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Abstract

Background: Invasive aspergillosis is a severe infection of immunocompromised hosts, caused by the inhalation of
the spores of the ubiquitous environmental molds of the Aspergillus genus. The innate immune response in this
infection entails a series of complex and inter-related interactions between multiple recruited and resident cell
populations with each other and with the fungal cell; in particular, iron is critical for fungal growth.

Results: A computational model of invasive aspergillosis is presented here; the model can be used as a rational
hypothesis-generating tool to investigate host responses to this infection. Using a combination of laboratory data and
published literature, an in silicomodel of a section of lung tissue was generated that includes an alveolar duct,
adjacent capillaries, and surrounding lung parenchyma. The three-dimensional agent-based model integrates
temporal events in fungal cells, epithelial cells, monocytes, and neutrophils after inhalation of spores with cellular
dynamics at the tissue level, comprising part of the innate immune response. Iron levels in the blood and tissue play a
key role in the fungus’ ability to grow, and the model includes iron recruitment and consumption by the different
types of cells included. Parameter sensitivity analysis suggests the model is robust with respect to unvalidated
parameters, and thus is a viable tool for an in silico investigation of invasive aspergillosis.

Conclusions: Using laboratory data from a mouse model of invasive aspergillosis in the context of transient
neutropenia as validation, the model predicted qualitatively similar time course changes in fungal burden, monocyte
and neutrophil populations, and tissue iron levels. This model lays the groundwork for a multi-scale dynamic
mathematical model of the immune response to Aspergillus species.
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Background
Invasive aspergillosis represents a major and growing
health problem in the U.S. and around the world. The
growing population of immunocompromised patients,
including those with haematologic malignancies, and
stem cell- or solid organ-transplant recipients are at high-
est risk for this disease [1]. In addition to convention-
ally immunosuppressed patients, other large populations
are also at risk of this infection, including individuals
with fibrocavitary tuberculosis in developing countries
who develop chronic invasive aspergillosis as a secondary
infection [2]; it is estimated that in 2007, 372,000 of the
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7.7 million new cases of pulmonary tuberculosis world-
wide also developed chronic pulmonary aspergillosis [3].
The introduction of new antifungal drugs during the last
decade, principally azole-based compounds capitalizing
on new insights into the molecular structure of the fun-
gal cell wall, has dramatically improved disease outcomes,
but mortality rates remain approximately 30 % in recent
surveys [1, 4]. In addition, increased resistance to these
new drugs [5] raises the specter of a ‘perfect storm,’ as
it has been called in [3], combining a rapidly growing
patient population with a diminished repertoire of treat-
ment options.
A substantial body of literature supports the crit-

ical role of iron homeostasis in Aspergillus biology.
Aspergillus species adapt to iron-limited environments
by activating a system of intracellular and secreted
siderophores that scavenge iron from the environment
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and store it. In in vitro studies, Aspergillus siderophores
remove iron from transferrin in human serum [6] and
impair macrophage iron uptake [7]; conversely, neu-
trophil lactoferrin inhibits Aspergillus conidial growth
by sequestering extracellular iron [8]. In animal mod-
els, mutant Aspergillus species with defective siderophore
systems are avirulent [9], and therapeutic iron chela-
tion has an additive benefit to antifungal antibiotics [10].
These mechanisms appear to be clinically important,
since among immunocompromised stem cell transplant
patients, clinically unsuspected iron overload is an inde-
pendent risk factor with invasive aspergillosis [11, 12].
Taken together, these data suggest that the competition
for iron is a key component of the pathogenesis of invasive
aspergillosis.
The innate immune response to invasive aspergillosis

