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Abstract

Background: Systems Biology has motivated dynamic models of important intracellular processes at the pathway
level, for example, in signal transduction and cell cycle control. To answer important biomedical questions, however,
one has to go beyond the study of isolated pathways towards the joint study of interacting signaling pathways or the
joint study of signal transduction and cell cycle control. Thereby the reuse of established models is preferable, as it will
generally reduce the modeling effort and increase the acceptance of the combined model in the field.

Results: Obtaining a combined model can be challenging, especially if the submodels are large and/or come from
different working groups (as is generally the case, when models stored in established repositories are used). To support
this task, we describe a semi-automatic workflow based on established software tools. In particular, two frequent
challenges are described: identification of the overlap and subsequent (re)parameterization of the integrated model.

Conclusions: The reparameterization step is crucial, if the goal is to obtain a model that can reproduce the data
explained by the individual models. For demonstration purposes we apply our workflow to integrate two signaling

pathways (EGF and NGF) from the BioModels Database.

Keywords: Horizontal model integration, Model merging, Model reparameterization, Integration workflow

Background

For studying biological processes at the pathway level
plenty of mathematical models have been developed.
Answering new and even more complex biomedical ques-
tions requires models of complete cells, organs or even
organisms. An arguably very efficient approach to obtain
such models is to combine or integrate existing mod-
els. An ideal starting point are the continuously growing
model databases, for example the BioModels Database [1],
the CellML Model Repository [2] or the JWS Online -
Model Database [3]. Thus model integration may poten-
tially speed up the systems biology cycle of modeling and
experimentation by re-using the data that was explained
by the individual models. Moreover, by combining exist-
ing data and models one may obtain an integrated model
of enhanced predictive power.

In general, model integration can be subdivided into
vertical integration (i.e. integration of models across
formalisms and scales) and horizontal integration (i.e.
integration of models which use the same formalism
and scale). While much effort has been put into vertical
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integration [4-6] we want to emphasize that horizon-
tal integration is an important task that deserves special
attention. Thereby we concentrate on the integration of
two kinetic ODE models A and B and address two chal-
lenges. The first challenge arises when the models are
merged: identical model elements (e.g. chemical reactions
and species) have to be identified. We propose to use a
merged model that contains every element only once. For
every reaction occurring in both models one has there-
fore to decide which parameter values to choose, either
those used in model A or those used in model B. Simi-
larly, for every species occurring in both models one has to
decide which initial values to choose. Clearly this choice
of parameter values and initial values affects the simula-
tion results of the integrated model and hence the ability
of the integrated model to explain the experimental data
that was used to parametrize models A and B. Here the
second challenge arises: to obtain a parameterization of
the integrated model. In our point of view model integra-
tion is only successful, if the integrated model is consistent
with the experimental data used to parametrize models A
and B. A precise definition is given later on.

To address the first challenge we present a nam-
ing scheme that simplifies the identification of identi-
cal model elements. This naming scheme was originally
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developed in the context of the Virtual Liver network, but
is applicable to most ODE models arising in systems biol-
ogy. With respect to the second challenge we first note
that the naive way to obtain a consistent model, namely
discarding all parameter values and parameter re-fitting,
is hampered by high computational cost and limited avail-
ability of experimental data. Hence we suggest to reuse the
parameterization of the original models to a large extent.
To this end we discuss ideas to retain many parameter
values while adapting only (very) few. Of course, such a
model has to be validated, both theoretically and experi-
mentally. It is an ideal staring point for numerical studies
like stability and sensitivity analysis that can be performed
at almost no additional cost.

To facilitate the complete integration process we pro-
pose a semi-automatic integration workflow. Thereby we
distinguish between ‘structural integration; the merging
of model elements (networks) and ‘behavioral integration,
the adaption of parameter values to obtain an integrated
model that is able to explain experimental data.

The term ‘integration’ will be used throughout this doc-
ument to describe the whole process of fusioning the
existing models to obtain a simulatable model which is
able to explain experimental data. In the literature also
the terms ‘merging; ‘composition; ‘combination’ or ‘aggre-
gation’ can be found to describe this process [7-9]. We
will make use of the term ‘merging’ in the context of
combining the networks.

Before turning to challenges and workflow we discuss
existing standards and software which can support model
integration in the following two subsections. In the sub-
sequent section ‘Results and discussion’ we introduce the
model integration workflow and discuss challenges and
potential solutions in structural and behavioral model
integration. As a proof of principle this workflow is
applied to the integration of two signaling networks orig-
inally described in [10]. The details can be found in the
final ‘Methods’ section of this paper.

