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Abstract

Background: Unlike traditional detection of a disease state in which there are clear phenomena, it is usually a
challenge to identify the pre-disease state during the progression of a complex disease just before the serious
deterioration, not only because of the high complexity of the biological system, but there may be few clues and
apparent changes appearing until the catastrophic critical transition occurs.

Results: In this work, by exploiting the different dynamical features between the normal and pre-disease states, we
present a hidden-Markov-model (HMM) based computational method to identify the pre-disease state and elucidate
the essential mechanisms during the critical transition at the network level. Specifically, by considering the network
variation and regarding that the pre-disease state is the end or shift-point of a stationary Markov process, a
consistence score is proposed to measure the probability that a system is in consistency with the normal state. As
validation, this approach is applied to detect the upcoming critical transition of complex systems based on both the
dataset generated from a simulated network and the rich information provided by high-throughput microarray data.
The effectiveness of our method has been demonstrated by the identification of the pre-disease states for two real
datasets including HCV-induced hepatocellular carcinoma and virus-induced influenza infection.

Conclusion: From dynamical view point, the critical-transition phenomena in many biological processes are of some
generic properties, which can be detected by the established method.

Keywords: Dynamical network biomarker, Hidden Markov process, Pre-disease states

Background

Recently, evidence suggests that the deterioration of many
complex diseases is not necessarily smooth but abrupt,
that is, the sudden change of system state exists widely
during the progression of complex diseases. For exam-
ple, some chronic diseases such as cancer, the malignant
deterioration may arise within a period of short-time pro-
gression, while before such catastrophic transitions the
disease such as chronic inflammation may progress grad-
ually for years of long incubative duration [1-5]. In other
words, during the progression of illness there is a sudden
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critical state transition from a relatively healthy stage to a
seriously diseased stage. For many complex diseases, it is
crucial to detect such critical state transition in advance
so as to prevent or at least get ready for such a catas-
trophic event. However, it is still a challenge work to
signal the upcoming critical deterioration since the state
of the system may show little apparent change before the
tipping point is really reached. This is also the reason
why diagnosis based on traditional biomarkers may fail
to indicate a pre-disease state. A possible approach to
study the warning signal of the sudden deterioration is
to explore and analyze the dynamical features generated
from the early abnormalities in distinct time-series prior
to the emergence of the apparent malignancy. Therefore,
in order to describe the underlying dynamical mechanism
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of complex diseases, their evolutions are often modeled
as time-dependent nonlinear dynamical systems, in which
the abrupt deterioration or qualitative transition is viewed
as the state transition or phase shift at a bifurcation point
[6]. We particularly focus on the complex diseases with
sudden deterioration phases or critical transition points
during their progressions.

It was previously hypothesized that the disease pro-
gression can be modeled into three states (Fig. 1a): (A)
a normal state (or a before-transition stage), represent-
ing a relatively healthy stage with high stability to external
perturbations; (B) a pre-disease state (or a pre-transition
stage), defined as the prelude to catastrophic deteriora-
tion into the disease state, occurring before the immi-
nent phase transition point is reached, therefore, with
low stability due to its dynamical structure; (C) a disease
state (or an after-transition stage), representing a seriously
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deteriorated stage possibly with high stability, because
the system usually finds it difficult to recover or return
to the normal state even after treatment [7-9]. This is
supported by the observations that there is usually sudden
health catastrophic shift during the gradual progression of
many chronic diseases [10—13]. Recently, a concept called
dynamical network biomarker (DNB) was presented to
detect the impending critical transition, or equivalently,
the pre-disease state [14, 15]. The DNB method and its
subsequent modifications have been successfully applied
to real biological and clinical data, and identified the early-
warning signals of the sudden deterioration of several
complex diseases [16—21].

