flux to be diverted to J4. Both these
effects lead to the observed increase in J5 for this φA-range
(Fig. 4a).
These results indicate that the indirect route of

interaction of φA with block 5 plays a large role in the
regulation of the flux through this block, and is indeed the
most prominent regulatory route for φA-values below 30.

Regulatory routes of NADH/NAD+
While notable, the counter-intuitive response to φA is
brought about by only two partial responses due to
ATP/ADP acting as an intermediate in only a few reac-
tions in the pathway. The NAD+ moiety, on the other
hand, interacts with more reaction blocks than either
of the CoA and ADP moieties: φN is produced by
a lumped glycolysis pathway (reaction 1) and pyru-
vate dehydrogenase (reaction 3), and consumed by lac-
tate dehydrogenase (reaction 2), acetoin dehydrogenase
(reaction 11), acetaldehyde dehydrogenase (reaction 6),
alcohol dehydrogenase (reaction 7) and NADH oxidase
(reaction 13). While block 6 and block 7 are separate
demand blocks for φN , they are also linked by acetalde-
hyde and therefore their rates are equal at steady-state.
In cases where the observed results for these blocks
are identical we refer only to block 6 for the sake of
brevity. Due to the numerous interactions of φN in this
system, there is potential for complex flux response
behaviour.

Fig. 6 Rate characteristic plots of the reaction blocks of φN in the pyruvate branch model. a The fluxes of the demand blocks 2, 6, 11 and 13, and the
supply blocks 1 and 3 of φN . The unlabelled dashed curves represent the total supply (blue) and demand (green). b The rate characteristic plot of the
φN-demand block 6 with partial and total response coefficients indicated as lines intersecting the J6-curve at the steady-state value of φN . Partial
response coefficients (solid lines) indicate the relative contribution of each respective route of interaction of φN with the reaction block 6 towards the
total response coefficient (dashed line). Note that v11RJ6φN

and v13RJ6φN
were omitted due to their zero contributions towards RJ6φN

. The steady-state value
of φN is indicated as a vertical dotted line in both (a) and (b) (see Table 1)
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Fig. 7 Partial and total response coefficients of J6 towards φN as a
function of φN . Partial response coefficients (solid lines) indicate the
relative contribution of each respective route of interaction of φN

with reaction block 6 towards the total response coefficients (dashed
lines) over the φN-range as indicated in Table 1. The steady-state value
of φN is indicated as a vertical dotted line. Note that v11RJ6φN

and v13RJ6φN

were omitted due to their zero contributions towards RJ6φN

The flux of reaction block 6, J6 responds non-
monotonically to changing φN (Fig. 6a), in contrast to
the fluxes of the other blocks that φN reacts with, which
respond monotonically as anticipated. In the φN -range
below 0.0012 J6 is negative (which implies that reaction 6
in Fig. 2 proceeds in the reverse direction), but becomes
less negative as φN increases; at φN = 0.0012 block 6 is at
equilibrium and J6 = 0. In the range 0.0012 < φN < 0.057
J6 is positive and increases to a maximum at φN = 0.057.
In the φN -range above 0.057 J6 decreases monotonically.
These three φN -ranges will henceforth be referred to as
range 1, 2, and 3 respectively.

Fig. 8 The most significant partial response coefficients contributing
towards RJ6φN

separated into elasticity and control coefficients. Elasticity
coefficients (dashed lines) and control coefficients (solid lines) that
make up the partial response coefficients of Fig. 7 are shown. Here
CJ6v6 ε

v6
φN

= v6RJ6φN
, CJ6v7 ε

v7
φN

= v7RJ6φN
and CJ6v3 ε

v3
φN

= v3RJ6φN
. The steady-state

value of φN is indicated as a vertical dotted line (see Table 1)

Table 2 Aspartate metabolism model scan ranges

Metabolite Scan range (μM) Steady-state conc. (μM)

ASA 0.024–32.97 0.96

Thr 19.80–4453.93 296.93

Lys 4.61–1037.38 69.16

The ranges over which the variable metabolite concentrations of the
aspartate-derived amino acid synthesis pathway model [12] were varied to generate
Figs. 9, 10, 11 and 12

As before, partial response coefficients explain the
behaviour of reaction block 6. At the steady-state, four
routes of interaction of φN with block 6 contribute
significantly to the total response RJ6

φN
, as shown in the

rate characteristic plot in Fig. 6b. The direct interactions
via reaction 6 and reaction 7 result in positive partial
responses (v6RJ6

φN
and v7RJ6

φN
) due to φN acting as a sub-

strate for these reactions. On the other hand, the inter-
actions via reactions 2 and 3, represented by v2RJ6