Existing standards support model merging

Merging of models from smaller submodels is a com-
mon practice in working groups. There models are often
merged by hand in a straightforward way because mostly
the same software tools and formats are used. One impor-
tant task in model integration is to find the model overlap.
The overlap of two models comprises all model elements
(reactions, species, parameters, compartments) which are
contained in both original models. Within working groups
the semantic meaning of a model and its elements is
known or can be communicated on a short way. Hence,
the model overlap can often be found easily. Whereas,
finding the model overlap of models which originate from
different groups and integrating such models in various
combinations can be challenging.
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Usually, kinetic models in systems biology contain all
mathematical information which is needed for simula-
tion but lack semantic information needed to find ele-
ments which describe the same biological component or
reaction. To discover identical model elements in differ-
ent models the assignment of information to the model
and the application of common modeling standards and
guidelines is required. This is also an important prereq-
uisite to enable a certain degree of automatism and to
transfer the semantic meaning of a model and its ele-
ments.

In publications and presentations human readable bio-
chemical and mathematical equations or biochemical net-
work graphs are the most convenient ways to represent
models in systems biology. But for the analysis, exchange
and especially the integration of models in computational
tools, standardized computer readable formats are a basic
requirement. Over the past years different XML-based
formats have been developed (e.g. SBML [11], Biopax [12],
CellML [13]) to represent models in various application
areas and modeling tasks. SBML has evolved as the most
widely used format to represent kinetic models. To date,
more than 250 software tools support this model for-
mat [14]. Furthermore, many model repositories have
been build up in recent years of systems biology research.
Arguably the most popular example is the BioModels
Database [1], which contains an impressive number of
models (as of 2015 for example more than 500 curated
models [15]). Another example is JWS Online - Model
Database [3] which provides the opportunity to simu-
late models online. To assign biological information to
the model elements (i.e. compartments, species, reactions
and parameters) annotation standards have been devel-
oped. For SBML models the MIRIAM standard [16, 17]
describes how semantic information can be related to
the elements. The mentioned standards for model for-
mats, model annotation and model repositories are inten-
sively investigated research fields in systems biology [18,
19] and can support the process of structural model
integration.

Existing software supports model merging

Few scientific publications concerning the merging of net-
work models and appropriate software tools appeared
in recent years [19-21]. In general, universal xml-tools
(xmldiff/patch [22]) can be used to compare and merge
the xml structure of two models. But as these tools rely
only on the plain xml structure there is no support for
model annotation. Hence, identical elements can not be
discovered based on semantic information assigned to the
elements in form of annotations. The most sophisticated
tool which supports a semi-automatic merging of net-
work models of two quantitative models is semanticSBML
[9]. Besides semanticSBML other software tools support
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structural model integration, for example, the Model
Composition Tool [7] and the software PInt [23]. As in
semanticSBML elements are matched based on annota-
tions. Another software tool, for models encoded in SBML
is SBMLCompose [8]. The graph merging approach sup-
ported by this tool is based on the XML code and doesn’t
incorporate information which is encoded in the anno-
tation of model elements. Also the software COPASI
supports model integration to a certain degree [24]. The
software Cytosolve [25] follows the idea to dynamically
integrate the computations of smaller models that can
run in parallel across different machines. The source
code of the individual models is kept intact. Similarly the
approach of Randhawa et al. [20] supports different pro-
cesses of model merging. Finally, the approach followed
in the modular modeling tool ProMoT [26, 27] can also
provide assistance in model integration. There models
can be defined as modules with interfaces which can be
connected to obtain combined models. In a similar way
SBML Level 3 may be used for model integration (cf.
[28]). This modular language is subdivided into a core
and additional packages comprising special features. The
hierarchical composition package targets model integra-
tion. In the approach followed in the development of this
package models are subdivided into submodels which are
connected via ports.

Obviously, structural integration of models has been
approached in recent years. But all aforementioned
approaches and software tools only support model merg-
ing and hence structural integration. Neither considers
the adaption of parameters after the merging step and spe-
cialized methods and software tools which can support
this step do not exist.

Results and discussion

In the following sections we will provide our approach
to model integration. First we will introduce a workflow
which subdivides the general integration task into three
major steps. We then discuss challenges in structural
as well as in behavioral model integration and present
possible solution strategies. To illustrate challenges and
solutions arising in behavioral integration, two models
describing EGF and NGF signaling originally presented in
[10] are integrated.

A semi-automatic workflow based on existing standards
and software

As pointed out in the previous section, there exists a vari-
ety of standards and tools that support structural model
integration. We will present a semi-automatic workflow
which incorporates many of these. This workflow consists
of three major steps: ‘Model Preparation, ‘Model Merging’
and ‘Model Reparameterization’ (see Fig. 1 for an outline
of the workflow).
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Model preparation

Prior to the merging of network models in SBML the mod-
els have to be prepared appropriately. Thereby the first
task is to ensure that the units used in both models match.
This might require a conversion step, where the units used
in one model are converted to match those of the second
model.