is difficult to study. Interrogating dynamic cellular and
molecular networks in a human host is, in most cases,
impossible. In the study of the innate immune response to
Aspergillus a number of in vitro and in vivo approaches
have been used successfully. These include the in vitro
interaction of Aspergillus with leukocytes and epithelial
cells [13, 14]. In addition, animal models have been a
valuable tool to investigate the complexities of cell-cell
interactions and inflammatory pathways in a realistic sys-
tem. These complementary approaches have led to recog-
nition of neutrophils, macrophages, dendritic cells, and
lung epithelial cells as key early players in host response
to Aspergillus species [15, 16]. To date, the focus of the
search for new therapeutics has been largely on fungal
targets. But more recent promising efforts have looked
to the host, in particular host immunity [17, 18]. How-
ever, a full exploration of the possibilities for anti-fungal
therapeutics targeted at the host requires a better under-
standing of the innate host response. The complexity
of the dynamic regulatory molecular networks and the
multi-scale nature of the innate immune response strongly
suggest taking a systems biology approach [19], as done
in, e.g., [20, 21]. Here, we present a first step toward a
multi-scale systems biology model of invasive aspergillo-
sis in the lung, focused on the role of iron. In particular,
we present the tissue level component of the model, val-
idated with in vivo data from a mouse model of invasive
aspergillosis.

Related work
Agent-based models (ABMs) are particularly well-suited
for capturing the inherent heterogeneity of the immune
system; an overview of such models is discussed in [22];
a more focused review of host-pathogen ABMs is pre-
sented in [23]. In particular, the complexity of the lung
physiology and its effect on dynamic interactions has
been established [24], and specific interactions have been
the focus of studies on intracellular regulatory networks

[21] and the respiratory response to therapeutic interven-
tions [25]. A host-fungus interaction model incorporating
data into clinically actionable therapeutic intervention in
the case of invasive aspergillosis is presented in [26].
The model presented here incorporates several parame-
ter values and mechanistic behaviors from these models
(see Additional files 1 and 2).
The literature indicates the importance of neutrophils

and macrophages in the immune response to inva-
sive aspergillosis. The critical importance of neutrophil
involvement is detailed in [27], where chemotaxis is found
to be the best strategy by which neutrophils find A. fumi-
gatus conidia. This study also highlights the importance
of pathogen distribution and spatial scale as critical fac-
tors, both of which have been incorporated into our
model. Another recent ABM described the chemotactic
recruitment of macrophages by epithelial cells [28, 29],
focusing on the effectiveness of chemotaxis in the role of
macrophage response to A. fumigatus. This model incor-
porates specific spatial structure as well as respiratory
effects, and provides data on macrophage recruitment
time and mechanisms of chemokine diffusion. Our model
incorporates both macrophages and neutrophils, using
chemokine diffusion and chemotaxis in a spatially hetero-
geneous domain to investigate the immune response to
invasive aspergillosis over time. In addition, we introduce
iron as a key factor in the survival of the fungus. ABMs
have been used to study the lung in a variety of other
contexts as well, including cancer [30], metastasis [31],
fibrosis [32], and pneumococcal infection [33]. Studies
examining granuloma formation in tuberculosis infection
have used ABMs of the lung to investigate chemokine
diffusion [34] and pharmacokinetic/pharmacodynamic
modeling of antibiotics [35].
There are many software packages for simulation of

the immune system in various capacities. These include
packages such as SIMMUNE [36], the Basic Immune
Simulator [37], SIMISYS [38], and C-ImmSim [39–41].
These packages are general-purpose immune system
simulators that, while effective and useful for their
intended purposes, are ultimately not appropriate for our
purposes.

Methods
Animals and in vivo procedures
Female wildtype C57Bl/6 mice were purchased from
Jackson Laboratories (Bar Harbor, Maine) andmaintained
under pathogen-free conditions; experiments were per-
formed in 6- to 10-week old animals. All animal exper-
iments were approved by the Animal Care and Use
Committee of University of Virginia.
We used a previously described animal model of inva-

sive aspergillosis in neutropenic hosts [42–44]. Neu-
trophil depletion was achieved with a single i.p. injection



Oremland et al. BMC Systems Biology  (2016) 10:34 Page 3 of 14

of 80μg of a monoclonal Ab (Gr-1, clone RB6-8C5) 1
day before an intratracheal challenge with A. fumigatus.
We have previously reported that this protocol resulted
in peripheral blood neutropenia (absolute circulating neu-
trophil count less than 50 cells/μL) on days 1 and 3 after
injection in both infected and uninfected mice, with a
return of peripheral counts to pretreatment levels (>1000
cells/μL) by day 5 [45, 46] and does not influence the
number of other leukocyte subsets in the lung or spleen
[44, 47].

