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Abstract

Background: Gene regulatory networks with dynamics characterized by multiple stable states underlie cell
fate-decisions. Quantitative models that can link molecular-level knowledge of gene regulation to a global
understanding of network dynamics have the potential to guide cell-reprogramming strategies. Networks are
often modeled by the stochastic Chemical Master Equation, but methods for systematic identification of key
properties of the global dynamics are currently lacking.

Results: The method identifies the number, phenotypes, and lifetimes of long-lived states for a set of common
gene regulatory network models. Application of transition path theory to the constructed Markov State Model

decomposes global dynamics into a set of dominant transition paths and associated relative probabilities for

stochastic state-switching.

Conclusions: In this proof-of-concept study, we found that the Markov State Model provides a general framework for
analyzing and visualizing stochastic multistability and state-transitions in gene networks. Our results suggest that this
framework—adopted from the field of atomistic Molecular Dynamics—can be a useful tool for quantitative Systems

Biology at the network scale.
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Background

Gene regulatory networks (GRNs) often have dynamics
characterized by multiple attractor states. This multi-
stability is thought to underlie cell fate-decisions. Ac-
cording to this view, each attractor state accessible to a
gene network corresponds to a particular pattern of
gene expression, i.e., a cell phenotype. Bistable network
motifs with two possible outcomes have been linked to
binary cell fate-decisions, including the lysis/lysogeny
decision of bacteriophage lambda [1], the maturation of
frog oocytes [2] and a cascade of branch-point deci-
sions in mammalian cell development (reviewed in [3]).
Multistable networks with three or more attractors
have been proposed to govern diverse cell fate-
decisions in tumorigenesis [4], stem cell differentiation
and reprogramming [5-7], and helper T cell differenti-
ation [8]. More generally, the concept of a rugged,
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high-dimensional epigenetic landscape connecting every
possible cell type has emerged [9-11]. Quantitative
models that can link molecular-level knowledge of gene
regulation to a global understanding of network behavior
have the potential to guide rational cell-reprogramming
strategies. As such, there has been growing interest in the
development of theory and computational methods to
analyze global dynamics of multistable gene regulatory
networks.

Gene expression is inherently stochastic [1, 12-14],
and fluctuations in expression levels can measurably
impact cell phenotypes and behavior. Numerous
examples of stochastic phenotype transitions have
been discovered, which diversify otherwise identical
cell-populations. This spontaneous state-switching has
been found to promote survival of microorganisms or
cancer cells in fluctuating environments [15-17],
prime cells to follow alternate developmental fates in
higher eukaryotes [18, 19], and generate sustained het-
erogeneity (mosaicism) in a homeostatic mammalian
cell population [20]. These findings have motivated
theoretical studies of stochastic state-switching in
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gene networks, which have shed light on network pa-
rameters and topologies that promote the stability (or
instability) of a given network state [20]. Characteriz-
ing the global stability of states accessible to a network
is akin to quantification of the “potential energy” land-
scape of a network. Particularly, with the advent of
stem-cell reprogramming techniques, there has been
renewed interest in a quantitative reinterpretation of
Waddington’s classic epigenetic landscape [21], in
terms of underlying regulatory mechanisms [10, 22].

A number of mathematical frameworks exist for
modeling and analysis of stochastic gene regulatory
network (GRN) dynamics (reviewed in [23, 24]), in-
cluding probabilistic Boolean Networks, Stochastic
Differential Equations, and stochastic biochemical re-
action networks (i.e., Chemical Master Equations). Of
these, the Chemical Master Equation (CME) approach
is the most complete, in that it treats all biomolecules
in the system as discrete entities, fully accounts for
stochasticity due to molecular-level fluctuations, and
propagates dynamics according to chemical rate laws.
The CME is analytically intractable for GRNs except
in some simplified model systems [25-29], but trajec-
tories can be simulated by Monte Carlo methods such
as the Stochastic Simulation Algorithm (SSA) [30].
Alternatively, methods for reducing the dimensionality
of the CME, enabling numerical approximation of
network behavior by matrix methods, have been de-
veloped [31-35].

Analysis of multistability and global dynamics of
discrete, stochastic GRN models remains challenging.
In this study, we define multistability in stochastic sys-
tems as the existence of multiple peaks in the stationary
probability distribution. In such systems, the GRN dy-
namics can be considered somewhat analogous to that
of a particle in a multi-well potential [3]. (Peaks in the
probability distribution—or alternatively, basins in the
potential—may or may not correspond to stable fixed
points of a corresponding ODE model, as discussed in
more detail further on.) Stochastic multistability is
often assessed by plotting multi-peaked steady-state
probability distributions (obtained either from long sto-
chastic simulations [5, 36, 37] or from approximate
CME solutions [35, 38, 39]), projected onto one or two
user-specified system coordinates. However, even small
networks generally have more than two dimensions
along which dynamics may be projected, meaning that
inspection of steady-state distributions for a given pro-
jection may underestimate multistability in a network.
For example, the state-space of a GRN may comprise
different activity-states of promoters and regulatory
sites on DNA, the copy-number of mRNA transcripts
and encoded proteins, and the activity- or multimer-
states of multiple regulatory molecules or proteins.
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Furthermore, while steady-state distributions give a glo-
bal view of system behavior, they do not directly yield
dynamic information of interest, such as the lifetimes
of attractor states.

In this paper, we present an approach for analyzing
multistable dynamics in stochastic GRNs based on a
spectral clustering method widely applied in Molecular
Dynamics [40, 41]. The output of the approach is a
Markov State Model (MSM)—a coarse-grained model
of system dynamics, in which a large number of system
states (i.e., “microstates”) is clustered into a small num-
ber of metastable (that is, relatively long-lived) “macro-
states”, together with the conditional probabilities for
transitioning from one macrostate to another on a
given timescale. The MSM approach identifies clusters
based on separation of timescales, i.e., systems with
multistability exhibit relatively fast transitions among
microstates within basins and relatively slow inter-basin
transitions. By neglecting fast transitions, the size of
the system is vastly reduced. Based on its utility for
visualization and analysis of Molecular Dynamics, the
potential application of the MSM framework to diverse
dynamical systems, including biochemical networks,
has been discussed [42].