The goal of the model preparation step is to facili-
tate a unique identification of model elements. Here the
software semanticSBML provides convenient features, as
it allows, for example, to search a large collection of
Databases for suitable annotations using keywords. Fur-
thermore we recommend to use the SBML Validator [29]
to ensure that the model is in valid SBML. In the section
‘Challenges in structural model integration” we will point
out that established annotation standards like SBO and
MIRIAM are often not sufficient to discover identical
model elements when signal transduction models are con-
sidered. This requires an appropriate naming scheme in
combination with annotations (see Additional file 1). The
names of model elements can comfortably be edited with
the SBMLeditor [30]. The outcome of this step are two
well prepared models in SBML format.

Model merging (structural model integration)

We recommend to use the software semanticSBML. In
semanticSBML an initial matching of model elements can
be calculated automatically. To this end information about
the model elements is required to identify the overlap
of two models automatically. This information has to be
assigned in form of annotations and names in the prior
model preparation step. The initial matching is calculated
solely based on the annotations. A manual post-editing
of this matching is supported by the software. Here the
element names can be incorporated to solve conflicts,
clear wrong matches or add matches which have not been
found automatically. The outcome of this step is a new
model with a fixed network structure.

Model reparameterization (behavioral model integration)
After the merging step the obtained model has to be tested
if it is in valid SBML and if it is consistent with the exper-
imental data (consistency check). If the merged model
is not consistent with the experimental data the param-
eters have to be adapted. It might be necessary to pass
through the reparameterization and consistency check of
the model repeatedly.

Challenges in structural model integration

When integrating two models, whether semi-automatic or
by hand, the overlap of the models has to be recognized
and handled, that is, identical elements have to be iden-
tified and combined in an appropriate way to obtain
the merged model. In this section we describe potential
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Fig. 1 A semi-automatic workflow for horizontal model integration in three steps. The first step is the ‘Preparation of SBML Models'. The second step
is the ‘Structural Model Integration’ of two SBML models that results in a merged model. This is to be checked for consistency with experimental
data and eventually reparameterized in the ‘Behavioral Model Integration’ step. Several iterations of consistency check and reparameterization may
be necessary to obtain an integrated model that can explain all experimental data. For a detailed description of the three steps see the main text

complications and, where available, comment on how to
resolve these.

Modification on different sites

In the MIRIAM guidelines it is defined how models
and model elements can be related to entries of vari-
ous databases like UniProt [31], Kegg [32], Gene Ontol-
ogy [33] or ChEBI [34] using the Resource Description
Framework (RDF). Following the MIRIAM standard may
be sufficient to discover identical elements in metabolic
models, because in general, every model component can
be related to web resources. Whereas for signaling systems
the annotation may not be sufficient to uniquely iden-
tify elements, as often only basic forms of molecules are
available in databases. Problems will then arise because in
signal transduction species often describe molecules with
multiple modifications or complexes composed of sev-
eral molecules with various stoichiometry. These species
cannot be identified using the database annotation alone.
Moreover, sometimes elements can not be found in
databases. In Fig. 2 an example is shown.

Here a solution is to encode additional information in
the names of model elements, for example information
on modification sites and the stoichiometry in complexes.
To ensure a unique identification of the model elements
a naming scheme can be used. In Additional file 1 we
provide guidelines how a combination of rdf annotations,
SBO annotations [35] and names, following a naming
scheme can be used to ensure a unique identification of
model elements for signaling. These guidelines have been
developed within the framework of the Virtual Liver [36].

A modeler may get the impression that annotating mod-
els and following common standards is connected with a
high work load. There’s no denying, but the effort put in
the annotation of models prior to structural integration is
definitely not in vain. Standardized formats, annotations
and curated model repositories are a general trend in sys-
tems biology to make models available and more reusable
for other modelers. This trend is reinforced by many jour-
nals where models have to be uploaded in repositories in
a standardized format. And, in the context of this work, if
the models are well prepared, software tools can be used
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ERK2_P@T188

ERKZ%
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Identical Annotation:
UNIPROT: Q54QB1

ERK2_P@Y190

ERK %

Fig. 2 Two models describe the phosphorylated protein ERK. The recognition that ERK and ERK2 describe the same molecule can occur based on
annotations. To distinguish that ERKp and ERK2p are modified on different sites (in the model shown left the threonine residue 188 is
phosphorylated; in the model shown right the tyrosine residue 190 is phosphorylated) names have to be incorporated

to perform the structural integration in a semi-automatic
manner.