In this work, by exploring the distinct dynamical fea-
tures between the correlation networks respectively gen-
erated in normal and pre-disease state, we developed a
computational method on the basis of the hidden Markov
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Fig. 1 Outline for identifying the pre-disease state by using hidden Markov model. a The progression of a complex disease can be generally divided
into three states, i.e., the normal state, the pre-disease state, and the disease state. Both the normal and disease states are stable with high resilience,
while the pre-disease state, a critical stage, is unstable with low resilience and sensitive to the parameter changes. Thus the biological progression of
diseases in both the normal and disease states are modelled as stationary Markov processes, and that in the pre-disease state is described by a
time-varying Markov process. The detection of the onset of a pre-disease state is equivalent to the identification of the end point of the stationary
Markov process in a normal state. b The three networks stand for the evolution of the system respectively in three states. The thickness of links
stands for the correlation between each pair of nodes. It can be seen that when the system is in the pre-disease state, a few nodes form a special
subnetwork among which the correlations abruptly increase, while the correlations between the subnetwork and other nodes decrease. It is worth
noting that such critical phenomenon appears only in the pre-disease state. € On the basis of hidden Markov model (HMM), we propose a
consistence score (C-score) to measure the dynamical change of system, that is, the C-score curve is expected to be smooth when the system is in a
stationary Markov process, while the C-score drastically decrease when the system is in a time-varying Markov process. Thus, it is possible to detect
the imminent critical transition by identifying the sudden change of the C-score
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model (HMM) for identifying the pre-disease state before
the critical point is really reached during the biological
process of complex diseases. Specifically, it is natural to
model the progression of a biological system in a normal
state as a stationary Markov process, since the normal
state is a stable state and with high resilience. The pre-
disease state is modelled as the time-varying Markov
process due to its unstable nature and high sensitivity to
even small perturbation. The disease state is another sta-
tionary Markov process in view of its high stability (see
Fig. 1a). Identifying the pre-disease state is then equiva-
lent to detecting the end of the stationary Markov process.
Utilizing the time-course data, we presented the computa-
tional method and algorithm on estimating the possibility
of supposed termination of Markov process at each candi-
date sampling point. Specifically, by exploring the critical
phenomena of network structure in dynamics (Fig. 1b),
a consistence score (C-score) was proposed to signal the
upcoming critical transition, i.e., the drastic decrease of
C-score implies the onset of a pre-disease state, in con-
trast to the relatively smooth C-score in either a normal
or disease state (Fig. 1c). To demonstrate the effectiveness
of our method, we applied the algorithm to a simulated
regulation network and two sets of real data, the microar-
ray dataset of HCV-induced dysplasia and hepatocellular
carcinoma (HCC) (GSE6764) and live influenza infec-
tion (humans) caused by H3N2 virus (GSE30550). The
pre-disease states were successfully identified for both
numerical simulation and real datasets, and thus signaling
the imminent critical transitions.

Methods

We first present the theoretical basis, i.e., the dynamical
properties of a complex system near the tipping point, and
then illustrate the preprocessing of real datasets and the
detail algorithm.

Theoretical basis

Disease progression or its biological process can be gen-
erally divided into three states or stages, i.e., (A) the
normal stage, (B) the pre-disease stage, and (C) the dis-
ease stage (Fig. la). The normal stage is a stable state
with high resilience and robustness stage, during which
the state may change slowly and thus is modelled as a
stationary Markov process. The pre-disease stage is unsta-
ble and defined as the limit of the normal stage just
before the occurrence of catastrophic phase shift. It is
sensitive to perturbation including noise or external inter-
ference that leads to the change of system parameters,
thus still reversible to the normal stage given appropriate
interventions. Therefore, the system progression during a
pre-disease stage is considered as a time-varying Markov
process, during which the state-transition probability may
fluctuate from time to time. However, further progression
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of the illness led by persistent effects of perturbation
may trigger a drastic state change into the disease stage,
the other stable state described as the second stationary
Markov process, which is usually difficult to return to the
normal state even with intensive interventions. Hence, it
is crucial to detect the pre-disease state so as to prevent
qualitative deterioration into an irreversible stage. On the
basis of the above settings, detecting the imminent criti-
cal transition is equivalent to identifying the end point (or
switching point) of the stationary Markov process (Fig. 1).
Besides, we investigate the different dynamical features
between the correlation network respectively generated
from normal and pre-disease state, i.e., comparing the
differential links from adjacent time points.

Based on such study design, we carry out theoretical
derivation in the following sections.

Markov process of the network evolution near the critical
point
We describe the theoretical derivation of our computa-
tional method, and introduce the qualitative behaviors
in dynamics of biological variables to characterize the
critical transition. The dynamics for the progression of
complex diseases is very complicated either before or after
the critical transition, and therefore the state equations are
generally constructed in a high-dimensional space with a
large number of variables and parameters. Therefore, it
is a difficult task to construct an accurate mathematical
model describing the dynamical behavior of the system
during the biological process. Thus we aim at developing
a model-free method to detect the critical signal.

We consider a discrete-time dynamical system in
generic form

Z(k 4+ 1) = f(Z(k); P). 1)

where Z(k) = (z1(k),...,z,(k)) is an n-dimensional state
vector or variables at time instant k that represents gene
or protein expressions, while P = (py, ..., ps) is a parame-
ter vector or driving factors that represent slowly changing
factors, e.g., genetic factors (SNP, CNV, etc.) and epige-
netic factors (methylation, acetylation, etc.). f : R” xR® —
R” are generally nonlinear functions. Furthermore, the
following conditions are assumed to be held for system (1).
(1) Z is a fixed point of system (1) such that Z = f(Z; P).
(2) There is a value P, such that one or a pair of eigenval-
Af (Z:Pe)
9Z

ues of the Jacobian matrix ’Z 5 is equal to 1 in the

modulus. (3) When P # P, the eige;walues of (1) are not
always equal to 1 in the modulus. These three conditions
with other transversal conditions imply that the system
undergoes a phase change at Z or a codimension-one
bifurcation when P reaches the threshold P,.