Biochemical reaction networks present an unex-
plored opportunity for the MSM approach. Herein, we
applied the method to small GRN motifs and analyzed
their global dynamics using two frameworks: the qua-
sipotential landscape (based on the log-transformed
stationary probability distribution), and the MSM. The
MSM approach distilled network dynamics down to
the essential stationary and dynamic properties, in-
cluding the number and identities of stable pheno-
types encoded by the network, the global probability
of the network to adopt a given phenotype, and the
likelihoods of all possible stochastic phenotype transi-
tions. The method revealed the existence of network
states and processes not readily apparent from inspec-
tion of quasipotential landscapes. Our results demon-
strate how MSMs can yield insight into regulation of
cell phenotype stability and reprogramming. Further-
more, our results suggest that, by delivering systematic
coarse-graining of high-dimensional (i.e,, many-
species) dynamics, MSMs could find more general
applications in Systems Biology, such as in signal-
transduction, evolution, and population dynamics. In
our implementation, the MSM framework is applied
to the CME, thus mapping all enumerated molecular
states onto long-lived system macrostates. We antici-
pate that the method could in future studies be used
to analyze more complex systems where enumeration
of the CME is intractable, if implemented in combin-
ation with stochastic simulation or other model reduc-
tion approaches.



Chu et al. BMIC Systems Biology (2017) 11:14

Methods

Gene regulatory network motifs

We studied two common GRN motifs that are thought
to control cell fate-decisions. The full lists of reactions
and associated rate parameters for each network are
given in the Additional file 1. Both motifs consist of two
mutually-inhibiting genes, denoted by A and B. In the
Exclusive Toggle Switch (ETS) motif, each gene encodes
a transcription factor protein; the protein forms homodi-
mers, which are capable of binding to the promoter of
the competing gene, thereby repressing its expression.
One DNA-promoter region controls the expression of
both genes; when a repressor is bound, it excludes the
possibility of binding by the repressor encoded by the
competing gene. Therefore, the promoter can exist in
three possible binding configurations, Pyg, P1o, and Py,
denoting the unbound, a,-bound, or b,-bound states,
respectively. Production of new protein molecules (in-
cluding all processes involved in transcription, transla-
tion, and protein synthesis) occurs at a constant rate,
which depends on the state of the promoter. When the
gene is repressed, the encoded protein is produced at a
low rate, denoted gy. When the gene is not repressed,
protein is produced at a high rate, g;. For example, when
the promoter state is Py the a protein is produced at
rate g;, and the b protein is produced at gy, When the
promoter is unbound, neither gene is repressed, causing
both proteins to be produced at rate g;.

In the Mutual Inhibition/Self-Activation (MISA)
motif, each homodimeric transcription factor also acti-
vates its own expression, in addition to repressing the
other gene. The A and B genes are controlled by sep-
arate promoters, and each promoter can be bound by
repressor and activator simultaneously. Therefore, the
A-promoter can exist in four possible states, Agg, A1o,
Ao1 and A;;, denoting unbound, aj-activator bound,
by-repressor bound, and both transcription factors
bound, respectively (and similarly for the B-promoter).
Proteins are produced at rate g; only when the activa-
tor is bound and the repressor is unbound. For
example, the A;q promoter state allows a protein to be
produced at g;. The other three A promoter states result
in a protein being produced at rate g,. Similarly, the rate
of b protein production depends only on the binding con-
figuration of the B-promoter. In both the ETS and MISA
networks, protein dimerization is assumed to occur simul-
taneously with binding to DNA. All rate parameters are
given in Additional file 1: Tables S1 and S2.

Chemical master equation

The stochastic dynamics are modeled by the discrete,
Markovian Chemical Master Equation, which gives the
time-evolution of the probability to observe the system
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in a given state over time. In vector—matrix form, the
CME can be written

dp(x,t) _
T = I(P(X, t)

where p(x, ) is the probability over the system state-
space at time ¢, and K is the reaction rate-matrix. The
off-diagonal elements Kj; give the time-independent rate
of transitioning from state x; to x;, and the diagonal ele-
ments are given by Kj;=-%;.,K;. We assume a well-
mixed system of reacting species, and the state of the
system is fully specified by x € N*, a state-vector con-
taining the positive-integer values of all S molecular
species/configurations. We hereon denote these state-
vectors as “microstates” of the system. In the ETS net-
work, x = [na, np, P,), where n, is the copy-number of a
molecules (protein monomers expressed by gene A, and
similar for B), and P,, indexes the promoter binding-
configuration. In the MISA network, x = [14, np, Ay Bpal
which lists the protein copy numbers and promoter
configuration-states associated with both genes.

The reaction rate matrix KeR™ ¥ is built from the
stochastic reaction propensities (Additional file 1: Eq. 1),
for some choice of enumeration over the state-space
with N reachable microstates. In general, if a system of S
molecular species has a maximum copy number per spe-
cies of M.y, then N ~#,,,°. To enumerate the system
state-space, we neglect microstates with protein copy-
numbers larger than a threshold value, which exceeds
the maximum steady-state gene expression rate, gi/k,
(where g; is the maximum production rate of protein
and k is the degradation rate), as these states are rarely
reached. This truncation of the state-space introduces a
small approximation error, which we calculate using the
Finite State Projection method [31] (Additional file 1:
Figure S1).

Stochastic simulations

Stochastic simulations were performed according to the
SSA method, implemented by the software package
StochKit2 [43].

Quasipotential landscape

The steady-state probability m(x) over N microstates is
obtained from K as the normalized eigenvector corre-
sponding to the zero-eigenvalue, satisfying Km(x)=0
[44]. Quasipotential landscapes were obtained from m(x)
using a Boltzmann definition, U(x) = - In(m(x)) [22]. All
matrix calculations were performed with MATLAB [45].

Markov State Models: mathematical background
The last 15 years have seen continual progress in develop-
ment of theory, algorithms, and software implementing
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the MSM framework. We briefly summarize the theoret-
ical background here; the reader is referred to other works
(e.g., [41, 46—49]) for more details.

The MSM is a highly coarse-grained projection of
system dynamics over N microstates onto a reduced
space of selected size C (generally, C« N). The C
states in the projected dynamics are constructed by
clustering together microstates that experience rela-
tively fast transitions among them. The C clusters, also
called “almost invariant aggregates” [48], are hereon
denoted “macrostates”.