Different level of detail in reactions

Another challenging task is the identification of the same
overall reactions which are modeled on a different level
of detail (see Fig. 3). This is a task which can currently
not be automatized. If the model is well prepared and
the elements are annotated and named as proposed in
our guidelines (see Additional file 1) the reactant and
product species of the overall reaction can be recognized
as equal. In many cases a graphical visualization of the
model may also be helpful. The decision whether the inte-
grated model should contain the detailed or the lumped
description mainly depends on the goal of the integration
task.

Differently modeled reactions

A reaction may be represented differently in different
models. Both models might, for example, contain the pro-
duction of S2 controlled by S1. But in one model S1 acts as
a modifier, while in the other model S1 acts as a reactant
(see Fig. 4). A similar situation arises, when both models
contain the reaction from S1 to S2 but use different kinetic
laws. In this case a decision has to be made which of the
two reactions should be chosen.

Molecules in different compartments

If the models contain the same molecule but in different
compartments a review of the compartment names and
annotations should be the first step. Depending on the
integration goal, an adoption of both species and an addi-
tional transport reaction between the compartments may
be a solution.

Molecules in different states

Frequently two models contain a molecule in different
states, e.g. one model contains a molecule only in an
unmodified state; the other model contains the molecule
only in a modified state. In most cases an adoption of both
molecules and an additional modification or complexa-
tion reaction is a solution.

Challenges in behavioral model integration
The outcome of the structural integration step is a
merged model, that is, a combined model containing the
elements of both models. During this structural inte-
gration parameter values (reaction rate constants and
initial values) are assigned to the appropriate model
elements.

The aim of behavioral model integration is to obtain
a parameterized integrated model that is consistent with
experimental data of the original models. As we will



Kolczyk and Conradi BMC Systems Biology (2016) 10:28

d

Fig. 3 Reactions may be modeled on different level of detail. As an
example the sequence of reactions on the left (11, r2, r3) describe the
same overall reaction like r4

demonstrate below, this will usually not be the case, if
all parameter values of the original models are re-used in
the integrate model. Rather, parameter values assigned to
model elements will have to be adjusted.

One reason is the inherent ambiguity in assigning
parameters to model elements. While the choice of
parameter values is easy for non-overlapping model parts
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where only one parameterization exists, it can be chal-
lenging for reactions in the overlap, where it is not a
priori clear which parameterization is suited best. Choos-
ing either one will almost certainly affect the ability of the
integrated model to explain experimental data.

To illustrate this, two models describing EGF and NGF
signaling have been merged. These models originate in
[10], details are given in the ‘Methods’ section. For reac-
tions that occur only in one of the models (green and
blue box in Fig. 5), only one parameter set is avail-
able. But for reactions in the overlap (red box in Fig. 5)
two possible parameter sets exist. For demonstration
purposes the parameter values of the EGF model have
been chosen for the reactions in the overlap. Conse-
quentially, simulation results of the original EGF model
can be reproduced, simulation results of the original
NGF model can not be reproduced (see lower part of
Fig. 5). Hence we argue that the model is not consistent
with the experimental data of the original NGF model.
(Whereby we assume that the original models have been
consistent with experimental data. Hence, if the inte-
grated model is able to reproduce the time courses it
is also consistent with the corresponding experimental
data).

Generally speaking, whenever two models A and B are
integrated, choosing parameter values of model A for the
overlap is expected to result in simulation results sim-
ilar to those of model A; likewise, choosing parameter
values of model B for the overlap is expected to result
in simulation results similar to those of model B. Thus,
in general, parametrizing the model overlap with val-
ues belonging to one of the models is expected to result
in an integrated model that is not able to reproduce
the simulation results of both original models and hence
is not consistent with the experimental data of at least
one model.

Consistency conditions
We propose to judge consistency with experimental data
by means of input/output relations: whenever an input is
applied a model produces a corresponding output.
Informally speaking, if a signal is presented to the inputs
of the integrated model that come from model A, while
the inputs coming from model B are set to zero, then those
output signals of the integrated model coming from A

Model1

-
—Cm

| P

o o—w ——Cw

Fig. 4 Two ways to model the creation of S2 under the control of S1: ST acts as a modifier in model1 and as a reactant in model2

Model2
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Fig. 5 Integration example. Upper part: model obtained by integrating two models described in [10] (available in the BioModels Database as
BIOMD0000000262 and BIOMD0000000263; the diagram is adopted from [10]). Green box: elements coming from EGF model alone; blue box:
elements coming from NGF model alone; red box: elements coming from both models (overlap). For the non-overlapping model parts parameter
values and initial concentrations are taken from the original models. For the overlap parameter values and initial concentrations of the EGF model
have been chosen. Lower part: Simulation results. Simulations describe stimulation with different EGF and NGF concentrations, colors represent
input concentrations (left). First column: simulation of the EGF model, second column: the same outputs obtained from the integrated model. As
expected EGF model and integrated model yield very similar simulation results. Third column: simulation of the NGF model, fourth column: the same
outputs obtained from the integrated model. Here simulation results differ wildly
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should be ‘similar’ to the output of A for the same input
signal (cf. Fig. 6).