For system (1) near Z, before P reaches P, the sys-
tem is supposed to stay at a stable fixed point Z and
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therefore all the eigenvalues are within (0, 1) in modulus.
The parameter value P, at which the state shift of the sys-
tem occurs is called a bifurcation parameter value, or a
critical transition value.

Now we consider the linearized approximate equations
of Eq. (1). Specifically, by introducing new variables

Y() = 11(8),...,yx(t)) and a full-rank transformation
matrix S = (8;7) uxn satisfying J = SAS7L, ie,
Yt)=S1Z@) - Z). )
we have
Yt+1)=AY(@®) + (). (3)
where ¢ = (¢1,...,¢,) are small Gaussian noise with zero

means. ¢; has a small standard deviation o; for all i, and
covariances k;; = Cov({;, ;).

Without loss of generality, the diagonalized matrix A =
(A1,...,Ay) is assumed to have each A; between 0 and 1.
Among the eigenvalues of A, the largest one (in modulus),
say Ap, first approaches to 1 in modulus when parameter
transition P — P, occurs. The eigenvalue A; character-
izes the system’s rate of change around the fixed point
and is called the dominant eigenvalue. The normal state
corresponds to the period with |1;| < 1, whereas the pre-
disease stage corresponds to the period with |1;| — 1.
Without the loss of generality, the first variable y; in Y
is assumed to be associated with A;. Calculating the sta-
tistical indices, it is clear that the Pearson’s correlation
coefficient (PCC) is of the following expression

PCC( ) Cov(z;, zj)
Zj,2j) = ——————
) 1/Var(zi)Var(z,‘)
sisin L 4 is, s Kk i Sipsi -k
i15j1 l—k% &, ikSjk 1_)% = ikSjm T3 Jom
= =

k#m

2
nog2 n -y 1S Kkk " SiuSimk,
&k SikSimKk Jjk ik SimKkm
PRI = vy wall Bl DS + X
1-x krm
k=1 k  km=1 k= m=1
k#m

Obviously, there are three cases as follows.

e whens; # 0andsj; #0, Mli‘m . PCC(zi,z) — 1;
11—
® whens; #0andsj; =0, I lim PCC(z;,z) — 0;

rl—1
e whens; =0andsj; =0, |Ah|ni1 PCC(z;, 7)) — P,
1

where P;; is a bounded value.

Hence, close to a tipping point, among the original vari-
ables Z = (z1,...,z,) there is a dominant group which is
composed of dominant variables z; = sjyy (k) + -+ +
Sinyn (k) with s;; # 0. It is clear from the above derivation
that the correlation between a pair of dominant variables
increases sharply as the dominant eigenvalue |11] — 1,
while the correlation between a dominant variable and
any other molecule decreases sharply. It also should be
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noted that such critical change of the correlation only
appears when the system approaches to the critical tip-
ping point, or equivalently, the system is in a pre-disease
state. By employing this dynamical feature between a
normal state (when the system is far from the tipping
point) and a pre-disease state (when the system is in
the vicinity of the tipping point), it is possible to detect the
early-warning signal of the critical transition based on the
hidden Markov model.

Identifying the end of Markov process and the algorithm of
HMM-based method

Based on the dynamical characteristics of a complex
biological system and the discussion above, it is natu-
ral to regard the critical transition as the switch from
a stationary Markov process (i.e., the normal state) to a
time-varying Markov process (i.e., the pre-disease state).
Therefore, identifying the pre-disease state is equivalent
to detecting the end point or switch point of a stationary
Markov process. To present the computational method,
we first introduce the following symbols.

¢ Denote the stationary Markov process as M1, and the
time-varying Markov process as Mj.

e Denote the time variable as t, and the progression of
the system along time series as
tef{l,2,.,T—-1T,..}.

e Denote the observed sequence up to time point t as
O = {01, 09, ..., 0t—1, 0¢}, where o represents the
sample set derived at time point t.

e Denote the state sequence up to time point T as
{s1,82, ..., ST—1,8T}, i.e., the state of the system is st at
time point ¢ = T, or equivalently, s; = State(or).