φN
and

v3RJ6
φN

, affect J6 negatively; by decreasing J3 via reactions 2
and 3 , φN decreases φC , thereby limiting the availability
of this additional substrate for reaction 6.
The source of the non-monotonic behaviour of block 6

becomes clear when the partial response coefficients of
J6 towards a range of φN -values are computed (Fig. 7).
The non-monotonic total response coefficient (the dashed
green line) is the sum of multiple partial response coef-
ficients which are themselves non-monotonic, their con-
tributions to the total varying greatly over the φN -range.
There is a singularity at φN = 0.0012 between ranges 1
and 2 which correlates with the equilibrium state that
block 6 goes through when J6 changes direction.
In ranges 1 and 2 the total response coefficient

behaviour is determined mostly by v6RJ6
φN

and v7RJ6
φN

as
the values of the other partial response coefficients are
low and undergo little change. In range 3, however, a
slightly more complex interplay of effects brings about
total response behaviour. Here the decline of the total
response coefficient and its subsequent reversal of sign
was caused by the increase in magnitude of the nega-
tive partial response coefficient v3RJ6

φN
and the decrease in

magnitude of v6RJ6
φN

and v7RJ6
φN

.
By separating the partial response coefficients into their

elasticity and control coefficient components according
to the partitioned response equation (Eq. 5), we obtain a
clearer view of the role of local versus systemic effects in
bringing about the flux response. The control and elastic-
ity coefficients that make up v6RJ6

φN
, v7RJ6

φN
and v3RJ6

φN
, i.e,

the partial responses that make the largest contribution
to RJ6

φN
, are shown in Fig. 8 (see legend for their parti-

tioned response equations). Since elasticity coefficients
tend to infinity at equilibrium, εv5φN

and ε
v7
φN

largely deter-
mine v5RJ5

φN
and v7RJ6

φN
around φN = 0.0012. In range 2,
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Fig. 9 Rate characteristic plots of the reaction blocks of aspartate-semialdehyde in the aspartate metabolism model. a The fluxes of the demand
blocks 6, 7, 14 and 15, and the supply block 5 of ASA. b The rate characteristic plot of the ASA-supply block 5 with partial and total response
coefficients indicated as lines intersecting the J5-curve at the steady-state value of ASA. Partial response coefficients (solid lines) indicate the relative
contribution of each respective route of interaction of ASA with block 5 towards the total response coefficient (dashed line). The unlabelled dashed
curve in both (a) and (b) represents the total demand and the steady-state value of ASA is indicated as a vertical dotted line (see Table 2)

both ε
v6
φN

and ε
v7
φN

indicate that neither reaction 6 nor 7 has
reached saturation. At the end of range 3 ε

v7
φN

still has a
significant positive value, while ε

v6
φN

has declined to nearly
zero (indicating that reaction 6 is far from equilibrium and
close to full saturation). For the control coefficients CJ6

v6
and CJ6

v7 , the situation is somewhat reversed. Here, while
having significantly lower values than their corresponding
elasticity coefficients for most φN -values, the decline in
CJ6
v7 is much more dramatic than that of CJ6

v6 . At φN = 0.2,
CJ6
v7 is nearly zero, while at the highest tested φN -value CJ6

v6
and ε

v6
φN

are nearly equal. These results indicate that the
decline of the partial responses v6RJ6

φN
and v7RJ6

φN
at higher

φN -values is mostly due to the decline in control of v7 on
J6 for v7RJ6

φN
and the decline in elasticity of v6 towards φN

for v6RJ6
φN

. For v3RJ6
φN

, both CJ6
v3 and ε

v3
φN

contribute to the

declining negative partial response coefficient. We saw,
however, that the inflection point observed in v3RJ6

φN
at

φN = 0.4 (Fig. 7) is due to the contribution of the control
coefficient rather than that of the elasticity coefficient.

Regulatory connections via feedback and isoenzymes
The aspartate-derived amino acid synthesis pathway
model in Fig. 3 contains a number of features that allow
for multiple routes of regulation. Three of the steps are
catalysed by isozymes that are allosterically modified by
a variety of pathway intermediates and the pathway has
multiple branch points. The isoenzymes also differ in
terms of their kinetic properties and therefore respond
differently to changes in the concentrations of their effec-
tors. In this section we explore the importance of various
routes of regulation of one intermediate with its supply

Fig. 10 Rate characteristic plots of the reaction blocks of threonine in the aspartate metabolism model. a The fluxes of the demand blocks 10 and
11, and the supply block 9 of Thr. b The rate characteristic plot of the Thr-supply block 9 with partial and total response coefficients indicated as
lines intersecting the J9-curve at the steady-state value of Thr. Partial response coefficients (solid lines) indicate the relative contribution of each
respective route of interaction of Thr with reaction block 9 towards the total response coefficient (dashed line). Note that v9RJ9Thr ,

v10RJ9Thr and
v11RJ9Thr

were omitted due to their zero contributions towards RJ9Thr . The unlabelled dashed curve in both (a) and (b) represents the total demand and the
steady-state value of Thr is indicated as a vertical dotted line (see Table 2)
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Fig. 11 Rate characteristic plot showing the fluxes of the reaction
blocks of lysine in aspartate metabolism. The demand block 16 and
supply blocks 14 and 15 are indicated as solid lines. The unlabelled
dashed curve represents the total supply. The steady-state value of
Lys is indicated as a vertical dotted line (see Table 2)

block and elucidate the roles the various isoenzymes play
within these routes.