To be more precise, let uy denote the inputs of the
merged model which originate from model A, i1y the
inputs of model A, up the inputs of the merged model
which originate from model B, and #p the inputs of model
B. Likewise, let v4 denote the outputs of the merged model
which originate from model A, 74 the outputs of model
A, vp the outputs of the merged model which originate
from model B and vp the outputs of model B. Finally, let
u = (us,up) and v = (v4,vp) denote input and output of
the integrated model, where identical inputs and outputs
are listed only once. Then u = (u4,0) denotes a signal
where all inputs that originate from model A receive a sig-
nal while all those belonging only to B are set to zero and
u = (0,up) denotes a signal where the roles of A and B
have been exchanged. Similarly, v = (v4, ?) denotes a sig-
nal where all outputs originating from A show a specific
value, while those belonging only to B may take any value
and v = (?, vg) denotes a signal where the roles of A and B
have been exchanged.

We say an integrated model is consistent with experi-
mental data, if the following relations hold for all signal
pairs 14, V4 used to parametrize model A and for all signal
pairs i1g, Vg used to parametrize model B (cf. Fig. 6):

1. Inputs u = (@14, 0) yield output v ~ (4, ?)
2. Inputs u = (0, i) yield output v &~ (?, V)

To assess the similarity of the output curves we sug-
gest to use the x2 merit function which is often optimized
in parameter estimation (see, e.g., the software Potters-
Wheel [37]):

N o . 2
e =3 (”“’”) )

Oj
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In the above formula y; is the data point i with the stan-
dard deviation o; and y(t; p) is the model value at time
point i for parameter values p (see, for example, [37]).

In the following we suggest to compute two x 2-values to
assess the similarity of the output of the integrated model
to that of models A and B: Xi /N4 and X; /Np. Thereby
Ny and Np are the number of data points of the respec-
tive model, y4 (¢;; pa) and yp(t;; pp) denote the value of the
output signals of A and B at time point i and y;(¢; pr) the
value of the output signal of the integrated model at time
point i. The values Xf\ /N4 and X; /Np are then calculated
as follows:

2 Ny
XA _ ya(ti; pa) — y1(t; pr)
Ny ; ( o} ) &
K3 & (vt pe) — it )
= L (e ) @

i=1

Now we say the integrated model is consistent, if

1. Xi/NA < land
2. X;/NB <1

With this consistency condition it is possible to formu-
late integration goals. It is often not required to obtain
consistency of the integrated model with both original
models equally well. An exemplary integration goal could
be:

e Reproduce simulation results of model A almost
exactly and reproduce simulation results of model B

Y

and input (0, &g) yields output similar (?, 7g)

M_MI —> [
o—1{ > -
0 — »?
M|
— — .

Fig. 6 Consistency condition. Left panel: signal {4 (blue curve) as an input to model M_A yields output v4 (red curve), signal {g (green curve) as an
input to model M_B yields output v (turquoise curve). Right panel: the integrated model is consistent, if input ({4, 0) yields output similar to (74, ?)
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as well as possible, that is, obtain a parameterization
such that the integrated model satisfies the condition

x2/Na <1, x2/Ng ~ 1. (4)

For the integration example in Fig. 5 we define the fol-
lowing integration goal: reproduce the time courses of the
EGF model almost exactly and those of the NGF model as
well as possible (i.e. X;%GF/NEGF < 1 and XI%[GF/NNGF ~
1). This integration goal guided our choice of parameter
values for the elements of the overlap: we assigned the
parameter values of the EGF model to the overlap.

Generally speaking, setting an integration goal can
guide the initial choice of parameter values for the over-
lap. If the goal is to reproduce the simulation results of
one of the original models almost exactly, the parame-
ter values of this original model should be chosen for the
overlap. For the non-overlapping model parts parameter
values of the original models can be chosen for the inte-
grated model. In this sense an integration goal influences
structural integration.

