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Abstract

Background: Physical and functional interplays between genes or proteins have important biological meaning
for cellular functions. Some efforts have been made to construct weighted gene association meta-networks by
integrating multiple biological resources, where the weight indicates the confidence of the interaction. However,
it is found that these existing human gene association networks share only quite limited overlapped interactions,

suggesting their incompleteness and noise.

Results: Here we proposed a workflow to construct a weighted human gene association network using information of
six existing networks, including two weighted specific PPI networks and four gene association meta-networks. We
applied link prediction algorithm to predict possible missing links of the networks, cross-validation approach to refine
each network and finally integrated the refined networks to get the final integrated network.

Conclusions: The common information among the refined networks increases notably, suggesting their higher
reliability. Our final integrated network owns much more links than most of the original networks, meanwhile its links
still keep high functional relevance. Being used as background network in a case study of disease gene prediction, the
final integrated network presents good performance, implying its reliability and application significance. Our workflow
could be insightful for integrating and refining existing gene association data.
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Background

In cells, genes and their products usually perform par-
ticular cellular task and carry out their biological func-
tions by interacting or communicating with each other
[1]. Such interactions can be expressed with molecular
networks [2] with different meaning at different levels.
Specifically, at genomic level, gene regulatory networks
are collections of interactions between transcription
factors and their target genes in the process of regulat-
ing the gene expression levels of mRNA and proteins
[3, 4]; while the co-expression relationships between
genes can be described as gene co-expression networks
[5]. At proteomic level, protein-protein interaction
(PPI) networks [6, 7] represent the physical interactions
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between proteins. Generally, all of such functional in-
terplays between genes can be integrated to construct a
gene association network [8].

These years, high-throughput biological experiments
have produced huge number of data concerning inter-
actions between genes and their products, such as
gene regulatory, gene co-expression, protein complex,
and PPI data, based on which we can build gene asso-
ciation networks. However, there are two problems in
the current experimental data. First, the known data is
far from complete [9]. For example, it is estimated that
experimentally confirmed human protein-protein in-
teractions account for only 0.3% of the actual existence
[10]. Second, high-throughput experiments usually
produce large amount of false-positive and false-
negative data [11].

To overcome the problem of data insufficiency, some
research combined several databases to construct a lar-
ger network. For example, PPI data in the Entrez Gene

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-017-0398-0&domain=pdf
http://orcid.org/0000-0002-2439-2876
mailto:zhaojanne@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Yang et al. BMC Systems Biology (2017) 11:12

database of NCBI is a combination of PPI data from dif-
ferent resources, such as HPRD [12], BioGrid [13] and
BIND [14]. A human signaling network was constructed
through combining human pathway data sources such
as BioCarta [15], CST Signaling pathways [16], Pathway
Interaction database (PID) [17], iHOP [18], and manual
curation of human signaling network data from litera-
ture [19, 20]. This method can partly solve the problem
of data scarcity. On the other hand, some studies applied
link prediction [21] approach to de-noise the PPI net-
works [22, 23]. For each pair of nodes, this class of
methods first utilized topology of the original PPI net-
work to calculate a score which quantifies the existence
likelihood of a link between the two nodes. Then they
ranked all pairs in descending order of their scores, took
out the same number of pairs with the highest ranks as
in the original network, and linked these node pairs to
reconstruct a new network. This new network was con-
sidered as a de-noised PPI network of the original one.
However, such methods discarded quite large part of ori-
ginal links and added many new links. It is unavoidable
that some discarded could be real links while some new
are false links.

Another class of works uses computational approach,
such as log likelihood ratio and naive Bayesian network,
to integrate heterogeneous biological evidence which is
possible to reflect associations between genes [24-29].
The functional associations between genes are predicted
and their confidence scores are obtained according to
biological features of the gene pairs and the relationship
with gold-standard positive and negative datasets. In this
way, a meta-database that maps all interaction evidence
onto a common set of genes is set up. Then we can con-
struct a weighted gene association meta-network from
such a database, where the link weight is the confidence
score. This method, to some extent, can solve both of
the problems mentioned above. However, in this frame-
work of integrating multiple data resources, different re-
search chose different data resources, gold-standard
datasets and conducted prediction from scratch, not
using results of other research. Although we can see
some overlaps of data resources used in different study,
their results show great difference. For example, our
earlier study found that three existing weighted human
gene association networks constructed in such way have
almost same node sets, but they contain only a very
small amount of common links [30].