Preparation and administration of A. fumigatus
A. fumigatus (strain 13073, American Type Culture
Collection) conidia were collected in 0.1 % Tween in PBS
from 7- to 14- day old cultures on Sabouraud’s dextrose
agar plates, filtered through sterile gauze and counted
under a hemacytometer. Fungal forms were administered
intratracheally in inocula ranging from 2 to 5×106 in 30μl
saline per mouse.

Identification of leukocyte subsets
At pre-determined time points, animals were euthanized
by CO2 asphyxiation, the pulmonary vasculature was per-
fused via the right ventricle with PBS containing 5mM
EDTA, whole lungs were removed and single cell sus-
pensions prepared as previously described [43–49]. The
following antibodies were used to label cells for flow
cytometry (from BD Biosciences, San Jose, CA, or eBio-
sciences, San Diego, CA): anti-CD11b-allophycocyanin-
Cy7 (clone M1/70), anti-CD11c-PE-Cy7 (clone HL3),
anti-CD45-peridinin chlorophyll protein (clone 30-F11),
anti-Ly-6G-FITC (clone 1A8) and anti-Mac3-PE (clone
M3/84). Samples were analyzed on a FACS Canto II
instrument using Diva software (BD Biosciences). Neu-
trophils were identified as CD11b-hi Ly6G+ cells and
recruited macrophages as CD11b+ CD11c- Mac3+ cells,
as previously described [48, 49]. The absolute num-
ber of each leukocyte subset was determined as the
product of the percentage of the cell type and the
total number of cells in the sample, as determined
using an automated cell counter (Countess, Invitrogen,
Carlsbad, CA).

Chitin assay
Since A. fumigatus grows as multicellular branching
hyphae without forming distinct reproductive units in
infected tissues, we used an assay for chitin, a car-
bohydrate component of hyphal wall that is absent
from mammalian tissues and conidia, to quantify the
burden of hyphae in infected lungs, as detailed pre-
viously [50]. Organ chitin content has been vali-
dated as a readout of severity of infection in animal
models of invasive aspergillosis by several groups
[43, 51–54].

Measurement of lung iron
Lung iron content was measured as described in [55].
Briefly, lungs were homogenized in 3 ml sterile water
and 100 μL of each sample mixed with 100 μL of iron
dissociation reagent (equal volumes 20 % trichloroacetic
acid 2N HCl in distilled water and 4.5 % KMnO4, mixed
immediately before use) in duplicate. Samples were incu-
bated for 2 h at 60° C in a chemical fume hood and
allowed to cool. Following incubation, 50 μL iron detec-
tion reagent (6.5 mM neucoproine, 6.5 mM ferrozine, 1
M L-ascorbic acid and 2.5 M ammonium acetate in dis-
tilled water) was added to each sample. After 30 min,
samples were centrifuged at 10,000 g for ten minutes
and plated on a 96-well plate with an iron standard for
Atomic Absorption Spectrometry (Sigma-Aldrich) and
optical density at 590 nm measured on a microplate
reader.

Results and discussion
The simulation model
The agent-based model consists of a three-dimensional
simulation of a 400μm × 200μm × 200μm section of
lung tissue consisting of an alveolar duct, four adjacent
capillaries, and surrounding lung parenchyma. The model
was created in NetLogo [56], a popular platform for agent-
based simulations. Figures 1, 2 and 3 provide still-frame
snapshots from a three-dimensional dynamic simulation.
A. fumigatus conidia enter at one end of the alveolar duct.
As the simulation progresses, the conidia drift through
the airway (see Fig. 1). The ABM simulates the epithelial
clearance system via a parameter dictating the probabil-
ity of conidia lodging in the epithelium. Left undisturbed,
conidial spores enter a swelling phase prior to germina-
tion; subsequently, hyphal clusters begin to grow into the
adjacent lung interstitium (see Fig. 2). In vivo, antimi-
crobial compounds in the airway surface fluid act as
the first line of defense against conidia [57]; occasion-
ally, conidia that are not cleared in this way can invade
the interior of epithelial cells [58]; thus, the simulation
also allows epithelial cells to internalize, damage, and kill
conidia.
In the simulation model, epithelial cells act as the sec-