Specifically, it is assumed that a biological system is
initially in the normal state, or equivalently, the progres-
sion of the system is in a stationary Markov process M.
Then for the progression of the system along a time series
{1,2,..,T — 1,T,...}, we propose a consistence score (C-
score) to measure the probability of the system being in
the same stationary Markov process, i.e.,

C(T) =PT(ST =M1 | S1=M1,52 =M1, ...,St_1=M1, 9,5_1, O).
(4)

For each candidate time point ¢ = T, the high value of
C-score presents that the progression of the system at ¢ =
T is consistent with the stationary Markov process M,
i.e., it is still in the stationary Markov process, while the
sudden decrease of C-score illustrates the low consistence
with M; (Fig. 1c), and the progression of the system is no
longer in the stationary Markov process. Therefore, the
abrupt change of C-score identifies the pre-disease state
and indicates the upcoming critical transition.
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From the third time point or sampling stage during a
time series, we regard each point/stage as a candidate
transition point/stage. In order to validate whether a can-
didate time point ¢ = T (T = 3,4...) is the changing or
switching point from the stationary Markov process to the
time-varying Markov process, we carry out an iterative
process as the following two steps.

1. Train a hidden Markov model (HMM)

07_1 = (A, B, ) on the basis of an observed
sequence {01,09,..,07_1}, i.e., the preceding T — 1
sets of samples generated from time points

1,2,..., T — 1. The stationary Markov process in the
normal state is actually described by the trained
HMM.

2. Calculating the C-score based on the observation
{or} and the trained HMM 67 _1. If there is a drastic
decrease of C-score, then the iterative process end
up with ¢ = T being the switching point, at which
the biological system is in the pre-disease stage.
Otherwise go to back to the training step for next
time point ¢t = T + 1.

First, to train an HMM 07_; = (A, B, r) where the sub-
script T — 1 of 6 represents that the HMM is derived
from the training samples up to time point t = T — 1,
we need to estimate a state transition matrix A, an emis-
sion matrix B, and a probability vector for the initial state
7. For a network with # nodes and m links where each
node represents a bio-molecule and each link represents
the correlation between two nodes, suppose at a sampling
time point¢ € {1,2,.., T —1, T, ...} there are w samples for
eachnode z;, i.e., {z} (T —1),z(T —1), .., 2" (T —1)}. Then
through leaving-one-out procedure we obtain w Pearson’s
correlation coefficients (PCCs) between any two nodes
z; and gz, ie., {PCC1(z;, 2), PCCy(2i, 2)), ..., PCCy (2, 7))}
where each PCCy(z;, zj) (k = 1,2, ..., w) is calculated based
on w— 1 samples for z; and z;. To train A and B based on an
unsupervised learning procedure, we have the following
steps.

A. Estimate the distribution of each link at a for-
mer time point (7 —2) Under the assumption that
each correlation coefficient follows Gaussian distribu-
tion, we obtain the estimation of the distribution for link
PCC(z;, zj)T—2 between two nodes z; and z; at time point
T — 2, i.e, based on the w correlation coefficients, we
estimate the mean ui(7T — 2) and standard deviation
ok (T — 2) for each link PCC(z;, zj) 7—2. Then we have the
distribution N (14 (T — 2), 02(T — 2)).

B. Determine the consistence vector for each variable
at (T — 1) Attime point ¢ = (T — 1), we have m links for
the network, i.e., linky (T — 1) = PCC(z;,zj)7—1 between
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two nodes z; and z; with k = 1,2,..,m, and for each
link there are w samples through leave-one-out proce-
dure, i, link(T — 1) = {link}, link}, ..., link}’}. Let an
index Ly (T — 1) € {0,1} describe whether a correlation
link, is consistent comparing with its former distribution
N(ui(T —2), o,f(T — 2)), that is, whether the appearance
of link at time 7" — 1 is with large probability in the dis-
tribution N (ux (T — 2), o]f(T — 2)). For each correlation
linky (T — 1) at time point T — 1, we have

Tt 0, if linky €[ g (T = 2) — 0§ (T — 2), 11 (T—2) + 03 (T — 2)] .
k 1, if linky € (=00, 1 (T—2) — 04 (T—2)) U (g (T ~2) + 03 (T — 2), +00)

(5)

Obviously, Ly (T — 1) = 0 represents that the correla-
tion link; (T — 1) is consistent with the former distribution
N(ui(T = 2),0(T — 2)), while x,(T — 1) = 1 repre-
sents that the correlation link; (T — 1) is inconsistent with
the former distribution N (14 (T — 2),62(T — 2)). Thus,
for each sample of correlation (linki (T — 1), link;(T —
1),..,link;, (T — 1)), the vector L°(t — 1) = (L}(T —
1), .., L;,(T — 1)) is the consistence vector at time 7' — 1.