Note that to compare the output signals of integrated
and original model one may either use experimental or
simulation data. To check consistency of the model pre-
sented in Fig. 5 we make use of the simulation data of
the original models. For this purpose we interpret model
values y4(t;; p) as synthetic data points y4,; and assume
normally distributed errors for these data points (10 % rel-
ative and 5 % of the maximum as the absolute error). This
approach works on the assumption that the original mod-
els have been consistent with the experimental data (as is
the case for the example models). If the experimental data
which has been used to parametrize the original models
is available an alternative approach is to use these data to
judge the merged model instead of utilizing the approach
with synthetic data points.

For the integration example shown in Fig. 5 we obtain
ngF/NEGF = 0.0004 and XI%[GF/NNGF = 1689.3). Hence
the model is not consistent with experimental data.

Parameter re-fitting

To achieve a consistent model, parameter values have to
be modified. Thereby the identification of those parame-
ters that have to be re-fitted is a crucial question that is
influenced by the integration goal and the position of the
overlap of the two original models.

However, no general guidelines can be formulated for
the identification of those parameters that have to be re-
fitted. Instead a detailed understanding of merged model
and integration goal are essential. In our example the aim
is to preserve the time courses of the outputs of the EGF
model almost exactly. Hence we select those parameters
of the NGF model that do not belong to the overlap (blue
box in Fig. 5).
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Contrary to the structural integration there is a lack
of tools and software to support the whole process of
reparameterization. Software tools for parameter fitting
like PottersWheel [38] or the Systems Biology Toolbox 2
(SBTOOLBOX2) for MATLAB [39] can be used instead.

In Fig. 7 the simulation results after the merging step
(left column) and after the reparameterization step (right
column) are depicted for the integration example. Solid
lines represent the original NGF model; dotted lines the
integrated model after the respective step of the work-
flow. The time courses of the three output states pTrkA,
pAkt and pS6 are shown after stimulation with different
concentrations of NGF (colors correspond to the differ-
ent NGF-stimuli used in Fig. 5). The early response can
not be reproduced very well, even after reparameteriza-
tion. Nonetheless, steady steady values almost coincide
after the reparameterization step. Comparing entire out-

2
put signals via the 4~ values reveals the similarity of the

signals: X‘%F = 0.289 and % = 0.899. Hence the inte-
gration goal is achieved. Moreover, the model is consistent
according to our definition. Especially for the output pS6
the time courses can be reproduced almost exactly after
reparameterization. From our point of view this output is
more important than the other two because it forms the
end of the signaling cascade.

Methods

Examining an integration example

To illustrate the important tasks in model integration
which have been described in the previous sections we
chose two models of signaling pathways in pcl2 cells.
The models of epidermal growth factor (EGF)-dependent
Akt pathway and nerve growth factor (NGF)-dependent
Akt pathway have been set up by Fujita et al. [10]
and are publicly available in the curated branch of
the BioModels Database [1] as BIOMDO0000000262 and
BIOMDO0000000263. Each of the two models comprises 11
reactions and 11 species. With these two models Fujita et
al. studied how temporal patterns in the upstream signals
are transmitted to the downstream effectors. Experiments
showed a decoupling of the peak amplitudes which could
be reproduced with the two simple pathway models suf-
ficiently. Frequency response analysis has been used by
Fujita et al. to uncover low-pass filter properties of the
three-component Akt pathways.

The overlap consists of four reactions, five species and
two output states. In Fig. 8 the reactions of the original
models are listed. The last four reactions of both models
are equal, they solely differ in the parameters (red boxes in
Fig. 8).

Following our model integration workflow the struc-
tural integration of the two models in SBML format
is straightforward. First some annotations have been
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Simulation of the merged model
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Fig. 7 Simulation of the integrated model after merging and reparameterization
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corrected, SBO annotations have been added and appro-
priate names have been assigned to the model elements.
The annotations have been edited using the software
semanticSBML, names have been edited with the soft-
ware SBMLeditor. Then semanticSBML has been used to
obtain a merged model. The parameterization of the EGF
model was chosen for the overlap. In Fig. 5 the network of
the merged model is shown. The merged model contains

the EGF and NGF input species. Both signals are transmit-
ted to the downstream effectors pAkt and pSé6. Figure 9
depicts the reactions, initial amounts and scaling factors
of the integrated model. Elements which have been part of
the overlap are highlighted by red boxes.