Routes of interaction through different allosteric feedbacks
The first branch point of the aspartate-derived amino
acid synthesis pathway occurs at aspartate-semialdehyde
(ASA), which is produced by aspartate-semialdehyde
dehydrogenase (ASADH or reaction 5) and consumed by
two separate metabolic branches. The first step of the
branch that produces threonine (Thr), cysteine (Cys) and
isoleucine (Ile) as end products is catalysed by two isoen-
zymes, homoserine dehydrogenase I and II (HSDHI and
HSDHII; reactions 6 and 7). The first step in the branch
that produces lysine (Lys) as an end product is catalysed

by the isoenzymes dihydrodipicolinate synthase 1 and 2
(DHDPS1 and DHDPS2; reactions 14 and 15). Thr and
Lys inhibit the isoenzymes catalysing the first step of their
respective branches, as well as two of the four aspartate
kinase isoenzymes catalysing the first step in the path-
way: Thr inhibits aspartate kinase I and II (AKI and AKII;
reactions 1 and 2) and Lys inhibits aspartate kinase 1
and 2 (AK1 and AK2; reactions 4 and 3). Demand blocks
of ASA can be defined according to the four consuming
enzymes, with fluxes J14 and J15 in the Lys-branch, and J6
and J7 in the Thr-branch. Alternatively, we can define the
demand blocks according to the two separate metabolic
branches where J6 + J7 = J8 for the Thr branch and J14 +
J15 = J16 for the Lys branch. The rate characteristic plot
shown in Fig. 9a shows that at steady-state most of the
flux proceeds towards Thr production with J6 and J7 being
nearly equal. The flux towards Lys is carried mostly by
block 15.
The inhibition of the AK isoenzymes by Thr and Lys

enables changes in ASA to be transmitted to its sup-
ply block via these intermediates, which occur in the
ASA-demand blocks. Partial response coefficients were
used to determine the contribution of each of these
routes of interaction to RJ6

ASA and therefore to quantify
their importance in regulating J5 (Fig. 9b). Because of
the very low degree of control of reaction 5 over its
own flux, the direct interaction of ASA with block 5
via reaction 5 makes the second smallest contribution
towards the total response despite its relatively high elas-
ticity towards ASA (see Table S1 of Additional file 6).
Instead the interactions of ASA with block 6, block 7
and block 15 contribute the most towards the observed
total response. The enzymes catalysing the first steps of
these blocks (reactions 6, 7 and 15) have lower sensi-
tivities towards ASA than reaction 5, but much more
control over J5. The isoenzymes in each branch have

Fig. 12 Rate characteristic plots of the supply blocks of lysine in the aspartate metabolism model. Partial and total response coefficients are
indicated as lines intersecting the a J14-curve and b J15-curve at the steady-state value of Lys (see Table 2). Partial response coefficients (solid lines)
indicate the relative contribution of each respective route of interaction of Lys with reaction blocks 14 and 15 towards the total responses (dashed
lines) at the steady-state. The unlabelled dashed curves represent the total supply (blue) and total demand (green). The steady-state value of Lys is
indicated as a vertical dotted line in both (a) and (b)
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A B C
Fig. 13 The importance of the various routes of regulation of ASA with its supply block. a The reference model. b AKI knockout. c AKII knockout.
Knockouts in (b) and (c) were performed by respectively setting the concentrations of AKI and AKII to zero. All models were at steady-state (see
Table S2 in Additional file 6)

practically identical elasticity coefficients towards ASA
at the steady-state, therefore the difference in responses
between the individual reactions in each branch is due
to the differences in the degree to which these reactions
control J5, as determined by the flux carried by each
reaction.
While the above results quantify the importance of each

of the routes of ASA supply block regulation and show
that inhibition of reactions 1–4 by Thr and Lys plays an
important regulatory role, we still have to quantify the
amount of regulation that takes place via each of these
four AK isoenzymes. This can be achieved by quantifying
the contribution of the regulatory routes of the supply
blocks of Thr and Lys and combining these results with
the previous results.
The rate characteristic plot shown in Fig. 10a illustrates

the behaviour of the reaction blocks of Thr in response to
changes in this metabolite’s concentration. Here the Thr
supply block (block 9), which ends with the enzyme thre-
onine synthase (reaction 9), also encompasses the ASA
supply block. Figure 10b shows the partial responses of J9
towards Thr at the steady-state. It is clear that, as reaction
9 is insensitive towards its product Thr, the observed flux
response is solely due to the inhibition of the upstream
reactions 1, 2, 6 and 7 by Thr. In order to quantify the reg-
ulation of the ASA supply block, only the partial response
coefficients of reaction block 9 towards Thr that represent
routes passing through the ASA supply block, i.e., reac-
tions 1 and 2, are of interest. We saw that despite only
1.8 and 9.4 % of total flux respectively passing through
reactions 1 and 2, and despite the resulting small degree

of control these reactions have of over J9, their high
elasticities towards Thr cause both v1RJ9