Let #0(T — 1) and #1(T — 1) respectively denote the
number of value 0 and that of value 1 in an consistence
vector L°(T — 1) at T — 1. Obviously, #0(T — 1) + #1(T —
1) = m, where m is the number of links in the network,
among which there are #0(T — 1) variables consistent
with the former distribution N (ui(T — 2),0]3(T —2)),
while #1(T — 1) variables inconsistent with the former
distribution N (15 (T — 2), 62(T — 2)).

According to above settings, we actually transform the
observed correlation sample set or_; = (link;(T —
1), linko(T — 1), ..., link,,(T — 1)) into the correspond-
ing consistence vector or_; = LNT = 1), L¥(T -
1), .., L"(T — 1)).

C. Training the HMM at T — 1 In this step, we need
to identify the state transition matrix A and the emis-
sion matrix B at (T — 1), that is, training the HMM
07-1 = (A(T—1),B(T—1), ) on the basis of an observed
sequence {01, 02, ..., 0T_1}.

There are two possible states Wy and W] in time point
t — 1. Then, we calculate the possibilities for each possible
state transition and thus obtain the state transition matrix
A(T — 1) = (aji(T — 1))2x2, where

aiy(T —1) = P (s7—1 = M;|st—2 = M;), (6)

with i,j € {1,2}.

Besides, for the emission matrix B(T — 1) = (by(T —
1))2x(m+1) Where bjk(T — 1) is the probability of the
kth possible observation under the assumption that the
system state is W; at time ¢ — 1, i.e,,

b (T —1) =P (#1(T — 1) = k|s7—1 = M), (7)
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wherej € {1,2}and k € {0, 1, 2, ..., m}. Obviously, there are
m—+1 possible observable cases for any correlation sample
att —1,i.e,case #1(T — 1) = kwith k € {0,1,2,...,m}. In
the case of an m-link biological network, case #1(T' —1) =
k reflects that there are k links differentially expressed in
one observation (i.e., one sample) at T — 1 comparing with
their former expressions.

The initial state distribution 7 = {7, 73} is defined at
time T — 2, where

7 = P(sy—p = M;), (8)

withi € {1,2}.

According to Baum-Welch algorithm, we build 4, B, and
7 based on the training set {01,03,..,07_1}, i.e., sample
sets up to time 7' — 1. The training process at time 7' — 1
includes the following three steps.

e [Initialization For # = 0, set initial values for ag-, b}(,)k,

and 7, we have the HMM 6° = (A%, B%, =0).

e Update For & = 1, 2, ..., we have the update for ag«,

b;}(, and nih by recursion
T—1 T—-1
Y &) m(ZT y kMk)
ho_ t=1 h =141 -1)= h .
al] - T—1 ’ b}k - T—1 ) n; = yl(l)r
2 ve(d) > ve(k)
=1 =1
)
where
P(s; =M; O|6p)
) = P(s; = M; | O, 6,) =
(D) (st il p) P(O[6,)
(10)
and

P(si—1 = M, s¢ = Mj, O16,)
P(016,)

&(i,j) = P (st—1 = My, se = Mj| O, 6) =
(11)

with ,j € {0, 1}. For (/) and &, /), the HMM 6,
used in the prior knowledge is that updated from the
preceding step. For example, at the first iterative step,
the HMM 6, is 6° = (A%, B°, 7°) based on the initial
values. The observation sequence used in the prior
knowledge is O = {01, 02, ..., 071}

e Ending When /1 = H, i.e,, the Hth-updating step, the
recursion is terminated. Then

off = (A", B, x"). (12)
The HMM used in the testing process follows
Or_1 =0/

Under the assumption that the transition point is at 7,
or in other word, time point T is hypothesized as the
end point of a stationary Markov process of the normal
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stage (see Fig. 1). Thus the onset of a pre-disease stage
is the end of the stationary Markov process described as
the trained HMM 67_;. Therefore, at testing step in a
candidate transition point 7, we calculate the consistence
score, i.e., C-score, based on the trained HMM 67_; =
(A(T — 1), B(T — 1), 7).

According to the Markov chain, the C-score is

Pr(sy =My |st—1=May, ...,s2 = My,81 = My,01-1, O)
= Pr(sy = My |s7-1 = My,07-1, O)
_ P(sy—1 =My, s =My |07_1, O)
B P(sy—1 = M1 |07-1, O)

The numerator

Qr-1(s7-1 = M1) a1 bk
P(s7—1 = My, s7 = M1 |07-1, O) = - LUy

> Qr_1(s¢—1 = M;) ajibj
=

(13)
and the denominator

Qr-1(s7-1 = My)

2 )
Qr-1(s7-1 = M;)

-1

P(sy_1 =M |07-1, O) =
j
(14)

where a11 and a;; is from the state transition matrix A =
(aij)2x2 in Eq. (6), b1x and by is from the emission matrix
B = (bjx)2ax(@m+1) in Eq. (7) while k = #1(T) repre-
sents that for the sample set o1 there are k variables with
consistence index 1 in average, Q is the forward proba-
bility calculated based on standard forward algorithm. It
should be noticed that in Egs. (13) and (14) the backward
probability is set to be 1, since samples o711, - - are not
available when T is the testing time point.