ond line of defense against A. fumigatus. Epithelial cells
recognize the presence of conidia and release inflamma-
tory cytokines into the interstitial space in order to initiate
an immune response. There are two immune cell types
in the ABM: recruited monocytes/macrophages and neu-
trophils (see Fig. 3). We represent epithelial cells as releas-
ing two types of chemotactic factors, for neutrophils and
monocytes/macrophages, respectively. These chemotac-
tic factors were tracked separately based on the literature
[42, 59], and represent the aggregation of cytokines to
which the respective immune cell types respond. The
levels of these chemotactic factors are determined by
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Fig. 1 Aspergillus fumigatus spores in the airway. A. fumigatus spores (represented as green spheres) drift from one end of the airway to the other. The
airway is lined with epithelial cells (semi-transparent blue); arrows indicate the direction of movement and the point at which the airway branches.
Four adjacent capillaries (shown in red) run the length of the tissue segment

the level of fungal burden, as measured by the number
of conidia and hyphae. The chemotactic factors diffuse
through the interstitial tissue, eventually reaching local
capillaries. Once the local concentration for a particular
immune cell rises above a threshold, they initiate recruit-
ment of leukocytes adherent to the capillary vascular
endothelium.
Recruited immune cells enter the interstitial space

via the bloodstream. There, chemotaxis is simulated

as the immune cells follow the gradient of the con-
centration of the chemotactic factor, a movement
mechanism established in the literature [27, 28, 60].
At the source of the gradient, the immune cells
may encounter fungal cells, whereupon such cells are
attacked. Macrophages may internalize several fungal
cells. Once internalized by a macrophage, cells are pro-
hibited from escape and from germination. Over time,
internalized fungal cells are damaged and ultimately

Fig. 2 Clusters of germinated hyphae. Once spores have clung to the epithelial cell wall, they germinate and hyphal clusters (represented as clusters
of green cones) grow through the epithelial wall and into the interstitial space
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Fig. 3 Immune response to fungal infection.Macrophages (gray) andneutrophils (yellow) are recruited to the site of infection via a chemotaxis gradient

destroyed. Damage inflicted by macrophages is limited
by the number of internalized fungal cells, while neu-
trophil damage is limited by the number of available
granules.
In the absence of sufficient chemotactic factors,

immune cells move randomly throughout the tissue. Since
the lifetime of neutrophils is between 24 and 48 h [61],
neutrophils are represented as dying after this period.
Macrophages leave the represented cross section when no
conidial spores remain.
A key focus of themodel is fungal acquisition of iron: the

immune response induces hemorrhage, causing the tissue
iron level to increase. The fungus is able to acquire iron
both from the store of free iron and via a siderophore sys-
tem. We model the level of available iron by having iron

diffuse throughout the tissue. Once a certain level of iron
is acquired by a fungal cell (determined by a parameter
in the model), a new hyphal cell grows. Upon encoun-
tering hyphal cells, neutrophils sequester all of the iron
in their immediate environment, preventing the fungus
from acquiring it. If the immune system is not able to
prevent the fungus from acquiring iron and consequently
growing, invasive aspergillosis develops. The simulation
continues in this manner until a pre-determined amount
of time has passed. See Fig. 4 for a snapshot of the model
interface, showing plots for various cell counts and model
settings.
This description of the modeling of the immune

response to A. fumigatus serves as an overview of the
ABM and how the agents function. Many of the agent

Fig. 4 The interface for the simulation model
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behaviors and parameter values are established in the
literature; for a formal description of the model see
Additional files 1 and 2. The ABM uses a combination of
established behaviors, parameter settings, and the param-
eter analysis described below, building on previous work.
Next we introduce results from parameter sensitivity anal-
ysis, which indicates the robustness of the model and
offers insight into mechanisms of invasive aspergillosis in
the lung.