Thr and
v2RJ9

Thr to
contribute significantly towards RJ9

Thr . However, regardless
of the specific contributions of these two routes in regulat-
ing J9, the proportion of each of v1RJ9

Thr and
v2RJ9

Thr to their
total indicate the proportion of ASA supply block flux reg-
ulation taking place through reactions 1 and 2 (Fig. 13a).
Using the regulation of the ASA supply block by ASA via
the route that passes through blocks 6 and 7 and subse-
quently through reaction 1 due to its inhibition by Thr as
an example, the percentage regulation of this block taking
place via reaction 1 (denoted by v1χ J5

ASA) can be calculated
as follows:

v1χ J5
ASA =

v6RJ5
ASA + v7RJ5

ASA

RJ5
ASA

×
v1RJ9

Thr
v1RJ9

Thr + v2RJ9
Thr

× 100

= (−0.276) + (−0.320)
−1.043

× −0.035
(−0.035) + (−0.137)

× 100

= 11.628 %
(9)

Lys is produced by reactions 14 and 15 and therefore has
two supply blocks. In this model the multi-step process
of converting ASA to Lys was combined into a single step
due to the irreversibility of reactions 14 and 15 [12]. At
the steady-state, block 15 carries much more flux towards
Lys than block 14, which, as we will see, affects the regu-
lation of these blocks via each other (Fig. 11). The partial
responses of the two Lys supply blocks to Lys are shown
in Fig. 12. In contrast to the regulation of the Thr supply
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block where inhibition of the AK isoenzymes by Thr is
the most important regulatory route, inhibition of the ini-
tial step of the Lys branch (reactions 14 and 15) by Lys is
more important in eliciting a response in each of J14 and
J15 than is inhibition of the AK isoenzymes. Interestingly,
the inhibition of reaction 15 by Lys results in a positive
response in J14 due to the attenuation of competition for
the substrate ASA. The mirror effect of Lys-inhibition of
J14 on J15 is also observed, but is smaller, as J14 carries
much less flux towards Lys; reaction 14 therefore has less
control over J15 than reaction 15 has over J14. In the case
of reactions 3 and 4, which are relevant to the routes of
regulation of ASA with its supply block, we saw that reac-
tion 4 contributes more towards the observed negative
total response coefficients RJ14

Lys and RJ15
Lys than reaction 3

due to having significantly more control over J14 and J15
(see Table S1 of Additional file 6). The same technique
used to elucidate the importance of reactions 1 and
2 in the regulation of the ASA supply block by ASA
(as demonstrated in Eq. 9) was used here to determine the
importance of the routes of regulation involving reactions
3 and 4 (Fig. 13a).

The effect of isoenzyme knockouts
The previous section showed the dissection of the routes
of regulation of the ASA supply block rate by ASA for
the wild type pathway. Using the same techniques, it was
possible to gain insight into the regulation of this reac-
tion block by ASA under alternative conditions. Here we
performed the same analysis for knockout models of (1)
AKI, (2) AKII , and (3) both AKI and AKII. These knock-
outs, among others, were previously modelled by Curien
et al. [19]. Steady-state analysis was performed as shown
in Table S2 of Additional file 6 and the quantification of
the importance of the various routes of regulation of J5 by
ASA is shown in Figs. 13b and c.
Together, reactions 1 and 2 contribute only 12 % of

the total flux of the pathway at the reference steady-state
(Table S2 of Additional file 6); however, as shown in the
previous section, most of the regulation of the ASA supply
block by ASA takes place via these two reactions. When
taking all the AKs into consideration, reaction 2 is the
most important and reaction 1 the third most important
in terms of regulation. While the importance of the AK
isoenzymes in terms of ASA supply flux regulation can-
not be predicted by their flux contributions alone, there
is nevertheless still a relationship between isoenzyme flux
and regulatory importance because the degree of ASA
supply flux control by the isoenzymes is a function of their
relative flux contributions. Reaction 2 contributes 9.4 %
of the total flux with 45.5 % of regulation taking place
through it, while reaction 1 contributes 1.8 % of total flux
with only 11.6 % of regulation taking place through this
reaction (Fig. 13a).