In this work, based on existing networks, we propose
a workflow to construct a weighted human gene associ-
ation network that includes more links and more precise
information. We focus our study on two weighted spe-
cific PPI networks (hsaPPI and Corum) and four gene
association meta-networks (HumanNet, String, FunCoup
and FLN). First, for each of the six networks, we apply
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weighted link prediction algorithms to predict its pos-
sible missing links, as well as to identify potential spuri-
ous edges. By cross-checking these links against the
other networks, we reconstruct the original network to
improve its quality. Then we integrate the six recon-
structed networks to get the final integrated network
(FINet). We perform network-based disease gene predic-
tion and apply leave-one-out cross validation to assess
the quality of the reconstructed networks. At last, to
evaluate the applicability of our FINet, we respectively
use it and the four meta-networks as background net-
work to conduct obesity associated gene prediction.

Methods

Network data sets

In this study, we used six gene association networks of
Homo Sapiens constructed from publicly obtained data
sets as follows.

(i). hsaPPI: a high-quality physical interaction network
of human proteins constructed by combining
biochemical fractionation data with spectrometric
profiling and computational filtering data, in which
the weight represents interaction confidence score [31].

(ii). Corum: a protein-protein interaction network of
component protein in human protein complexes
extracted from the CORUM database [32]. We here
used the network constructed in our previous study
[33]. The weight represents the number of shared
complexes.

(ili). HumanNet: a genome-scale functional association
network of human genes which were integrated
from 21 large-scale genomics and proteomics data
sets. The weight stands for the evidence value used
to identify each interaction [34].

(iv). String: a gene association network constructed
from the version 9.1 of SRING database [25].

The interaction includes both physical and
functional interactions from diverse sources and
the weight of each link represents a probabilistic
confidence score.

(v). FunCoup: a genome-wide functional coupling
(or associations) network constructed from the
version 3.0 of FunCoup database [35], which is an
integration of huge amounts of genomic data by an
optimized Bayesian approach. The weight denotes
the confidence score of each association pair.

(vi). FLN: a comprehensive weighted genome-scale
network by integrating 16 functional genomics
features assembled from 32 sub-features from 6
model organisms, in which nodes represent
genes, and edge weights the likelihood that the
linked nodes participate in a common biological
process [26].
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(vii). GO: a weighted gene associated network
constructed from the Gene Ontology (GO) database
[36] downloaded on March 18, 2015. Two genes are
linked in the network if they share at least one GO
term. In order to enrich our validation, we finally
take links which share at least 3 GO terms, and the
number of shared terms is assigned as weight of
current link. Data from all the three parts of GO,
i.e., biological process, cellular component and
molecular function are used. The resulting network
contains 9,803,423 gene pairs covering 18,040
human genes.

See Table 1 for the basic information of the six net-
works. Network (i) to (vi) are used for link prediction
and network integration. Since these data sets use differ-
ent code systems for genes, we first converted their code
systems to a unified code system, Entrez gene code.
What’s more, the link weights of the data sets vary in
different areas. Thus we normalized the weights into the
area (0, 1].

The network (vii), GO, is used to evaluate the per-
formance of our methods. There are 17,797 common
genes between GO and the union of the other six net-
works, reaching 79.72% of the total genes.

The workflow for the construction of network

In Fig. 1 we simply illustrate our workflow for the
construction of a weighted human gene association
network from the existing 6 networks, hsaPPI, Corum,
HumanNet, String, FunCoup and FLN.