As described in the ‘Results and discussion’ section diffi-
culties arise in the selection and adaption of parameters to
obtain consistency of the original models and the merged

Reactions and rate constants in the EGF-dependent Akt pathway model

Reactions and rate constants in the NGF-dependent Akt pathway model

ID Reaction Name Reaction k1 (Isec) k2 (Isec) D Reaction Name Reaction k1 (Isec) k2 (Isec)

re1 EGFR_synthesis 1.06386x10° rel TrkA_synthesis 1.10324x10%

re2  EGFR_degradation 1.06386x10% re2  TrkA_degradation 1.10324x10%

re3 EGF + EGFR 6.73816x10°% 4.07490x10? re3 NGF + TrkA 2.69408x10% 1.33747x10%
re4 EGFR_phosphorylation 1.92391x10%2 re4 TrkA_phosphorylation 8.33178x10%

re5 PEGFR_degradation 9.97194x10% re5 TrkA_degradation 6.84084x10

re6 PEGFR +Akt 1.55430x10°° 5.17473x10% re6 TrkA +Akt 8.82701x10 1.47518x10™
re6  Akt_phosphorylation 3.05684x10 re6  Akt_phosphorylation 2.02517x10

re7 pAkt_dephospho 3.27962x10? re7 pAkt_dephospho 1.28135x10%°

re8

re8

re9

pAkt + S6
S$6_phosphorylation

pS6_dephospho

2.10189x10%

1.21498x10*

1.13102x10

5.17940x10°™°

re8 PAkt + S6 6.83666x10"""  5.23519x10"”
re8  S6_phosphorylation 5.65150x10
re9 pS6_dephospho 2.93167x10%

Fig. 8 Reactions of the two BioModels BIOMD0000000262 and BIOMD0000000263 (taken from Fuijita et al. [10]). The model overlap consists of the
last reactions (red boxes) and the outputs
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Reactions and rate constants in the integrated Akt pathway model

Initial amounts of molecules in the integrated Akt pathway model

ID Reaction Name Reaction k1 (/sec) k2 (/sec) Name Initial amounts
re1_M1 EGFR_synthesis 1.06386x10* pro_EGFR  6.81902x10"*(fixed)
04
re2_ M1 EGFR_degradation 1.06386x10°% EGFR 6.81902x10
EGF_EGFR 0
03 02
re3_M1 EGF + EGFR 6.73816x10 4.07490x10 PEGFR 0
re4d_M1 EGFR_phosphorylation 1.92391x10 pro_TrkA 8.52065x10"” (fixed)
TrkA 8.52065x10"°
re5_M1 pEGFR_degradation 9.97194x10
NGF_TrkA 0
re6_M1 pEGFR +Akt 1.55430x10%  5.17473x10 pTrkA 0
%
re6_M1 Akt_phosphorylation 3.05684x10% Akt 4.33090x10 I
pTrkA_Akt 0
: 0
re1_M2 TrkA_synthesis 1.10324x10 PEGFR Akt 0
re2_M2 TrkA_degradation 1.10324x10% PAKt 0
) - S6 3.54317x10%
re3_M2 NGF + TrkA 2.69408x10”  1.33747x10°
pAkt_S6 0
re4_M2 TrkA_phosphorylation 8.33178x10™ pS6 0
re5 M2 TrkA_degradation 6.84084x10° EGF 0.0.1,03,1,3,10, 30 (fixed)
NGF 0,0.1,0.3, 1, 3, 10, 30 (fixed)
re6_M2 TrkA +Akt 8.82701x10%  1.47518x10™
re6_M2  Akt_phosphorylation Trkd Akt —* Trkd + pAke 5.57783x10" . .
- i 2 i il Scale factors of molecules in the integrated Akt pathway model
re7 pAkt_dephospho 3.27962x10? Name Scale factor
re8 pAkt + S6 2.10189x10™® 5.17940x10"° PEGFR_scaleFactor ~ 1.81735x10°*
pTrkA_scaleFactor  2.72906x10™
re8 S6_phosphorylation 1.21498x10% — )
PpAkt_scaleFactor 7.16737x10”'
03
re9 pS6_dephospho 1.13102x10 DpS6_scaleFactor 4.32452x10"

Fig. 9 Reactions, initial amounts and scaling factors of the integrated model: parameter values of the original EGF model have been used for the
overlap (red boxes). Reaction parameters and scaling factors highlighted by blue boxes have been re-estimated

model. We will now demonstrate that the selection and
adaption of parameters mainly depends on the integration
goal. For the integration example the following goals can
be defined:

® Preserve time courses of EGF model exactly and
obtain consistency of the integrated model with the

NGF model

2
NGE ~~ 1
~ .
’ NNGF

e Dreserve time courses of NGF model exactly and
obtain consistency of the integrated model with the

EGF model <

X%GF
<1
NEGF

2
XNGE

X

EGE ]

’ N
NGF

NEGF

< 1>.
e Dreserve consistency of the integrated model with the

2 2
two original models Xegr 1 Xner _ 1),
NEgGr

’ NNGF

For demonstration purposes we have chosen goal one.
The consequence is that we choose the model variant
which contains the parameter set of the EGF model for the
reactions in the overlap. After structural integration the
time courses of the following outputs have been preserved
exactly: pEGFR, pAKT and pSé6 after stimulation with EGF
and pTrkA after stimulation with NGF. The time courses
of the outputs pAKT and pS6 after stimulation with NGF
differ from the ones in the original model (see Fig. 5).