The knockout models highlighted once more the dis-
connection between flux and regulatory importance. The
AKI knockout causes less than a 1 % decrease in total
flux (Table S2 of Additional file 6), with a concomitant
decrease in regulation via the Thr inhibition route from
57.1 to 52.9 % (Fig. 13b). Here it was clear that while regu-
lation via this route decreases, reaction 2 can compensate
for the loss of reaction 1 by largely taking over its regu-
latory role. On the other hand, a knockout of reaction 2
causes a 3.7 % (Table S2 of Additional file 6) decrease in
flux, which subsequently causes regulation via Thr inhibi-
tion to drop to 30.4 % (Fig. 13c). In spite of the regulatory
importance of reaction 1 increasing by 162.1 % compared
to the wild-type (in contrast to a 83.3 % increase in flux
through this reaction), it cannot fully compensate for the
loss of reaction 2. For all three knockout models, regula-
tion is diverted mostly towards the Lys branch with 86.1 %
of regulation occurring via this branch for the double
knockout (not shown), once more indicating the relatively
low importance of the direct route of interaction of ASA
with its supply block.
In addition to affecting the relative importance of the

routes of regulation of the ASA supply block, the isoen-
zyme knockouts also affect the magnitude of the ASA
supply and demand block responses (Table 3). There is a
decrease in RJ5

ASA for each knockout model, with this effect
being the least pronounced for the AKI knockout and the
most pronounced for the double knockout. There is an
increase in the Thr branch response (RJ8

ASA) for the three
knockouts, while the Lys branch response (RJ16

ASA) remains
relatively unchanged. These changes to the ratio of sup-
ply to demand response lead to changes in the functions
of the reaction blocks in terms of flux control and ASA
homoeostasis. At the reference state, both ASA demand
branches have more control over their flux than the sup-
ply block, as indicated by the values of |RJ5

ASA/RJ8
ASA| and

Table 3 Analysis of the distribution of flux control between the
supply and demand blocks of ASA

Reference AKI knockout AKII knockout AKI, AKII

knockout

RJ5ASA −1.04 −0.95 −0.66 −0.46

RJ8ASA 0.52 0.53 0.59 0.61

RJ16ASA 0.14 0.14 0.14 0.15

|RJ5ASA/RJ8ASA | 2.01 1.80 1.13 0.76

|RJ5ASA/RJ16ASA | 7.56 6.85 4.60 3.17

Total response coefficients of J5, J8 and J16 towards ASA at the steady-state and the
distribution of flux control between the supply and demand blocks according to
the principle illustrated in Eq. 6 are presented. Control analysis was performed for
the reference model and each of the knockouts with the concentration of the
linking metabolite between supply and demand fixed at the steady-state value in
each case (see Table S2 in Additional file 6)
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|RJ5
ASA/RJ16

ASA| > 1 (Table 3). The decrease in RJ5
ASA observed

for the knockout models causes a decrease in the ratio
of the supply response to the demand response, indicat-
ing that flux control shifts towards the supply block. For
the double knockout, this shift causes a reversal of roles
in terms of flux control where the supply block has more
control of flux than the demand block.

Discussion
In this paper we set out to investigate multiple routes of
interaction between reaction blocks in metabolic systems
using the framework of generalised supply-demand anal-
ysis. This allowed us to identify routes of regulation
and quantify the contributions of various reaction blocks
towards metabolic behaviours such as flux responses.
The two models investigated were chosen on the basis
of the mechanism whereby multiple regulatory routes
are mediated: moiety-conserved cycles connect different
metabolic branches in the pyruvate branch model, while
allosteric inhibition of various isoenzymes allows for com-
munication between separate ends of the pathway in the
aspartate model. In both cases, our analysis provided
insight into how different routes of interaction contribute
to the overall behaviour of the systems.
In the model of pyruvate metabolism in Lactococcus

lactis multiple routes of interaction between reaction
blocks are brought about by the moiety-conserved cycles
of ATP/ADP, NADH/NAD+ and acetyl-CoA/CoA. The
regulation of this pathway in L. lactis is relatively well
understood due to the extensive study of this industrially
significant organism [20]. Moreover, a number of newer
and more extensive models for L. lactis central carbon
metabolism exist [21–24], but most only include a sim-
plified pyruvate branch metabolism. The most recently
published model [24], for instance, lumps certain reac-
tions such as acetaldehyde dehydrogenase and alcohol
dehydrogenase, and phosphotransacetylase and acetate
kinase together. Since our primary aim was to delineate
and quantify regulatory routes of interaction, we chose
to investigate the original model by Hoefnagel et al. [11],
because it incorporates in the most detail the multiple
interactions between the different branches of pyruvate
metabolism due to the presence of moiety-conserved
cycles. While an extended version of this model exists
[21], which also incorporates glycolytic reactions in detail,
the simpler version was chosen, as both have identical rep-
resentations of the pyruvate branch metabolism and the
extended model has not been published in full detail. We
opted for an exploratory approach, focusing on the appli-
cation of GSDA to this model in order to extract infor-
mation about the effects of ATP/ADP and NADH/NAD+
on various reaction blocks via multiple routes. This gen-
erated results that matched previous observations, but
allowed us to offer a novel quantitative explanation.