First, we collected source data and constructed the
six original networks (OriNet). Second, we performed
link prediction in each original network by different
similarity-based algorithms to get 9 predicted networks
(PNet). Third, for each network, we integrated its 9
predicted networks to obtain a raw-reconstructed net-
work (RRNet). Fourth, for each network, we got a final
reconstructed network (FRNet) according to the ori-
ginal network and raw-reconstructed network. At last,
we integrated these final reconstructed networks to get
the final integrated network (FINet).
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Link and weight prediction

We conducted link prediction and network reconstruc-
tion for each of the six gene association networks. They
are simple undirected weighted networks, where the
weight is a confidence score of the association, repre-
senting the probability that the association exists. Thus
the weight can be regarded as a symmetric similarity
score measuring similarities or affinities between a pair
of nodes. Larger similarity weights indicate closer inter-
plays between nodes. Therefore, similarity-based link
prediction methods are suitable to be applied for discov-
ering the most possible missing links in these gene asso-
ciation networks.

In a typical similarity-based algorithm, for each pair of
nodes x and y, a similarity score s,, is assigned to weigh
their topological similarity. A higher similarity score
corresponds to a higher probability of forming a link
between the two nodes.

A lot of similarity indices have been defined based on
local [37, 38], global [39, 40] and quasi-local [41] topo-
logical information of un-weighted networks respect-
ively, some of which have been extended to weighted
networks [42—46]. Considering the large size of network
FLN and FunCoup, we focused on local and quasi-local
weighted similarity indices.

Local similarity indices only consider the common
neighbors of two nodes. Here we used weighted version
of Common Neighbors (CN), Adamic-Adar (AA) and
Resource Allocation (RA) indices [43, 47], as well as
reliable-route weighted similarity indices [33] we defined
previously. These similarity indices are listed as follows:

(1) Weighted CN index (WCN):
WCN
SN = W+, (1)
z€0xy

(2)Weighted RA index (WRA):

WRA _ Wiz + Wy 9
syt =) T @
2€0,y z

Table 1 Basic information of the six weighted human gene association networks

Network hsaPPI Corum HumanNet String FunCoup FLN

#Nodes 2,821 2314 16,243 18,138 16,626 21,657
#Edges 13,880 34,146 476,399 2,165,537 4,044,929 22,388,609
Range of confidence score 0.75~1 1~29 0.4055~4.2569 150~999 0.100~1 0.043~19.032
Range of normalized weight 0.75~1 0.0345~1 0.0953~1 0.1502~1 0.100~1 0.0022~1
Average degree 9.84 29.51 58.66 238.79 486.58 2067.56
Average clustering coefficient 0.169 0.747 0.246 0.232 0438 0493
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Fig. 1 The workflow of network construction from 6 existing networks
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(3) Weighted AA index (WAA):

WAA Wiz + Wy
s = — (3)
xy ZEZOU log(1+s,)’

(4) Reliable-route weighted CN index (rWCN):

rWCN Z Wiz Wey, (4')

2€0,y

(5)Reliable-route weighted RA index (rWRA):

I 5)

z€0,, Sz

(6)Reliable-route weighted AA index (rWAA):

Wiz W
SWAA _ wz Way (6)
w ZEZO: log(1+s,)"

Where O,, represents the common neighbors set of

nodes x and y, w,, weighs the link between nodes x and
9, s, denotes the strength of node z defined as the sum
of weights for edges link to z.

Quasi-local similarity indices not only consider the
common neighbors of two nodes, but also take local

paths between them into account. Based on the idea of
reliable-route weighted similarity indices which mea-
sures the similarity of a pair of unconnected nodes by
the product of weights of local paths connecting them,
we proposed weighted reliable local path similarity indi-
ces as follows:

(7)Weighted reliable local path CN index (r'WCNLP):

rWCNLP
E Wiz Way + & E Wam Winn Way,  (7)

260,y meT (%) nel ()

(8)Weighted reliable local path RA index (rWRALP):

§WRALP _ Waz - Wzy
xy -

2€0yy

&Y Wan W Wy, (8)

meT (x),neT (y)

(9) Weighted reliable local path AA index (rWAALP):

GWAALD _ N Wa Wy
"y ZGZO log(1+s;)
+a Z Wam Winn Wy 9)

meT (x) nel ()

Where I'(x) is the neighbor set of node %, and «a is a par-
ameter to adjust the contribution of length-3 paths. We
here took a as 0.001 for hsaPPI and 0.0001 for Corum,
HumanNet, String, FunCoup and FLN to penalize the
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length-3 path. The details for the adjustment of the par-
ameter a are shown in Additional file 1: Figure S1.