The MSM approach makes use of Robust Perron Clus-
ter Analysis (PCCA+), a spectral clustering algorithm
that takes as input a row-stochastic transition matrix,
T(z) which gives the conditional probability for the sys-
tem to transition between each pair of microstates
within a given lagtime 7. The lagtime determines the
time-resolution of the model, as expressed by the tran-
sition matrix. Off-diagonal elements T}; give the prob-
ability of finding the system in microstate j at time ¢
+ 1, given that it was in microstate i at time ¢. Diagonal
elements Tj; give the conditional probability of again
finding the system in microstate i at time ¢+ 7, and
thus rows sum to 1. T(7) is directly obtained from the
reaction rate matrix by [50]:

T(r) = exp(zK"),

(where exp denotes the matrix exponential). The evolu-
tion of the probability over discrete intervals of 1 is given
by the Chapman-Kolmogorov equation,

pr(x,t +kr) = pT(x,£)T¢ (7).

For an ergodic system (i.e., any state in the system can
be reached from any other state in finite time), T(zr) will
have one largest eigenvalue, the Perron root, A, = 1. The
stationary probability is then given by the normalized
left-eigenvector corresponding to the Perron eigenvalue,

' (x)T(r) = n' (x).

If the system exhibits multistability, then the dynamics
can be approximately separated into fast and slow pro-
cesses, with fast transitions occurring between micro-
states belonging to the same metastable macrostate, and
slow transitions carrying the system from one macro-
state to another. Then T(7) is nearly decomposable, and
will exhibit an almost block-diagonal structure (for an
appropriate ordering of microstates) with C nearly
uncoupled blocks. In this case, the eigenvalue spectrum
of T(r) shows a cluster of C eigenvalues near A;=1,
denoting C slow processes (including the stationary
process), and for i > C, 1; < A, corresponding to rapidly
decaying processes. The system timescales can be
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computed from the eigenvalue spectrum according to
t;=—1/In |A(7)|-

The PCCA+ algorithm obtains fuzzy membership vec-
tors x = (X1, X2 - xc) € RV, which assigns microstates
ie{l,..,N} to macrostates je{l,...,C} according to
grades (i.e, probabilities) of membership, x;(i) € [0, 1].
The membership vectors satisfy the linear transformation:

X=yB

Where w=[y1, ..., ¢c] is the Nx C matrix constructed
from the C dominant right-eigenvectors of T(z), and B is
a non-singular matrix that transforms the dominant ei-
genvectors into membership vectors. The coarse-grained
C x C transition matrix T(7)eR“*C (ie., the Markov
State Model) is then obtained as the projection of T(z)
onto the C sets by:

T(r) =D x"DT(r)x

where D is the diagonal matrix obtained from the
stationary probability vector, D = diag(m;, ..., 7y). The
coarse-grained probability 7(x) is obtained by m(x)
= x"n(x), and D = diag(77y,...,,7¢c). The elements of
the linear transformation matrix B are obtained by an
optimization procedure, with “metastability” of the re-
sultant coarse-grained projection as the objective func-
tion to be maximized. The trace of the coarse-grained
transition matrix, trace[T] has been taken to be the
measure of metastability, because it expresses the prob-
abilities for the system to remain in metastable states
over the lagtime (i.e., maximizing the sum over the di-
agonal elements). The original PCCA method [48] used
the sign structure of the eigenvectors to identify almost
invariant aggregates (instead of this optimization pro-
cedure), and more recent work has identified an alter-
native objective function [49]. The results of this paper
were generated using the PCCA+ implementation of
MSMBuilder2 [51].

Construction of Markov State Models and pathway
decomposition

The PCCA+ algorithm generates a fuzzy discretization.
We convert fuzzy values into a so-called “crisp” partition-
ing of N states into C clusters, which entirely partitions
the space with no overlap, by assigning )(fmp (i) {0, 1}.
That is, ;"*(i) = 1 if the jth element of the row vector x(i)
is maximal, and O otherwise. Transition probabilities are
estimated over the C coarse-grained sets by summing over
the fluxes, or equivalently:

T(z) = D 'x'DT (1),

where T(7)eR“*C is the coarse-grained Markov State
Model and D is the diagonal matrix obtained from the
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vy TIN).
The coarse-grained probability 7 (x) is obtained by 7
(x) = x"n(x), and D = diag(71, ..., , 77c).

The Markov State Model is visualized using the
PyEmma 2 plotting module [46], where the magnitude
of the transition probabilities and steady state probabil-
ities are represented by the thickness of the arrows and
size of the circles, respectively.

Upon construction of the Markov State Model,
transition-path theory [52-54] was applied in order to
compute an ensemble of transition paths connecting

stationary probability vector, D = diag(my,

two states of interest, along with their relative prob-
abilities. This was achieved by applying a pathway de-
composition algorithm adapted from Noe, et al. in a
study of protein folding pathways [54] (details in
Additional file 1). A summary of the workflow used
in generating the results of this paper is included in
the Additional file 1: Supplement S5.
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Results

Eigenvalues and Eigenvectors of the stochastic transition
matrix reveal slow dynamics in gene networks