Hence, the integrated model is already consistent with the
EGF model. The challenge is now to find the parameters
that are modified in a re-fitting step to obtain consistency
of the integrated model with the NGF model. This will be
described later in this section.

Prior to the model fitting step synthetic data points have
been produced by simulating the two original models. The
original data hasn’t been available. The multiple fitting
functionality of the PottersWheel software [37] has been
used. First we tried to fit the merged model only with data
sets produced by simulation of the NGF model. Therefore
we utilized six data sets with NGF step stimulation in dif-
ferent concentrations (as described in [10]). As an initial
try four parameters (three reaction parameters of re6 (see
Fig. 8) and one scaling parameter for the output pTrkA)
have been fitted to reproduce the time courses of the three
outputs of the NGF model (pTrkA, pAkt and pS6). This

2
X _
approach was not successful ( A= 2.291).

As we want to keep all parameter values of the EGF
model, the following parameters are candidates for the
fitting step: the reaction parameters in the upper model
branch of the NGF model, the corresponding initial con-
centrations and the scaling factor for the output pTrkA.
If the reaction parameters and initial concentrations in
the overlap or upper model branch of the EGF model or
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the scaling factors for the outputs pAkt or pS6 are fitted,
the time courses of the original EGF model can not be
reproduced exactly.

Of these, the parameters of the Akt phosphorylation
reaction in the original NGF model and three scaling fac-
tors turned out to yield the best results (these parameters
are highlighted in blue in Fig. 9). Because the scaling
factors have an influence on the outputs in the overlap
additional six data sets with EGF step stimulation in differ-
ent concentrations have been utilized for the fitting. The
twelve data sets each contain four time courses describ-
ing the four outputs of the integrated model (pEGFR,

pIrkA, pAkt and pS6). With this approach Xﬁz = 0.594 can
be achieved for all data sets, the individual quotients are

2 2
;\(IEJ = 0.289 and ;ff’i = 0.899. Hence both consistency
EGF. NGF

conditions are fulfilled.

Conclusions

The present work describes a semi-automatic model inte-
gration workflow. This workflow is subdivided into three
major steps, model preparation, structural integration,
and behavioral integration. As the first two steps are
mainly concerned with the semantic meaning of model
elements, one may think of these steps as ‘biological inte-
gration! The described methods are tailored to signal
transduction models. For models describing metabolism
the steps can be applied similarly, but more straightfor-
ward, because the identification of model elements is
less complicated. The third step, behavioral integration,
focuses mainly on the mathematical aspects of the inte-
gration task. Hence, it can be considered as ‘mathematical
integration’ This step and the discussed ideas can read-
ily be applied to models describing either signaling or
metabolism. Our workflow can incorporate many existing
standards and software tools.

We want to emphasize that model integration is more
than model merging: one has to ensure that the integrated
model is consistent with the experimental data of both of
the original models. Hence the choice of parameter values
for the integrated model is crucial. And there is an ambi-
guity in assigning parameter values to the model overlap,
as it is a priori not obvious which parameter values to
choose (those coming from model A or those coming from
model B). To guide this choice and to judge the success of
the integration process we propose to formulate an inte-

gration goal. In particular, we suggest to use the Xﬁz value
for this purpose.

In most cases the integration goal will not be achiev-
able using the parameter values of the original models.
Instead at least some of the parameter values will have
to be re-estimated. Thereby the identification goal may
help to define suitable subsets of the parameters. The
values of the corresponding parameters have then to be
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re-estimated given the measurement information corre-
sponding to both models (or synthetic data obtained by
simulating the original models).

Besides the Xﬁz value other quantities may be used to
formulate integration goals, for example, steady state val-
ues. Fujita et al. studied the low-pass filter properties of
the two Akt pathways. Thereby so-called ‘cut off frequen-
cies’ play an important role. These also offer an alternative
way to formulate integration goals, at least for the spe-

cial systems studied in [10]. Our choice of the Xﬁz values
was motivated by the following ideas: steady state values
do not contain information about the time courses and
‘cut off frequencies’ are a specific property of the system
studied in [10] and hence may not be generalized easily.

Additional file

Additional file 1: Requirements in model preparation (naming
scheme and annotation). (PDF 148 kb)
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