Parameter sensitivity
We have chosen four quantities from the ABM to com-
pare with laboratory time-course data: fungal burden, iron
level throughout the tissue space, macrophage cell counts,
and neutrophil cell counts. We simulate normal immune
system conditions as well as neutropenia. Neutropenia is
induced in the simulation model in a manner similar to
the laboratory setting: presence of neutrophils in tissue is
ablated for the first 48 h, and then resumes to normal lev-
els over the remaining duration of the simulation. While
certain aspects of the ABM simulation are fixed (e.g. num-
ber of initial conidia, lifespan of monocytes/neutrophils,
killing rates of epithelial cells), there remains variation
from run to run as many processes are pseudo-random. In
order to obtain reliable results from simulation, we exam-
ined the quantities of interest over many runs, and used
the average and the standard deviation to determine the
typical behavior of the ABM with respect to these quan-
tities. Data for all quantities except fungal growth were
very reliable when averaged over 20 simulations (in both
neutropenic and healthy patients); for fungal growth it
was necessary to run 40 simulations in order to obtain
reliable data. Figure 5 provides a summary of this data
for both healthy and neutropenic patients. In this figure
we see that the mean value from 40 simulations is very
similar to the mean taken over 200 simulations, and the
data indicate that there is no significant change expected
beyond 200 runs. Thus all results were generated by using
the mean over 40 runs at each setting, with error bars
representing one standard deviation.
While many state variable values have been determined

from the literature, there are nine parameters whose val-
ues had to be determined empirically. Parameter descrip-
tions and baseline values are provided in Table 1. With
one exception, each parameter was set to 10%, 50%, and
200% of its baseline value (one at a time) in order to exam-
ine the robustness of model results with respect to the
parameter value; simulations were run under both healthy
and neutropenic conditions. Due to higher sensitivity,
one parameter – the radius within which macrophages
and neutrophils can detect fungal presence – was set to
12μm, 15μm, and 18μm. Full results for both normal and
neutropenic conditions are provided in Additional file 3;
an overview of the results follows.

Three of the nine parameters had no qualitative effect
(and little quantitative effect) on model dynamics. The
first of these, the cytokine production factor, is a multi-
plier that determines the unitless amount of macrophage-
and neutrophil-specific cytokines that is produced by
epithelial cells in response to fungal presence. The lack
of effect is likely a result of the fact that macrophages
and neutrophils follow cytokine gradients to determine
movement; since chemotaxis is simulated based on rel-
ative levels of nearby cytokines, the actual multiplier is
not critical. The second of these parameters is the pro-
portion of nearby cytokines that are taken up by receptors
on macrophages and neutrophils. This lack of a signif-
icant effect can be explained in a similar way: cytokine
uptake does not have a sufficiently large effect on the rela-
tive nearby cytokine concentration to alter cell movement.
The final parameter to have little effect is referred to as the
recruitment threshold; this parameter determines both
the minimal amount of cytokine that must be present in
order for macrophages and neutrophils to move according
to chemotaxis (if all nearby areas are below the thresh-
old they move randomly) and the possibility for recruited
macrophages and neutrophils to appear in the blood (new
immune cells appear only if their respective cytokine lev-
els are above the threshold). This parameter serves two
roles. If there is no threshold for initiating chemotaxis,
immune cells quickly become fixed in a single location and
do not move at all. Additionally, there must be a mini-
mal cytokine level in the bloodstream in order to initiate
immune cell recruitment. This parameter’s lack of effect
can possibly be due to it being relatively small with respect
to the cytokine production factor: as long as cytokines
are being produced, the minimal threshold requirement is
more or less arbitrary, and serves only to keep the immune
cells moving, and to ensure that they are not being contin-
uously recruited without reference to what is happening
in the system. Thus, in all three cases it is not surpris-
ing that the parameter scaling had little effect on model
dynamics.
Four more parameters resulted in unsurprising quanti-