In order to explore the utility of the MSM approach for
analyzing global dynamics of gene networks, we studied
common motifs that control lineage decisions. The
MISA network motif (Fig. 1a, Additional file 1: Supplement
S1, and Methods) has been the subject of previous theoret-
ical studies and is thought to appear in a wide variety of
binary fate-decisions [5, 55, 56]. In the network model,
the A/B gene pair represents known antagonistic pairs
such as Oct4/Cdx2, PU.1/Gatal, and GATA3/T-bet,
which control lineage decisions in embryonic stem
cells, common myeloid progenitors, and naive T-helper
cells, respectively [9, 57, 58]. In general, a particular cell
lineage will be associated with a phenotype in which
one of the genes is expressed at a high level, and the
other is expressed at a low (repressed) level. The MISA
network as an ODE model has been reported to have
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up to four stable fixed-points corresponding to the A/B
gene pair expression combinations Lo/Lo, Lo/Hi, Hi/
Lo, and Hi/Hi. We computed the probability and quasi-
potential landscape of the MISA network. For a sym-
metric system with sufficiently balanced rates of
activator and repressor binding and unbinding from
DNA, four peaks (or basins) can be distinguished in the
steady state probability (quasipotential) landscape, plot-
ted as a function of protein a copy number vs. protein
b copy number (Fig. 1a, b). Quasipotentials computed
from m(x), the Perron eigenvector of the transition
matrix (see Methods) and from a long stochastic simu-
lation showed agreement (Additional file 1: Figure S2).
The Markov State Model framework has been applied
in studies of protein folding, where dynamics occurs
over rugged energetic landscapes characterized by mul-
tiple long-lived states (reviewed in [40, 41]). Therefore,
we reasoned that the approach could be useful for study-
ing global dynamics of multistable GRNs. The method
identifies the slowest system processes based on the
dominant eigenvalues and eigenvectors of the stochastic
transition matrix, T(z), which gives the probability of the
system to transition from every possible initial state to
every possible destination state within lagtime 7 (with 7
having units of k! and k being the rate of protein deg-
radation). Inspection of the eigenvalue spectrum of
T(r=5) for the MISA network in Fig. 1b reveals four
eigenvalues near 1 followed by a gap, indicating four
system processes that are slow on this timescale. De-
creasing 7 to 0.5 reveals a step-structure in the eigen-
value spectrum, suggesting a hierarchy of system
timescales. The timescales are related to the eigen-
values according to ¢; = - 7/ln [1,(z)|. The Perron eigen-
value A; =1 is associated with the stationary (infinite
time) process, and the lifetimes ¢, through t5 are com-
puted to be {95.6, 49.4, 30.8, 2.6} (in units of k= b.
Thus, the first gap in the eigenvalue spectrum arises
from a more than ten-fold separation in timescales be-
tween f4 and 5. The original PCCA method [48] used
the sign structure of the eigenvectors to assign cluster
memberships. Plotting the left-eigenvectors corre-
sponding to the four dominant eigenvalues in the
MISA network is instructive: the stationary landscape
is obtained from the first left-eigenvector (¢, = m(x)),
which is positive over all microstates, while the
opposite-sign regions in ¢, ¢3, P4 reveal the nature of
the slow processes (Fig. 1d). An eigenvector with re-
gions of opposite sign corresponds to an exchange
between those two regions (in both directions, since ei-
genvectors are sign-interchangeable). For example, the
slowest process corresponds to exchange between the
a>b and b>a regions of state-space, i.e., switching
between B-gene dominant and A-gene-dominant ex-
pression states. Eigenvectors ¢s; and ¢, show that
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somewhat faster timescales are associated with ex-
change in and out of the Lo/Lo and Hi/Hi basins.

The Markov State Model approach identifies multistability
in GRNs

Reduced models of the MISA network

The MSM framework utilizes a clustering algorithm
known as PCCA+ (see Methods and Additional file 1) to
assign every microstate in the system to a macrostate
(i.e., a cluster of microstates) based on the slow system
processes identified by the eigenvectors and eigenvalues
of T(r). Applying the PCCA+ algorithm to the MISA
network for the parameter set of Fig. 1 resulted in a
mapping from N=15,376 (31 x 31 x 4 x 4) microstates
onto C=4 macrostates. The N microstates were first
enumerated by accounting for all possible system config-
urations with 0 <a <30 and 0 < b < 30. This enumeration
assumes a negligible probability for the system to ever ex-
ceed 30 copies of either protein, which introduces a small
approximation error of 1E - 5 (details in Additional file 1:
Figure S1). Because the promoters of each gene can take
four possible configurations—that is, two binding sites
(for the repressor and activator) that can be either
bound or unbound—a total of 16 gene configuration
states are possible, giving N = 15,376 enumerated mi-
crostates. For this parameter set, the highest probabil-
ity densities within the four macrostates obtained
correspond closely to the visible peaks (basins) in the
probability (quasipotential) landscape. This can be seen
by the ellipsoids in Fig. 2a, which show the highest
probability-density regions of each macrostate (accord-
ing to the stationary probability), projected onto the
protein subspace. The average expression levels of pro-
teins in each macrostate indicate the four distinct cell phe-
notypes (Lo/Lo, Lo/Hi, Hi/Lo, Hi/Hi). The complete
microstate-to-macrostate mapping is detailed in
Additional file 1: Figure S3 and Table S3. In this par-
ameter regime, since the protein binding and unbind-
ing rates are slow relative to protein production and
degradation, the promoter configurations determine the
macrostate assignment exactly. That is, the algorithm par-
titions microstates according to the promoter configur-
ation, rather than the protein copy number. Each of the
four macrostates contains microstates from four distinct
promoter configurations out of the possible sixteen, along
with microstates with all possible protein copy number
(a/b) combinations. A representative gene promoter
configuration for each macrostate (i.e., the configur-
ation contributing the most probability density to each
macrostate) is shown schematically (Fig. 2b).

Parameter-dependence of landscapes and MSMs
To determine whether the MSM approach can robustly
identify gene network macrostates, we applied it over a
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range of network parameters by varying the repressor
unbinding rate f, (all parameters defined in Additional
file 1: Table S1). Increasing f, relative to other network
parameters modulates the quasipotential landscape by
increasing the probability of the Hi/Hi phenotype, in
which both genes express at a high level simultaneously
(Fig. 3b). This occurs as a result of weakened repressive
interactions, since the lifetimes of repressor occupancy
on promoters are shortened when f, is increased. The
eigenvalue spectra show a corresponding shift: when f, =
1E - 3, four dominant eigenvalues are present. When f,
is increased to f,=1, the largest visible gap in the
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eigenvalue spectrum shifts to occur after the first eigen-
value (1=1), indicating loss of multistability on the
timescale of 7 (here, 7=5) (Fig. 3a). Correspondingly, for
this parameter set, the landscape shows only a single vis-
ible Hi/Hi basin.