The most striking result was that moiety ratios far
from the steady-state caused unexpected flux responses
in two reaction blocks: The ATP/ADP-producing flux J5
responded positively to low ATP/ADP-values, while the
NADH/NAD+-consuming flux J6 responded negatively
to high NADH/NAD+-values. The reactions, respectively
catalysing the last and first reactions in these reaction
blocks, are not product activated or substrate inhibited
in the model [11], therefore the observed flux responses
had to originate from multiple routes of regulation. This
was confirmed by utilising partial response coefficients
to quantify the relative contribution of each route of
interaction towards the total response of the two reac-
tion blocks. The dominant route of regulation of its
supply flux J5 by all ATP/ADP-values below 30 was via
the upstream lumped glycolysis reaction (v1), rather than
the direct route via the ATP-producing enzyme acetate
kinase (v5). This included both the steady-state value of
ATP/ADP and the ATP/ADP-range where J5 had a posi-
tive response. This is most probably an incomplete picture
of regulation by ATP/ADP, as the inhibition by ATP and
ADP of L. lactis enzymes such as lactate dehydrogenase,
alcohol dehydrogenase and glyceraldehyde 3-phosphate
dehydrogenase [25, 26] was not included in the model.
It is conceivable that these additional routes of interac-
tion could significantly affect the flux responses inves-
tigated here. It is, however, premature to speculate on
any specifics without performing further work, due to
the added complexity accompanying these interactions.
Nevertheless, these results illustrate how a few routes of
interaction can bring about unintuitive, non-monotonic
flux responses, and how the different routes can be
quantified in terms of their contributions towards these
responses.
We found that while the direct route of interaction

of NADH/NAD+ with reaction block 6 via acetaldehyde
dehydrogenase (v6) mostly determined the behaviour of
J6 at steady-state, the interaction via pyruvate dehydro-
genase (v3) dominated at higher NADH/NAD+-values,
thereby causing a decrease in J6. In spite of the lim-
itations of this model, this corresponds well with the
previously established role of redox balance in regulat-
ing pyruvate flux distribution, where low NADH/NAD+-
values are associated with mixed-acid fermentation and
higher values with homolactic fermentation [27–30].
While a high sensitivity of lactate dehydrogenase towards
NADH/NAD+ [27] was not observed here, the reduc-
tion of flux towards acetyl-CoA (J3) by inhibition of
pyruvate dehydrogenase, and therefore also the ethanol
flux (J6), in response to the increase in NADH/NAD+
was indeed observed [27–30]. Due to the structure of
this pathway, one may conclude that reduced J3 should
lead to a reduction in J6, but in reality matters are not
that simple. While J6 and J3 did decrease concomitantly



Christensen et al. BMC Systems Biology  (2015) 9:89 Page 15 of 18

at higher NADH/NAD+-values, there were also values
for which J6 increased while J3 decreased. The observed
J6-response towards NADH/NAD+ was shown to be
a combination of complementary and competing non-
monotonic effects that varied in importance with the
value of the moiety ratio, thereby highlighting the util-
ity of a model analysis tool such as GSDA for pro-
viding quantitative explanations for observed system
behaviour.
Unsurprisingly, NADH/NAD+ has been shown to

determine pyruvate flux distribution in other organisms,
such as Saccharomyces cerevisiae [31] and Escherichia coli
[32, 33], in a similar manner to L. lactis [28]. For these
organisms, similar analyses could improve our under-
standing not only of their individual metabolisms, but also
of pyruvate distribution in general. Furthermore, in addi-
tion to the role of NADH/NAD+ in energy metabolism,
NAD+ and NADP+ also play roles ranging from antiox-
idation to telomere metabolism as discussed in a com-
prehensive review by Ying [34]. While the approach used
here may not be appropriate for the study of every role
of NADH/NAD+, its application could shed light on
the specific regulatory role of NADH/NAD+ in other
pathways.
The second model investigated describes aspartate-

derived amino acid synthesis in Arabidopsis thaliana.
Here we focussed on the regulation of the ASA supply
block by ASA itself. This reaction block was of special
interest as its first step is catalysed by four AK isoenzymes,
two of which are inhibited by Thr, and the other two inhib-
ited by Lys. Each of these inhibitors is produced by a sep-
arate metabolic branch, with two isoenzymes catalysing
the initial step of each ASA-consuming branch. These fea-
tures enable ASA to communicate with its supply block
via multiple routes.
Our results show that the majority of regulation of the