According to above settings, given the HMM 071_;, the
calculation of HMM probability P at a candidate time
point T only relies on the samples from 7' — 1 and T.
Obtaining the C-score P; for every candidate time point,
the time point arg[ max(P;)]i=1p,. 7, is the transition
point.

Results

Identifying the pre-transition state for a seven-node
network

To demonstrate the effectiveness of the computational
method and the consistence score, we used a seven-node
gene regulatory network (Fig. 2a) to show the detec-
tion of early-warning signals near a critical point. These
types of gene regulatory networks are often used to
study transcription, translation, diffusion, and transloca-
tion processes that affect gene regulatory activities [22].
The following seven differential equations represent the
gene regulation of seven genes in a network where gene
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inter regulation between biomolecules. The network model described by a stochastic equation set is presented in Result. The tipping point is at a
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However, while the parameter g approaches the critical value g. = 0(g = 0.005), the distribution is quite different, i.e., the ratio of 0.9-PCC-links
increases considerably. The simulations were performed in MATLAB(R2013a) using the Euler-Maruyama integration method with the Ito calculus

regulation is represented in a Michaelis-Menten form as
the following Eq. (15), with the exception of the degrada-
tion rates, which are linearly proportional to the concen-
trations of the corresponding bio-molecules.

2— 2
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2 2
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dZSt“) = 5(11771?@) — 2 26(t) + 46(8),
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(15)

where g is a scalar control parameter and ¢;(¢) (i =
1,2,..,10) are Gaussian noises with zero means and
covariances k;; = Cov({;, ). z; (i = 1,..,10) represent
the concentrations of mRNA-i. In Eq.(15), the degrada-

tion rates of mRNAs are (#, @, 1, g ;, 2,2 —) There

is a stable equilibrium point Z = (21,%2..,210) =
(0,0,0,0,0,0,0,0,0,0). The differential equations Eq. (15)
can be transformed into the difference equations Z(k +
1) = f(Z(k),P) using Euler scheme with a small time
interval 1. It is clear that there are seven distinct eigen-
values (0.6711,0.45,0.37,0.30, 0.24, 0.20, 0.13) for the lin-
earized system. Thus, the equilibrium point Z is stable
when ¢ € (0,1]. There is a critical value g, = 0. We
aim to detect early warning signals that indicate the crit-
ical transition as a control parameter g approaches the
critical value 0 from ¢ > 0. Applying the HMM-based
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approach to the system, we obtain the C-score curve as in
Fig. 2b.

The numerical simulation shows that a drastic boost of
the C-score, i.e., HMM probability, indicates the upcom-
ing critical transition at parameter ¢ = 0 (Fig. 2b). To
demonstrate the different dynamics of the system between
the normal state and the pre-disease state, we illustrate
the underlying frequency of links with different correla-
tion values (Fig. 2c), from which it can be seen that there
is a significant change in the frequency distribution of the
links when the system is near a tipping point.

Predicting critical transitions in real datasets

We applied the HMM-based method in three real exper-
imental datasets, i.e., the microarray data for HCV-
induced dysplasia and hepatocellular carcinoma (HCC)
(GSE6764) and live influenza infection (humans) caused
by H3N2 virus (GSE30550).