The PCCA+ algorithm seeks C long-lived macrostates,
where C is user-specified. We constructed Markov State
Models for the MISA network over varying f,, specifying
four macrostates. The MSMs are shown graphically in
Fig. 3d. The sizes of the circles are proportional to the
relative steady-state probability of the macrostate, and
the thickness of the directed edges are proportional to
the relative transition probability within 7. In agreement
with the landscapes, the MSMs over this parameter re-
gime show increasing probability of the Hi/Hi state, as a
result of an increasing ratio of transition probability
“into” versus “out of” the Hi/Hi state. The locations of
the clusters in the state-space (according to 50% (of the
total) stationary probability contours) do not change ap-
preciably. The choice of lagtime 7 sets the timescale on
which metastability is defined in the system. However, in
practice, the PCCA+ seeks an assignment of C clusters
regardless of whether C metastable states exist in the
system on the r timescale, and the resulting aggregated
macrostates are generally invariant to 7. Thus, for f, =1,
the algorithm locates four macrostates, although the
(low-probability) Hi/Lo, Lo/Lo, and Lo/Hi macrostates
are likely to experience transitions away, into the Hi/Hi
macrostate, within 7. These low-probability states appear
in the landscape as shoulders on the outskirts of the
Hi/Hi basin. Overall, Fig. 3 demonstrates that, for this
parameter regime, the quasipotential landscape and the
MSM vyield similar information on the global system
dynamics in terms of the number and locations of long-
lived states, and their relative probabilities as a function
of the unbinding rate parameter f, The MSM further
provides quantitative information on the probabilities
(and thus timescales) of transitioning between each pair
of macrostates.

MSM identifies purely stochastic multistability

Multistability in gene networks is often analyzed within
an ordinary differential equation (ODE) framework, by
graphical analysis of isoclines and phase portraits, or by
linear stability analysis [4, 8]. ODE models of gene net-
works treat molecular copy numbers (i.e., proteins,
mRNAs) as continuous variables and apply a quasi-
steady-state approximation to neglect explicit binding/
unbinding of proteins to DNA. This approximation is
valid in the so-called “adiabatic” limit, where binding
and unbinding of regulatory proteins to DNA is fast,
relative to protein production and degradation. Previous
studies have shown that such ODE models can give rise
to landscape structures that are qualitatively different
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from those of their corresponding discrete, stochastic
networks. For example, multistability in an ODE model
of the genetic toggle switch requires cooperativity—i.e.,
multimers of proteins must act as regulators of gene
expression [59]. However, it was found that monomer
repressors are sufficient to give bistability in a stochastic
biochemical model [55, 60]. We compared the dynamics
of the monomer ETS network (shown schematically in
Fig. 4a) as determined by analysis of the ODEs, along
with the corresponding stochastic quasipotential land-
scape and the MSM. In a small-number regime, the
ODEs predict monostability (Fig. 4c), while the stochas-
tic landscape shows tristability—that is, three basins cor-
responding to the Hi/Lo, Hi/Hi, and Lo/Hi expressing
phenotypes (Fig. 4d) (The dominant eigenvectors are
shown in Additional file 1: Figure S4). This type of dis-
crepancy has been shown to occur in systems with small

number effects, i.e., extinction at the boundaries [55] or
slow transitions between expression states [29].

The MSM approach identifies three metastable macro-
states for the monomer ETS in this parameter regime, as
seen in the eigenvalue spectrum, which shows a gap
after the third index. The reduced Markov State Model
constructed for this network thus reduces the system
from N =7,803 (51 x 51 x 3) microstates to C = 3 macro-
states (Fig. 4b), corresponding to the same Hi/Lo, Hi/Hi,
and Lo/Hi metastable phenotypes seen in the quasipo-
tential landscape. Figure 4 demonstrates that the MSM
approach can accurately identify purely stochastic multi-
stability in systems where continuous models predict
only a single stable fixed-point steady state. Similar re-
sults were found for a self-regulating, single-gene net-
work (Additional file 1: Figure S5 and Table S4). This
network, which has been solved analytically, gives rise to
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a bimodal or monomodal stationary distribution depend-
ing on the protein binding/unbinding rates [28, 29, 61].

Analyzing global gene network dynamics with the
Markov State Model

MSM provides good approximation to relaxation dynamics
from a given initial configuration

Figures 1, 2, 3 and 4 demonstrate the utility of the MSM
approach for analyzing stationary properties of net-
works—that is, for identifying the number and locations
of multiple long-lived states. Additionally, the MSM can
be used to make dynamic predictions about transitions
among macrostates. Dynamics for either the “full” transi-
tion matrix (with all system states enumerated up to a
maximum protein copy number) or reduced transition
matrix (i.e, the MSM) is propagated according to the
Chapman-Kolmogorov equation (see Methods and
Additional file 1). We sought to determine the accuracy
of the dynamic predictions obtained from the MSM.
Applying the methods proposed by Prinz, et al. ([47])
(details in Additional file 1), we compared the dynamics
propagated by the fully enumerated transition matrix
T(z), which is then projected onto the coarse-grained
macrostates, to the dynamics of the coarse-grained sys-
tem propagated by T(z) (i.e., the MSM). We thus com-
puted the error in dynamics of relaxation out of a given
initial system configuration. The system relaxation from
a given initial microstate can also be computed by run-
ning a large number of brute force SSA simulations. Re-
laxation dynamics for the full, brute-force, and reduced
MSM methods, applied to the MISA with f, = 1E -2, all
show good agreement (Fig. 5a, b, and c). The error com-
puted between the reduced MSM vs. full dynamics (ie.,
'i"(r) vs T(7)), is maximally 7.8E - 3, varies over short
times, and decreases continuously after time ¢ =140. Al-
ternatively, the error of the MSM can be quantified by
comparing the autocorrelation functions of the MSM

and brute force simulation [50, 62]. In Additional file 1:
Figure S6, we show that the derived autocorrelation
functions of the MSM and brute force, and the relax-
ation constants 7,, which describes the amount of time
to reach equilibrium, are close in value (z, = 1E3, for the
MSM, and 7, = 1.1E3 for the brute force). Overall, these
results demonstrate that the most accurate predictions
of the coarse-grained MSM can be obtained on long
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timescales, but dynamic approximations with reasonable
accuracy can also be obtained for short timescales.