tative (but not qualitative) differences. The first of these
is the probability of conidial spores lodging in the epithe-
lium – this can be thought of as the strength of the
cilia in sweeping away the fungus. Figure 6 shows the
effect of this parameter in an immunocompetent host
simulation. As the probability of lodging increases, fun-
gal growth increases. In turn, iron levels decrease as
the fungus takes up more of the available iron. Higher
fungus levels cause an increase in cytokine production,
which leads to an increase in recruited macrophages. The
second parameter that scales predictably is the propor-
tion of available iron that is absorbed by fungal cells.
Given a fixed amount of iron needed for growth, the
lower this proportion is the less resultant fungal growth;
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Fig. 5 Determining suitable runs for reliable data over 288 time steps (96 h). Panels a and c indicate that fungal growth remains consistent at 200
simulations, and panels b and d indicate that in both immunocompetent and neutropenic simulations, mean and standard deviation over 40
simulations are very similar to the same data over 200 simulations (the middle curve is the mean; upper and lower curves show +/ − 1 standard
deviation)

at the same time, because there is less fungal growth
there is an increase in systemic iron levels and a slightly
lower macrophage count. However, when taking into
account the variance of the data, the only significant dif-
ference is in fungal growth. The third parameter to scale
quantitatively is the iron needed in order for fungus to
grow. As this level is decreased, fungal growth increases;
iron levels and macrophage counts remain approximately
the same.
The fourth parameter in this category is the detection

radius, which determines how close an immune cell needs
to be in order to detect fungal presence. As noted above,
model dynamics were more sensitive to this parameter
than to any of the others. These results are highlighted
in Fig. 7, which summarizes results in a neutropenic

simulation. When the detection radius was set to be
12μm, fungal growth is rapid and hardly affected at all by
the presence of immune cells. However, by changing the
detection radius to just 15μm the dynamics were dras-
tically altered: practically all of the fungus is removed by
the immune cells. This is most likely an artifact of the way
Netlogo handles distance – at 12μm, only the grid loca-
tion of the immune cell is considered, whereas at 15μm
each of the 26 neighbors (in three dimensions) are con-
sidered. Thus, in light of this, these results are not so
surprising. From a detection radius of 15μm to 18μm,
the results scale quantitatively in the expected manner:
a higher detection radius results in less fungal growth
and fewer macrophages, though iron levels remain fairly
consistent.
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Table 1 Parameters for sensitivity analysis and validation. The effects of these parameters were examined by setting each to 10%, 50%,
and 200% of their baseline values, which are indicated here. The final column provides values used for validation with laboratory data

Description Name Baseline Validation

Probability of conidia lodging in epithelium plodge 0.05 0.0223

Macrophage / neutrophil fungal detection radius det_radius 15μm 11.67μm

Diffusion rate for iron and cytokines diffusion_rate 0.5 0.397

Cytokine production factor cyto_rate 100 100

Maximum iron acquirable by fungus ironmax(f ) 2.5 3.633

Proportion of iron absorbed by fungus iron_abs(f ) 0.5 0.76

Iron needed for fungal growth ironmin(f ) 0.25 0.9096

Cytokine absorption rate by macrophages / neutrophils cyto_absorb 0.05 0.05

Cytokine recruitment threshold for macrophages / neutrophils recr 5 5

The remaining two parameters subjected to sensitivity
analysis are open to different interpretations, and offer
interesting insights into the dynamics of the system. The
first of these is the diffusion rate of iron and cytokines
throughout the tissue. As the diffusion rate is lowered, the
fungal growth rate is decreased, resulting in higher total
iron levels in the system (as less iron is being consumed by
the fungus); see Fig. 8 for results from neutropenic sim-
ulations. The diffusion rate does not have any significant
effect on the macrophage count, as their presence is gov-
erned almost entirely by cytokine levels. Interestingly, at
the highest diffusion rate (1.0), the total systemic iron is
lower than when the diffusion rate is set to 0.25, but the
fungal growth in each of these cases is the same. This
effect is observed in both neutropenic and immunocom-
petent simulations. This may be because the macrophages
are fighting off the fungus and thus controlling the fungal
growth rate; in any event the result suggests that lower-
ing iron diffusion might be an effective way to increase
systemic iron levels without increasing fungal growth.