We first present the application on HCV-induced HCC
dataset, in which there are 7 sampling stages, i.e., cir-
rhosis, low-grade dysplastic stage, high-grade dysplastic
stage, very early HCC stage, early HCC stage, advanced
HCC stage and very advanced HCC stage. In these sam-
pling stages, gene expression profiles of 75 tissue sam-
ples were analyzed representing the stepwise carcinogenic
process from pre-neoplastic lesions (cirrhosis and dys-
plasia) to HCC, including four neoplastic stages (“very
early HCC" to metastatic tumors). According to the pre-
sented method above, we regard that each sampling stage
is a candidate transition point, i.e., the end point of a
stationary Markov process in the normal state. To val-
idate whether a candidate point is the transition one,
there are the following four data-specific steps. First, to
decrease the computational complexity, at each candidate
point we selected top 5 % differential-expression genes
through the rank of P-values from student t-test. Sec-
ond, a network was constructed by mapping these selected
genes to human protein-protein interaction (PPI) network
from STRING (http://string-db.org/). Third, the normal-
ized correlation values, i.e.,, PCCs, were calculated for
the corresponding links at each stage. Fourth, at each
candidate point, the C-score is then calculated (Fig. 3a).
Clearly, there are seven probability curves respectively
corresponding to seven groups of genes selected in dis-
tinct candidate points, i.e., each group of genes is differen-
tially expressed at one time point. Among the probability
curves in Fig. 3a, the red one presents the C-score calcu-
lated based on the network constructed at the “very early
HCC" stage (the 4th sampling stage), from which it can
be seen that at the 4th sampling stage the C-score shows
the minimum probability which presents the least consis-
tence of the system with the preceding state. This is in
coincided with the previous result [9] and the observed
biological phenotypes [23]. Thus the abrupt decrease of
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the C-score reflects the presence of a pre-disease state and
indicates the imminent critical transition into a disease
state (HCC stage). To further carry out functional anal-
ysis and elucidate the relation between top differential-
expression genes and dysfunctional pathways, in Fig. 3¢
we also employed the clustering analysis through correla-
tion at the identified pre-disease state (“very early HCC"
stage), that is, we selected a clustering group of genes
related to the differentially-expressed links (with P-value
1.91E-03 and around 3-fold change comparing with the
control group) for further functional analysis.

Figure 4a presents the dynamical evolution in the gene
network based on the human molecular network with
their functional interactions (protein-protein interactions
and TF-target regulations). The selected gene group in
Fig. 3c is placed at the top corner of each network. Clearly,
at “very early HCC" stage the selected gene group are
strongly correlated with wild fluctuation, which provides
a significant signal from a network viewpoint and indi-
cates the pre-disease state just before the deterioration
into HCC, while other genes show no significant sig-
nal. Clearly, when the deterioration is impending, these
selected genes form a special subnetwork, which actually
guarantees the successful application of the HMM-based
method, that is, this subnetwork exhibits the most sig-
nificant changes in the links when the system is near a
critical transition point. It can also be seen that, oppo-
sitely, neither the whole gene network nor the selected
differential-expression genes present a signal before or
after the transition, which shows the sensitivity of the
C-score at the pre-disease state. In fact, the C-score
reveals the existence of the pre-disease state, which, how-
ever, cannot be shown by any single bio-molecule. There-
fore, the benefits brought by the HMM-based method in
signaling the pre-disease state make the identification and
management of high-risk cases more effective.

The functional analysis shows that some of the selected
genes are highly relevant to the corresponding complex
diseases, which validates the effectiveness of our method
in a way. In the HCC study, many genes included in
the top significant subnetwork relate to the response to
HCYV infection, especially the activation of the immune
system and the dysfunctions associated with basic cell
metabolism of hosts [23-25]. In the enrichment analy-
sis, the most significant enriched pathways are related to
the function of cell growth and cell metabolism, such as
transcriptional misregulation in cancer, the Wnt signaling
pathway and purine metabolism. The enriched pathways
in cancer and hepatitis provide evidence that most of the
genes related to differentially-expressed links may relate
to the deterioration into HCC. These functional analy-
sis implies the involvement of the differential-expression
genes and links in the dysfunctional pathways and other
HCV-related biological processes.
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Figures 3b, 3d and 4b shows another application of
C-score in the dataset of H3N2 virus-induced influenza
infection, in which there are 16 sampling time points
over the whole study period (132 hours). Nine sub-
jects were diagnosed as having influenza infection or
corresponding clinic symptoms 45 hours after the expo-
sure to influenza viruses [26]. The specific procedure of
data processing, gene filtering and computation are sim-
ilar to the previous application. It can be seen that the
C-score curves based on the human PPI network for
live influenza infection in Fig. 3b, with eight probability
curves respectively corresponding to the first eight can-
didate points. Among the probability curves in Fig. 3b,
the red curve presents the C-score based on the top
5 % differential-expression genes at 29 hr, while the
orange one shows that calculated at 36 hr, the adjacent
time point after 29 hr. Both these two curves show a

sudden decrease of consistence probability during the
progression, which implies that the onset of pre-disease
state is around a period spanned from 29 to 36 hr, i.e.,
the upcoming deterioration into a disease state might be
after 36 hr, which is in coincidence with the fact that
the early symptoms of influenza infection arises after 45
hr. Furthermore, to show the significance of the selected
genes whose collective dynamics results in the significant
changes in the links and thus generate the earliest signal
at 29 hr, in Fig. 3d we carried out the clustering analy-
sis based on the correlation values at 29 hr. We see that
the genes in the selected group show a large fold change
and a significant P-value in average. For these genes, the
enrichment analysis shows that the most significant path-
way is influenza A pathway, which shows the involvement
of the selected genes in the biological processes of
infection.