Parameter-dependence of MSM error

The accuracy of the MSM dynamic predictions depends
on whether inter-macrostate transitions can be treated as
memory-less hops. Previous theoretical studies of gene
network dynamics found that the height of the barrier
separating phenotypic states, and the state-switching time
associated with overcoming the barrier, depends on the
rate parameters governing DNA-binding by the protein
regulators [5, 6, 55, 63]. We reasoned that a larger time-
scale separation between intra- and inter-basin transitions
(corresponding to a larger barrier height separating ba-
sins) should result in higher accuracy of the MSM ap-
proximation. Thus, we hypothesized that the accuracy of
the MSM dynamic predictions should depend on the
DNA-binding and unbinding rate parameters. We demon-
strated this using the dimeric ETS motif, by computing
the error of the MSM approximation for a range of re-
pressor unbinding rates f. We varied the binding kinetics
without changing the overall relative strength of repres-
sion, by varying f together with the repressor binding
rate 4, to maintain a constant binding equilibrium

(Xeq :% = 100) . By varying f and % in this way over

eight orders of magnitude, we found that the barrier
height and timescale of the slowest system process (t)
had a non-monotonic dependence on the binding/unbind-
ing parameters. Thus, the fastest inter-phenotype switch-
ing was observed in the regime with intermediate binding
kinetics, in agreement with previous work [5]. The system
also exhibits a shift from three visible basins in the quasi-
potential landscape in the small f regime to two basins in
the large f regime. We performed clustering by selecting
C =2 (dashed lines, Fig. 6) and C =3 clusters (solid lines,
Fig. 6), and computed the total error over all choices of
system initialization, as well as the error associated with
relaxation from a particular system microstate. In general,
we find that the 3-state MSM approximation is more
accurate than the 2-state partitioning. The 3-state MSM
dynamic predictions are highly accurate when the DNA-
binding/unbinding kinetics is slow. As such, in this regime
the Markovian assumption of memory-less transitions
between the three phenotypic states is most accurate. As
hypothesized, the accuracy of the MSM approximation is
lowest (highest error) when the lifetime £, is shortest
(intermediate regime, f= 1), and the error decreases mod-
estly with further increase in f (i.e., increase in £,).

Decomposition of state-transition pathways in gene
networks using the MSM framework

Quantitative models of gene network dynamics can shed
light on transition paths connecting phenotypic states.
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The MSM approach coupled with transition path theory
[52, 53, 64] enables decomposition of all major pathways
linking initial and final macrostates of interest. This type
of pathway decomposition has previously shed light on
mechanisms of protein folding [54]. We demonstrate
this pathway decomposition on the MISA network, by
computing the transition paths linking the polarized A-
dominant (Hi/Lo) and B-dominant (Lo/Hi) phenotypes.
Multiple alternative pathways linking these phenotypes
are possible: for the 4-state coarse-graining, the system
can alternatively transit through the Hi/Hi or Lo/Lo pheno-
types when undergoing a stochastic state-transition from
one polarized phenotype to the other. Not all possible paths
are enumerated since only transitions with net positive
fluxes are considered (see Additional file 1: Equation S18).
The hierarchy of pathway probabilities for successful transi-
tions depends on the kinetic rate parameters (Fig. 7a). It
could be tempting to intuit pathway intermediates based
on visible basins in the quasipotential landscape. How-
ever, we found that the steady-state probability of an
intermediate macrostate (i.e., the Hi/Hi or Lo/Lo states)
does not accurately predict if it serves as a pathway
intermediate for successful transitions, because param-
eter regimes are possible in which successful transitions
are likely to transition through intermediates with high
potential/low probability (Fig. 7c). This occurs because
the relative probability of transiting through one inter-
mediate macrostate versus another is based on the balance
of probabilities for entering and exiting the intermediate:
intermediate states that can be easily reached—but not
easily exited—as a result of stochastic fluctuations can act
as “trap” states. Therefore, it is shown that the pathway
probability cannot be inferred from the steady state prob-
ability of the intermediates alone.

MSMs can be constructed with different resolutions of
coarse-graining

The eigenvalue spectrum of the MISA network shows a
step-structure, with nearly constant eigenvalue clusters
separated by gaps. These multiple spectral gaps suggest
a hierarchy of dynamical processes on separate time-
scales. A convenient feature of the MSM framework is
that it can build coarse-grained models with different
levels of resolution by PCCA+, in order to explore such
hierarchical processes. We applied the MSM framework
to a MISA network with very slow rates of DNA-binding
and unbinding (f,=1E-4, h,=1E-6), comparing the
macrostates obtained from selecting C =4 versus C= 16
clusters. For T(r=1), a prominent gap occurs in the
eigenvalue spectrum between 1,4 and 1;;, corresponding
to an almost 30-fold separation of timescales between
t16=27.8 and t;7 =0.99 (Fig. 8a). Applying PCCA+ with
C =16 clusters uncovered a 16-macrostate network with
four highly-interconnected subnetworks consisting of
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four states each (Fig. 8c). The identities of the sixteen
macrostates showed an exact correspondence to the six-
teen possible A/B promoter binding configurations. This
correspondence reflects the fact that, in the slow bind-
ing/unbinding, so-called non-adiabatic regime [65], the
slow network dynamics are completely determined by
unbinding and binding events that take the system from
one promoter configuration macrostate to another, while
all fluctuations in protein copy number occur on much
faster timescales.

Each subnetwork in the MSM constructed with C =16
corresponds to a single macrostate in the MSM con-
structed with C = 4. Thus, in the C =4 MSM, four differ-
ent promoter configurations are lumped together in a
single macrostate, and dynamics of transitions among

them is neglected. Counterintuitively, the locations of
the C =4 macrostates do not correspond directly to the
four basins visible in the quasipotential landscape
(Fig. 8b, d). Instead, the clusters combine distinct phe-
notypes—e.g., the red macrostate combines the A/B
Lo/Lo and Lo/Hi phenotypes, because it includes the
promoter configurations Ag; Big and A;; Big (corre-
sponding to Lo/Hi expression) and Ay Bgo and
A11 Boo (corresponding to Lo/Lo expression) (Fig. 8b,
Additional file 1: Table S5 and Figure S7). This result
demonstrates that the barriers visible in the quasipo-
tential landscape do not reflect the slowest timescales
in the system. This occurs because of the loss of infor-
mation inherent to visualizing global dynamics via the
quasipotential landscape, which often projects
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dynamics onto two system coordinates. In this case, hallmark of nonequilibrium dynamical systems. For ex-
projecting onto the protein a and protein b copy num- ample, the most probable forward and reverse paths
bers loses information about the sixteen promoter both transit three intermediates, but have only one
configurations, obscuring the fact that barrier-crossing intermediate (macrostate 5) in common (Fig. 8c and
transitions can occur faster than some within-basin  Additional file 1: Tables S6-S7). Thus, the complete
transitions. Plotting a time trajectory of brute force process of transitioning away from macrostate 1,
SSA simulations for this network supports the findings through macrostate 11, and returning to 1 maps a dy-
from the MSM: the dynamics shows frequent transi- namic cycle.