The similarity score can be regarded as the predicted
edge weight, which needs to be normalized with the goal
of comparing with the original weight and preparing for
network integration. In this study, the similarity score
was normalized by Eq. (10) as follows:

Winorm = €. (10)
The establishment of raw reconstructed networks

For each of the six networks, we first applied the 9 differ-
ent similarity indices as defined in eq. (1) ~ (9) to calculate
similarity scores, respectively. All possible node pairs were
sorted according to their scores in descending order. Then
we picked out the same number of node pairs with the
highest ranks as in the original network and used these
links to construct a new predicted network based on the
result of each prediction method, respectively. In this way,
we constructed 9 weighted networks for each of the six
original gene association networks, respectively. At last,
we used 3 steps as follows to integrate all the 9 predicted
networks and created a raw reconstructed network.

1. Combine all edges in the 9 predicted networks
to obtain an edge union set.

2. For each edge in the union set, integrate the edge
weight of different predicted networks to get a
topological score.

3. Sort the edges in the union set according to their
topological scores in descending order. Then pick out the
same number of edges with the highest ranks as in the
original network to build a raw-reconstructed network.

In the 2™ step, for each edge in the union set of one
original network, we calculated its topological score by
integrating normalized similarity scores from 9 different
methods as follows,

9
w= E aw;,
i=1

where w; is the normalized similarity score from the ith link
prediction method for one original network, «; (i =1, 2, ...9)
are parameters that weigh the importance of each predic-

(11)

tion method. Here we simply took a; as § to equally weigh
their importance.

The establishment of final reconstructed networks

For each of the six networks, we used the following 4
steps to validate its links in the original network and the
raw-reconstructed network so as to create a final recon-
structed network.
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1. Combine the raw reconstructed network with
its original network. As shown in Fig. 2, the links
can be classified into 3 groups. We call the links
in the original but not in the raw-reconstructed
network as Old links, those in both the original
and the raw-reconstructed network as Confirmed
links, and the links in the raw-reconstructed but
not in the original network as New links.

2. Validate the Old and New links against a test set.
The test set is a union of links from all the other
5 original networks and their raw-reconstructed
networks, as well as network GO. We think a
link as validated if it can be found in the test set.

3. Combine Confirmed links with validated Old and
New links to build the final reconstructed network.
Thus each link in the final reconstructed network
has at least two evidences for its existence.
See Fig. 2 for illustration of this process.

4. Compute link weights of the final reconstructed
network by integrating topological scores with
original link weights of the network.

In the 4™ step, we computed link weights of the final
reconstructed network by integrating topological scores
with original link weights of the network. For a node
pair, we define its functional similarity score (Sgs) as the
weight in original network, and its topological similarity
score (Srs) as the score obtained in the 2™ step of creat-
ing raw reconstructed network. Thus the functional
similarity score for links in the New set is zero. Then
link weights of the final reconstructed network were
computed as follows,

S = BSrs + (1-B)Srs, (12)
where  is a parameter to weigh significance of the two

kinds of scores. We set 5 as 0.5 to avoid universal larger
weights than original links.

The integration of the 6 final reconstructed networks

We combined all edges in the 6 final reconstructed net-
works to create the integrated network. The link weight
of this network is defined as follows,

(13)

where S; (i=1, 2, ..., 6) represents the link weight in ith
final reconstructed network, while S;=0 if the current
network does not include the link. This equation ensures
equal roles of the six networks and avoids too small of
its second item.
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Fig. 2 lllustration of our process to get the final reconstructed network for each network

Performance assessment for link and weight prediction
To assess the quality of 6 raw reconstructed networks
created by link and weight prediction, we used links in
the GO network as a test set to validate the results. We
also performed cross-validation [48] among the 6 net-
works. Specifically, for each original network, we gener-
ated two test sets TONet and TRNet for it. The TONet
is a combination of all links in the other 5 original net-
works, while the TRNet includes all links in the other 5
raw reconstructed networks.