The last parameter subjected to sensitivity analysis is the
maximum amount of iron that fungal cells can store; the
data from a neutropenic simulation is presented in Fig. 9.
As the amount of iron coming into the system is fixed (at a
value of 1 unit per hour), the maximum iron level was set
to 0.25, 1.25, and 5.0 (representing 10%, 50%, and 200%
of the fixed baseline value of 2.5 used in analysis of the
other parameters). It is important to note that the amount
of iron required for growth in each of these cases was
fixed at the baseline value of 0.25. Thus when the maxi-
mum iron level is set to 0.25, the fungus is unable to grow;
this allows systemic iron levels to rise, and since there is
no fungus, fewermacrophages are recruited. These results
suggest that even in neutropenic cases, fungal growth can
be inhibited if the iron acquisition system is disabled.
Additional file 3 provides full data from the parame-

ter analysis for both immunocompetent and neutropenic
simulations; the results shown here summarize the most
relevant findings. Data from neutropenic simulations
are presented because in general, the effects are more

Fig. 6 Data sensitivity to probability of conidia lodging in epithelium (healthy patient). Fungus, iron, and macrophage levels show quantitative
differences, but the qualitative similarity indicates the simulation model is robust with respect to the probability of conidial spores lodging in the
epithelium
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Fig. 7 Data sensitivity to detection radius of immune cells (neutropenic patient). Fungal growth and iron levels are highly sensitive with respect to
the detection radius; the macrophage cell count is sensitive to a lesser degree

pronounced in this setting. However, the same results
hold for immunocompetent host simulations. It is worth
noting that in all cases, neutrophil cell counts are not
included as they are not significantly affected by dif-
ferent parameter values. In immunocompetent hosts,
only the diffusion rate and the cytokine production fac-
tor affect neutrophil recruitment, and very slight effects
are observed. In neutropenic simulations, no differ-
ence is observed. Due to the way in which neutropenia
is simulated (as described above), it is not surprising
that the parameters have little effect on neutrophil cell
counts.
The parameter sensitivity analysis performed here is

rudimentary and largely serves to examine the robustness
of the system. Given that data are coming from stochastic
simulations, a more traditional sensitivity analysis is com-
putationally infeasible. Nevertheless, this analysis brings
forth several interesting hypotheses. The dependence on
iron for fungal growth cannot be considered a prediction

of the model, as it is built into the code that dictates
fungal behavior. However, the effect of iron and cytokine
diffusion and iron storage on fungal growth indicate a pos-
siblemeans by which invasive aspergillosis can be avoided,
even in the neutropenic case. It would be possible to inves-
tigate these predictions in future laboratory work. These
results suggest that the model is robust with respect to
the nine unvalidated parameters, indicating the strength
and viability of using the simulation model to investigate
invasive aspergillosis in the lung.

Validation
In vivo experiments were carried out for immunocompe-
tent mice and those in whom neutropenia was induced, in
order to study the effectiveness of the immune response
under both conditions. Accordingly, simulations of the in
silicomodel include data for both immunocompetent and
neutropenic mice. In order to mimic in vivo conditions
in neutropenic simulations, neutrophil levels are depleted

Fig. 8 Data sensitivity to iron and cytokine diffusion rate (neutropenic patient). As the diffusion rate is lowered, fungal growth decreases and
available iron increases
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Fig. 9 Data sensitivity to maximum iron acquirable by fungal cells (neutropenic patient). Lower maximum stored iron inhibits fungal growth and
results in higher systemic iron levels and a decrease in the macrophage cell count

gradually over the course of the first 24 h, n entirely for
the following 48 h, and returned to full production over
the course of the subsequent 24 h.
Chitin is a carbohydrate component of the hyphal wall

that is absent from conidia andmammalian tissues. Chitin
levels measured in vivo therefore indicate hyphal pres-
ence; as such, chitin levels are used as an indicator of total
fungal burden. Figure 10 presents in vivo chitin levels and
fungal cell counts from the agent-based model. Figures 11
and 12 present similar data (from the same simulations)
for macrophage and neutrophil cell counts, respectively.
In the data presented, a neutrophil-depleting antibody is
given one day prior to the introduction of conidia; hence
the time scales begin at day −1. Fungal spores are intro-
duced in the ABM beginning at day 0. Figure 13 shows the
qualitative similarity between experimental iron data and
iron levels in the simulation. Parameter values for these
figures were determined by a heuristic search method
implemented directly in NetLogo; the values used to pro-
duce these figures are given in Table 1.