tions within subnetworks, and less-frequent transi-

tions between subnetworks, indicating the same Discussion

hierarchy of system dynamics as was revealed by the Our application of the MSM method to representative

4- and 16-state MSMs (Fig. 8e). GRN motifs yielded dynamic insights with potential bio-

logical significance. Decomposition of transition path-
Transition path decomposition reveals nonequilibrium ways revealed that stochastic state-transitions between
dynamics phenotypic states can occur via multiple alternative

Mapping the most probable paths forward and backward  routes. Preference of the network to transition with
between macrostate “1” (promoter configuration: Ag;Bgo)  higher likelihood through one particular pathway
and macrostate “11” (promoter configuration: AgoBy;) depended on the stability of intermediate macrostates, in
revealed that a number of alternative transition paths a manner not directly intuitive from the steady-state
are accessible to the network, and the paths typically  probability landscape. The existence of “spurious attrac-
transit between three and five intermediate macrostates.  tors”, or metastable intermediates that act as trap states
The decomposition shows three paths with significant to hinder stem cell reprogramming, has been discussed
(i.e., >15%) probability and 12 distinct paths with >1%  previously [11] as a general explanation for the existence
probability (for both forward and backward transitions, of partially reprogrammed cells. By analogy, MSMs con-
Additional file 1: Tables S3-S4). The pathway decom-  structed in protein folding studies predict an ensemble
position also reveals a great deal of irreversibility in the of folding pathways, as well as the existence of misfolded
forward and reverse transition paths, which is a trap states that reduce folding speed [54]. Our results
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Fig. 8 Hierarchical dynamics revealed by MSM analysis of the MISA network in the slow DNA-binding/unbinding parameter regime. All network
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paths through the network are highlighted. Red path: most probable forward transition path from macrostate 1 to macrostate 11. Blue path: most
probable reverse path from 11 to 1. d State transition graph for the 4-macrostate MSM. e Brute force SSA simulation of the MISA network over
time. Trajectory is plotted according to the 16-macrostate (promoter configuration) indexing as in panel C and Additional file 1: Table S5. Colored
panels reflect the four subnetworks/C =4 macrostates. Orange inset: zoomed in trajectory segment, showing a switching event between the red
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suggest that multiple partially reprogrammed cell types
could be accessible from a single initial cell state. Suc-
cessful phenotype-transitions can occur predominantly
through high-potential (unstable)—and thus difficult to
observe experimentally—intermediate cell types. In
future applications to specific gene GRNs, the MSM
approach could predict a complex map of cell-
reprogramming pathways, and thus potentially suggest
combinations of targets towards improved safety and ef-
ficiency of reprogramming protocols. In synthetic biol-
ogy applications, the method could be potentially used
to optimize biochemical parameters in the design of

synthetic gene circuits. For example, it may be desirable
to realize synthetic switches with a very crisp on/off
macrostate partitioning (i.e., lacking spurious intermedi-
ate states) to give a highly digital response.

Our study revealed that the two-gene MISA network
can exhibit complex dynamic phenomena, involving a
large number of metastable macrostates (up to 16), cy-
cles and hierarchical dynamics, which can be conveni-
ently visualized using the MSM. The quasipotential
landscape has been used recently as a means of visualiz-
ing global dynamics and assessing locations and relative
stabilities of phenotypic states of interest, in a manner
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that is quantitative (deriving strictly from underlying
gene regulatory interactions), rather than qualitative or
metaphorical (as was the case for the original Wadding-
ton epigenetic landscape) [21]. However, our study high-
lights the potential difficulty of interpreting global
network dynamics based solely on the steady-state land-
scape, which is often projected onto one or two degrees
of freedom. We found that phenotypically identical cell
states—that is, network states marked by identical pat-
terns of protein expression, inhabiting the same position
in the projected landscape—can be separated by kinetic
barriers, experiencing slow inter-conversion due to slow
timescales for update to the epigenetic state (or pro-
moter binding occupancy). Conversely, phenotypically
distinct states marked by different levels of protein ex-
pression can be kinetically linked, experiencing rela-
tively rapid inter-conversion. This type of stochastic
inter-conversion is thought to occur in embryonic stem
cells—for example, fluctuations in expression of the
Nanog gene have been proposed to play a role in main-
taining pluripotency [66, 67]. The hierarchical dynamics
revealed by our study supports the idea that the pheno-
type of a cell could be more appropriately defined by
dynamic patterns of regulator or marker expression
levels [67], rather than on single-timepoint levels alone.
This was seen in the 16-state MSM for the MISA net-
work, where a given expression pattern (e.g., the Lo/Lo
peak) comprised multiple macrostates from separate
dynamic subnetworks.

Complex, high-dimensional dynamical systems call for
systematic methods of coarse-graining (or dimensional-
ity reduction), for analysis of mechanisms and extraction
of information that can be compared with experimental
results. In the field of Molecular Dynamics, the com-
plexity of, e.g., macromolecular conformational change-
s—involving thousands of atomic degrees of freedom
and multiple dynamic intermediates—has driven the de-
velopment of automated methods for prediction and
analysis of essential system dynamics from simulations
[68, 69]. In that field, coarse-graining has been achieved
based on a variety of so-called geometric (structural) or,
alternatively, kinetic clustering methods [70, 71]. Noe, et
al. [71], discussed that geometric (or structure-based)
coarse-graining methods can fail to produce an accurate
description of system dynamics when structurally similar
molecular conformations are separated by large energy
barriers or, conversely, when dissimilar structures are
connected by fast transitions, as they found in a study of
polypeptide folding dynamics. In such cases, kinetic (i.e.,
separation-of-timescale-based) coarse-graining methods
such as the MSM approach are more appropriate. Our
application of the MSMs to GRNs demonstrates how
similar complex dynamic phenomena can manifest at
the “network”-scale.
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The challenge of solving the CME due to the curse-of-
dimensionality is well known. The MSM approach is re-
lated to other projection-based model reduction
methods that aim to reduce the computational burden
of solving the CME directly by projecting the rate (or
transition) matrix onto a smaller subspace or aggregated
state-space with fewer degrees of freedom. Such ap-
proaches include the Finite State Projection algorithm
[31], and methods based on Krylov subspaces [33, 72,
73], sparse-gridding [74], and separation-of-timescales
[34, 74, 75] (related timescale-separation-based reduc-
tion methods have also been developed to analyze
complex ODE models of biochemical networks, e.g.,
[76, 77]). The MSM is distinct from other timescale-
based model reductions in that, rather than partition-
ing the system into categories of slow versus fast reac-
tions [78] or species [34], or basing categories on
physical intuition [75], it systematically groups micro-
states in such a way that maximizes metastability of
aggregated states [40]. The practical benefit of this ap-
proach is its capacity to describe a system compactly in
terms of long-lived, perhaps experimentally observable,
states. Another important distinction between the
MSM approach and other CME model reduction
methods is that its primary end-goal is not to solve the
CME per se. Rather, the emphasis in studies employing
MSMs has generally been on gaining mechanistic,
physical, or experimentally-relevant insights to com-
plex system dynamics [79-81]. As such, the approach
does not optimally balance the tradeoff between com-
putational expense versus quantitative accuracy of the
solution, as other methods have done explicitly [82].
Instead, the method can be considered to balance the
tradeoff between accuracy and “human-interpretabil-
ity”, where decreasing the number of macrostates pre-
served in the MSM coarse-graining tends to favor the
latter over the former.