ASA supply block did not occur via the interaction of
ASA with its producing reaction, but rather by inter-
action with its demand blocks, which in turn affected
the concentrations of the AK inhibitors Lys and Thr.
One intuitively expects that regulation should occur via
the shortest route, especially when taking into account the
relatively high sensitivity of aspartate-semialdehyde dehy-
drogenase towards ASA at the steady-state in this system.
The most unexpected result is the apparent importance of
AKI and AKII in the ASA supply block regulation, in spite
of their low contribution towards total flux. Previously,
Curien et al. [19] analysed knockout simulations of this
model and showed that AKI and AKII could compensate
for the loss of AK1 and AK2 in terms of flux, thereby
providing redundancy and confirming the idea that the
role of isoenzymes is to provide robustness to the system
[35, 36]. We, however, postulate that these reactions play
an additional regulatory role which is largely decoupled

from their function as carriers of flux, and that AKI and
AKII provide robustness in terms of this role for each
other. Our own knockout simulations of AKI and AKII
showed that, while total flux remained largely unchanged
for both knockouts (showing these reactions to be practi-
cally redundant in terms of flux), they were not redundant
in terms of regulatory importance. While the loss of AKI
could be compensated for by AKII, the reverse was not
true, and a shift of regulation towards the Lys branch took
place. However, in spite of the inadequacy of AKI as a
substitute for AKII in terms of regulatory function and
flux contribution, it was muchmore effective in emulating
the former function than the latter. Furthermore, a double
knockout of AKI and AKII decreased the total regulation
of J5 by ASA to less than 50 % of the wild-type, shifting
flux control from the demand block to, less optimally [13],
the supply block. This means that increases or decreases
in Thr demand will no longer lead to effective regulation
of the ASA flux.
The source of the flux responses of both models was

investigated by separating the partial response coefficients
into their control and elasticity components. In this way
the flux response coefficients could be classified as origi-
nating predominantly from a local (i.e. enzyme) property
or from a system property. We broadly classified a control
or elasticity coefficient as having a dominant contribution
towards the response coefficient in two different ways:
either (1) the magnitude of one coefficient outweighs the
contribution of the other, or (2) one coefficient changes
in value over a parameter range while the other remains
relatively constant; the varying coefficient therefore deter-
mines the change in response coefficient. In certain cases
we found that the elasticity coefficients dominated the
flux response (e.g., the large values of v7RJ6

φN
and v6RJ6

φN
at

φN = 0.0012 due to the huge values of ε
v7
φN

and ε
v6
φN

in
the pyruvate model), while in other cases control coef-
ficients dominated (e.g., the low value of v5RJ5

ASA at the
steady-state due to the low value of CJ5

v5 in the aspartate
model).
The work presented here reiterates the fact that

metabolic systems can exhibit complex behaviour that
cannot be predicted from simple inspection of the reac-
tion network. Even when the network structure is con-
sidered together with enzyme-kinetic properties, in some
cases understanding does not emerge intuitively. Further-
more, as the size and complexity of a system increases,
so too does the variety of possible behaviours. Exam-
ples are the instances of apparent substrate inhibition
and product activation in the pyruvate model (Figs. 4a
and 6a), where no such mechanisms exist on the enzyme
level. Another example is in the aspartate model, where
the seemingly predictable negative response of J5 towards
ASA is not due to product inhibition of ASADH, but
rather due to upstream inhibition of the aspartate kinase
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isoenzymes by inhibitors downstream from ASA (Fig. 9).
The phenomena in both these cases stem from the exis-
tence of multiple routes of interaction between metabo-
lites and reactions and were only brought to light through
simulation and analysis. We could not only demonstrate
unintuitive behaviour, but also quantify the contribution
of the different routes of interaction towards bringing
about this behaviour.
It is possible to analyse regulation at a deeper level by

analysing the control coefficients that form part of the
partial response coefficients in term of so-called control
patterns [37]. A control pattern can be understood as a
‘chain of local effects’ that propagates through a metabolic
pathway following a perturbation in a pathway parame-
ter such as enzyme concentration. Each control pattern is
a scaled product of elasticity coefficients, and each con-
trol coefficient is a sum of control patterns. Going even
deeper, it is possible to partition the constituent elastic-
ity coefficients into additive kinetic and thermodynamic
terms [38]. The fact that control coefficients are com-
plex functions of elasticity coefficients is also the reason
why certain control coefficients, such as CJ6