Conclusion
The immune response to fungal and other pathogens
in the lung is multi-faceted and multi-scale. Thus, it
lends itself well to a systems biology approach based on
mathematical modeling. Our goal underlying the work
presented here is to lay the groundwork for a multi-
scale dynamic mathematical model of the innate immune
response to A. fumigatus in the lung, focused on the
“battle for iron” between host and pathogen. Iron acqui-
sition has been shown to be an important virulence
factor for the fungus, and several mechanisms of the
immune response are designed to adversely affect fun-
gal iron uptake. The model we constructed covers the
tissue scale and incorporates recognition of the fun-
gus by epithelial cells, production of chemotactic gradi-
ents and recruitment of macrophages and neutrophils,
as well as changes in tissue-level iron concentrations.
However, this is accomplished through rules that do
not do full justice to the intracellular processes trig-
gered by pathogen recognition. In a future multi-scale

a b

Fig. 10 Fungal growth from experimentation (panel (a)) and ABM data from simulations of neutropenia (panel (b)). Data shown in panel a represent
mean and SEM of n = 4-6 mice per time point
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a b

Fig. 11 Recruited macrophage counts from in vivo experiments (panel (a)) and from the ABM (panel (b)). Data shown in panel a represent mean
and SEM of n = 4-9 mice per time point

version of the model, these processes will be con-
trolled through intracellular signaling and iron regulation
mechanisms.
In any computational model, required approximations

inevitably give rise to limitations. In the model presented
here, one of these is the absence of volume exclusion; that
is, that multiple cells may aggregate in a manner that is
not physically feasible. While not indicated by prelimi-
nary simulation results, it is possible that cell crowding
has an effect on the results of the model. The decision to
not incorporate volume exclusion was motivated by the
relatively low quantity of immune cells and the computa-
tional complexity required to model using volume exclu-
sion. Incorporation of an increased variety of immune cell
types would also increase the potential effectiveness of
the model, as would incorporation of multiple cytokines
rather than the cell-specific aggregates implemented here.
A better understanding of how immune cells sequester
iron, particularly in a quantitative sense, would also allow
themodel to be fine-tuned in amore realistic manner. The
use of unit-less proportions to determine iron levels (and
diffusion) act as another limitation, and one that could
be addressed by biological experimentation. All of these

limitations may be investigated in future versions of the
model.
Parameter sensitivity analysis was conducted to ensure

that the model is robust, and data was validated by fit-
ting model parameters to data from a neutropenic mouse
model. The computational model can capture the fun-
gal burden qualitatively over time, using chitin levels as
proxy, and the recruitment of macrophages, while repro-
ducing leukocyte counts. Thus, this study can be con-
sidered as proof of the concept that a computational
model of this kind can serve as a tool to study invasive
aspergillosis. Some parameter values were determined
from literature while others were determined experimen-
tally; in this way, parameter values arose quite natu-
rally from studies focusing on individual cells (for full
model details see Additional files 1 and 2). In order to
increase the realism of the model, we plan to add other
cells (such as dendritic cells and natural killer cells);
we then plan to endow all cells with intracellular net-
works that capture the signaling and metabolic processes
involved. Such a multi-scale model can then be used
to test hypotheses in silico and to explore therapeutic
interventions.

a b

Fig. 12 Neutrophil counts from in vivo experiments (panel (a)) and from the ABM (panel (b)). Data shown in panel a represent mean and SEM of
n = 4-9 mice per time point
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a b

Fig. 13 Iron levels from in vivo experiments (panel (a)) and from the ABM (panel (b)). Data shown in panel a represent mean and SEM of n = 4-6
mice per time point
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