A potential drawback of the workflow presented in
this paper is that it requires an enumeration of the sys-
tem state-space in order to construct the biochemical
rate matrix K. Networks of increased complexity or
molecular copy numbers will lead to prohibitively large
matrix sizes. Here, we restricted our study to model
systems with a relatively small number of reachable mi-
crostates (i.e., ~10* microstates permitted tractable
computations on desktop computers with MATLAB
[45]). However, it is important to point out that in typ-
ical applications of the MSM framework in Molecular
Dynamics, the computational complexity of the coarse-
graining procedure is largely decoupled from the full
dimensionality of the system state-space, because it is
often applied as part of a suite of tools for post-
processing atomistic simulation data. An advantage of
the MSM approach is its use of the stochastic transition
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matrix T(r) (rather than K), which can be estimated
from simulations by sampling transition counts be-
tween designated regions of state-space in trajector-
ies of length 7 [47]. Systems of increased complexity/
dimensionality are generally more accessible to simu-
lations, because the size of the state-space is auto-
matically restricted to those states visited within
finite-length simulations. Furthermore, in macromol-
ecular systems with high-dimensional configuration
spaces, clustering algorithms have been applied in
order to obtain a tractable partitioning of state-
space, prior to application of the MSM coarse-
graining [47]. Typically, a large number of sampled
configurations (10*-10”) is lumped into a more tract-
able number of ‘microstates’ (102-10%), and the MSM
framework subsequently identifies ~ tens of metasta-
ble macrostates. A recent study of G-protein-coupled
receptor activation showcased the high complexity of
systems that can be analyzed by MSMs: 250,000
sampled molecular structures were projected to
coarse-grained MSMs with either 3000 or 10 states
[83]. Based on these previous studies in Molecular
Dynamics, we anticipate that the MSM framework
will likewise prove useful in analysis of highly com-
plex biochemical networks, particularly when coupled
with stochastic simulations and thus bypassing the
need for enumerating the CME. In ongoing work
(Tse, et al,, in preparation), we find that the MSM
approach interfaces well with SSA simulations of
biochemical network dynamics, combined with en-
hanced sampling techniques [84-86]. We anticipate
that the approach could also potentially interface
with other numerical approximation techniques that
have been developed in recent years for reduction of
the CME.

A potential challenge for the application of the PCCA +
—based spectral clustering method to biochemical net-
works is that, as open systems, biochemical networks
generally do not obey detailed balance. This means that
the stochastic transition matrices do not have the prop-
erty of irreversibility, which was originally taken to be a
requirement for application of the PCCA algorithm
[48]. However, later work by Roblitz et al. [49] found
that the PCCA+ method also delivers an optimal clus-
tering for irreversible systems. In this study, we found
that the PCCA+ method could determine appropriate
clusters in GRNs, and could furthermore uncover non-
equilibrium cycles, as seen in the irreversibility (distinct
forward and backward) of transition paths in the 16-
state system. Newer methods of MSM building, which
are specifically designed to treat nonequilibrium dy-
namical systems, have appeared recently [87]. It may
prove fruitful to explore these alternative methods in
order to identify the most appropriate, general MSM
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framework for application to various biochemical net-
works. On a separate note, another possible area for fu-
ture study could be the relationship between the MSM
framework, specifically its estimation of switching times
in multistable networks, to the results from other the-
oretical approaches to GRNs, such as Large Deviation
Theory [88] or Wentzel-Kramers-Brillouin theory [89].

Conclusions

In this work, we present a method for analyzing multi-
stability and global state-switching dynamics in gene net-
works modeled by stochastic chemical kinetics, using the
MSM framework. We found that the approach is able to:
(1) identify the number and identities of long-lived
phenotypic-states, or network “macrostates”, (2) predict
the steady-state probabilities of all macrostates along with
probabilities of transitioning to other macrostates on a
given timescale, and (3) decompose global dynamics into
a set of dominant transition pathways and their associated
relative probabilities, linking two system states of interest.
Because the method is based on the discrete-space, sto-
chastic transition matrix, it correctly identified stochastic
multistability where a continuum model failed to find
multiple steady states. The quantitative accuracy of the
dynamics propagated by the coarse-grained MSM was
highest in a parameter regime with slow DNA-binding
and unbinding kinetics, indicating that in GRNs the as-
sumption of memory-less hopping among a small number
of macrostates is most valid in this regime. By projecting
dynamics encompassing a large state-space onto a tract-
able number of macrostates, the MSMs revealed complex
dynamic phenomena in GRNs, including hierarchical
dynamics, nonequilibrium cycles, and alternative possible
routes for phenotypic state-transitions. The ability to un-
ravel these processes using the MSM framework can shed
light on regulatory mechanisms that govern cell pheno-
type stability, and inform experimental reprogramming
strategies. The MSM provides an intuitive representation
of complex biological dynamics operating over multiple
timescales, which in turn can provide the key to decoding
biological mechanisms. Overall, our results demonstrate
that the MSM framework—which has been generally
applied thus far in the context of molecular dynamics
via atomistic simulations—can be a useful tool for
visualization and analysis of complex, multistable dy-
namics in gene networks, and in biochemical reaction
networks more generally.
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