Chen and Li BMC Systems Biology 2016, 10(Suppl 2):50

Page 148 of 258

U “

High-grade dysplastic
(Sampling stage 3)

Low-grade dysplastic
(Sampling stage 2)

when the system is near the critical transition point

Scaled SD of node

0

Fig. 4 Dynamical changes in the network for the progression of two diseases. To validate the results from HMM-based method, we show the
dynamical evolution of the network structure for the two diseases. For each network, the color of nodes represents the fluctuation of expression,
and the thickness of links stands for the correlation between each pair of nodes. a For HCC, the figures show the dynamical changes of the human
molecular network (3425 genes and 5826 edges) at 4 sampling stages, i.e., low-grade dysplastic stage, high-grade dysplastic stage, very-early HCC
stage, early HCC stage. The subnetwork composed by selected 230 genes (from Fig. 3c) is placed at the top corner. It can be seen that at the
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influenza infection, it shows the dynamical changes of the human molecular network (3839 genes and 7281 edges) at 4 sampling time points, i.e,, 5
hr, 12 hr, 29 hr, 60 hr. The subnetwork composed by selected 180 genes (from Fig. 3d) is placed at the top corner. Obviously, at 29 hr the structure of
the selected subnetwork exhibits the most significant change, which suggests the pre-disease stage around 29 hr and presents a warning signal

for the imminent deterioration into the influenza infection. It is worth noting that the critical phenomena in the network structure only appear
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Figure 4b presents the dynamical evolution of the gene
network respectively at 5, 12, 29, 60 hr for live influenza
infection. The selected gene group in Fig. 3d is placed in
the top corner. It can been seen that at 29 hr the structure
of the subnetwork of the selected genes changes signifi-
cantly and thus signals the upcoming deterioration into a
disease state which is also in coincidence with the clinic
observation.

Therefore, our application results are in coincidence
with the experimental observation and successfully
detect the early-warning signal of the impending critical
transition.

Discussion and conclusions

Complex diseases significantly damage the health of
people all over the world. Detecting the early-warning
signal of the sudden deterioration provides an oppor-
tunity to interrupt and prevent the continuing costly

cycle of managing these diseases and their complications.
Although it is crucial to detect the pre-disease state so as
to prevent the qualitative deterioration by taking appro-
priate intervention actions, it is a challenging task to
reliably identify the pre-disease state because the state of
the system may show neither apparent change nor clear
phenomenon before this critical transition during the dis-
ease progression. This is also the reason why diagnosis
based on traditional biomarkers may fail to indicate a
pre-disease state.

In this work, by detecting the dynamical change of links
in a network, we presented a computational method and
corresponding algorithm based on HMM to measure the
dynamical difference of the system progression, and thus
identify the imminent critical transition. It is worth noting
that this method aims to detect the early-warning signal
generating from the pre-disease state (or pre-transition
state), rather than to find the indication of disease state
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(or after-transition state) in which the qualitative deterio-
ration has already taken place.

We applied our method to the identification of the
pre-disease state based on a simulated dataset and two
microarray datasets, which demonstrate the sensitivity
and effectiveness of our method. For both two diseases, we
constructed bio-molecular networks (Fig. 4) to gauge the
dynamical regulation among genes at different sampling
point along a time-course progression. Both the func-
tional and enrichment analyses validate the computational
results. Therefore, the HMM-based method provides a
computational possibility of prying into the underlying
mechanism of biological processes of the disease progres-
sion, and thus may help to achieve the timely intervention.
Our dynamic network analysis also suggests, in regard to
the diseases, to focus on the specific pre-disease states to
probe the in situ external perturbation (such as environ-
ment changes) preceding the development into a badly ill
stage. This may lead to not only insights of external envi-
ronment interactions, but also an effective time window
for novel intervention or therapeutic strategies in spe-
cific diseases. The main difference between our work and
previous ones is that rather than screen out some vari-
ables (genes or proteins), the proposed method mainly
focuses on the direct identification of critical transition
point, by calculating and comparing the consistence prob-
ability of each candidate end point of the Markov model
in the normal state. Therefore, the accuracy of HMM-
based approach is not limited by the selection of features.
This is the main value in the potential applications of the
HMM-based method from a network point of view.

There are limitations of this work. First, the validity
of the identified pre-disease state and the accurate result
needs further supports from animal experiments or clin-
ical studies. Second, the method is insensitive when the
correlations are not differentially expressed. Although this
work is merely a step towards detecting the early-warning
signals of critical transition during disease progression
and the algorithm is expected to be improved in both sen-
sitive and accurate ways, it opens a window of opportunity
for the applicable approach to the early-warning system
of critical transition during the biological processes of
complex diseases.
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