v3 and CJ6
v6

in the pyruvate model, responded non-monotonically to
changing parameters, whereas the elasticities themselves
responded monotonically. In this study there was only
one situation where we could unambiguously relate an
observed flux response to one of the terms in an elasticity
coefficient: in the pyruvate model the infinite elasticities
of reactions 6 and 7 towards φN at φN = 0.0012 were
due to these reactions being near equilibrium, a situation
where for any reaction the thermodynamic term deter-
mines the value of its substrate and product elasticity
coefficients. This observation was therefore only possible
due to infinite elasticity coefficients being a very obvious
and well-known sign of a reaction near equilibrium. To
fully understand the pathways investigated here in terms
of control patterns or in terms of the thermodynamics
and kinetics of the pathway enzymes will require further
analysis.
Both pathways studied here have potential biotechno-

logical and industrial applications. L. lactis is an impor-
tant organism in the dairy industry where the desirable
products of pyruvate metabolism, such as diacetyl and
acetaldehyde, are not always produced in equally desir-
able quantities [11, 27, 29]. Modification of L. lactis
to increase these products is therefore an appealing
prospect. While A. thaliana itself is not industrially
important, it is used as a model organism for plant species
in general. Here the modification of the aspartate-derived
amino acid synthesis pathway to increase the produc-
tion of the essential amino acids threonine and lysine
could lead to the development of crops with increased
nutritional value [39, 40]. However, the development of
rational metabolic engineering strategies to leverage the

metabolisms of these organisms requires a detailed under-
standing of their function. Application of the methods
demonstrated in this paper can act as a stepping stone
towards the development of such strategies by provid-
ing additional insights into mechanisms of metabolic
regulation.

Conclusions
The regulation of the supply and demand blocks of a
specific intermediate by the intermediate itself becomes
convoluted when these reaction blocks can also interact
through other intermediates, and not only through the
linking intermediate. Generalised supply-demand analy-
sis is a framework that allows for the identification of
regulatory features of a metabolic pathway, one of which is
the quantitative relative contribution of multiple routes of
regulation of supply or demand blocks by the intermediate
that links them.
Here we have demonstrated the use of generalised

supply-demand analysis in disentangling various routes
of regulation in a model of pyruvate metabolism where
the involvement of the conserved moieties ATP/ADP
and NADH/NAD+ in multiple reactions caused counter-
intuitive responses in the fluxes of their producing and
consuming blocks, and a model of aspartate metabolism
where aspartate-semialdehyde could communicate with
its supply block via multiple branching routes that were
enabled by allosteric affectors and isoenzymes. Our find-
ings showed that indirect routes of interaction between
an intermediate and a reaction block can play a more
significant role than the direct route.
We also demonstrated the utility of using a variety of

analytic techniques in the further analysis of metabolic
models. Both models provided novel results in spite of
their having been studied by their original authors in the
past [11, 12]. Further analysis with complementary tools
such as control-pattern analysis would allow us to shed
light on the source of the observed metabolic control
in terms of chains of local effects [37, 41] and enzyme
sensitivities in terms of thermodynamic and kinetic con-
tributions [38]; computational implementations of these
tools are currently in development.

Availability of supporting data
The original SBML versions of the models used in this
paper can be found online in the BioModels Database
[4] under the unique BioModels IDs BIOMD0000000017
and BIOMD0000000212 for the pyruvate branch and
the aspartate-derived amino acid synthesis pathways,
respectively. The PySCeS MDL and SBML versions of
these models, together with a script to recreate the
results presented here, are attached as “Additional files”
(see below). PySCeS MDL files of the models were
obtained as described under “Methods”.
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Additional files

Additional file 1: PySCeS model descriptor language file for the
pyruvate model, as required by the IPython notebook provided as
Additional file 5 (see instructions within notebook). (PSC 2 kb)

Additional file 2: PySCeS model descriptor language file for the
aspartate model, as required by the IPython notebook provided as
Additional file 5 (see instructions within notebook). Software needed
for Additional files 1 and 2: PySCeS (see http://pysces.sourceforge.net/
docs/userguide.html). (PSC 2 kb)

Additional file 3: SBML [18] version of the pyruvatemodel. (XML 40 kb)

Additional file 4: SBML [18] version of the aspartate model. Additional
files 3 and 4 have been tested with the following simulators:
PySCeS (http://pysces.sourceforge.net/docs/userguide.html)
JWSOnline (http://jjj.biochem.sun.ac.za/)
Copasi (http://www.copasi.org)
Other SBML-compliant simulators
(http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix) may also
work. (XML 31 kb)

Additional file 5: An IPython notebook file in which the results
shown in Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13, Table 3 and Additional
file 6 are generated using PySCeS and PySCeSToolbox. This notebook
requires the model files provided in Additional files 1 and 2. Software
needed: IPython notebook with PySCeS and PySCeSToolbox as
requirements (see https://github.com/PySCeS/PyscesToolbox for full
requirements and installation instructions). (IPYNB 5 kb)

Additional file 6: A pdf document containing Table S1 (metabolic
control analysis) and Table S2 (steady-state analysis) for the
aspartate metabolismmodel. (PDF 75 kb)
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