Here we mainly used precision [49, 50] to evaluate our
networks’ reconstruction and integration. This measure
can be calculated as:

TP

S — 14
TP+ FP’ (14)

precision =
where TP is the number of network links obtained by
the method that also appear in the test network, FP is
the number of network links obtained by the method
that don’t appear in the test network.

Moreover, we calculated the Pearson correlation coef-
ficient (PC) and the mean-squared error (MSE) between
the vectors of predicted and original weights for links
both in original networks and predicted networks to
measure the accuracy of weight prediction. The defin-
ition comes as follows:

> (wy=w) (ry=r)

(o) ()
MSE = w7 (16)

where L is the set of links both in the original networks
and predicted networks, N is the number of links in L,
w;; is predicted weights for L, r;; is original weights for L,
w and 7 are the corresponding mean value.

Network-based disease gene prediction

To test the reliability of our methods and the quality of
the reconstructed networks, we applied the recon-
structed networks in the prediction of disease genes.
Given a disease, its known disease genes were used as
seed genes, and then candidate genes could be ranked
based on their association with these seed genes in the
network [51, 52].

We assembled two sets of disease genes for the assess-
ment. The first set includes 1197 distinct disease genes
corresponding to 110 different diseases. This set was ob-
tained from the supplementary of ref. [26] and the dis-
ease gene symbol was mapped into its entrez ID. The
second set only includes obesity related genes, in which
24 genes were extracted from the OMIM database [53]
and other 373 genes were collected from a literature
[54] (see Additional file 1).

For a particular disease and its seed genes, the associ-
ation of each candidate gene i with the disease is quanti-
fied by a score as follows:

sPA = Zwija

Jjeseeds

(17)

where P4 is the disease association score, and wy is
the edge weight connecting gene i and seed j. The
score, thereby, will be 0 if the gene is not connected
with any seeds.

To assess the overall performance of a reconstructed
network in disease gene prediction, we conducted leave-
one-out cross validation using the first disease gene set.
For each disease, each known disease gene was taken
out as a test gene, and the remaining disease genes were
used as seeds. Then each gene in the network was
assigned a disease association score S’ based on its
proximity to the seeds and each test gene was ranked
among all genes in the network. We further pooled to-
gether all genes and calculated the precision as the
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fraction of disease genes above the cutoff at various rank
cutoffs. A larger fraction suggests a better performance
for the current network. At last, we conducted a case
study on obesity gene prediction. The 24 obesity
genes from the OMIM database were used as seeds
and the other 373 genes reported in the literature
were test genes.

Results and Discussion

Comparison of the six original weighted human gene
association networks

Among the 6 networks under study, hsaPPI and Corum
have much smaller sizes or scales than the other four
networks. This is because they are high-confidence
protein-protein interaction networks of human beings
which include specific molecular interaction information
between proteins. Specifically, the network hsaPPI is
constructed from the experimental biochemical co-
fractionation data in consistence with information from
curated public databases and literatures. The network
Corum was constructed to represent theoretical links
between component proteins of experimentally validated
protein complexes, which represents a specific class of
high-confidence protein-protein interactions, ie., co-
complex memberships. In contrast, the other four net-
works, HumanNet, String, FunCoup and FLN, are from
meta-databases constructed by integrating both physical
and functional interactions between human genes avail-
able from numerous sources of different features and
using their own scoring systems to weigh the confidence
of each association. They include much more general
gene association information, but at the same time, they
are noisier.

Simply combining all the nodes and edges of the 6 net-
works, we obtain complete node and edge sets that in-
clude 22,324 distinct genes and 25,978,000 different
association relationships respectively. The network con-
sisting of the complete node and edge sets is called ori-
ginal union network (OUNet). We compare the sizes
and overlapping extents of these networks by mapping
each network’s nodes and edges to the node and edge
set of OUNet, respectively. As shown in Fig. 3a, the
complete node set includes almost all nodes of FLN
(97%) and most nodes of HumanNet (73%), String (81%)
and FunCoup (74%), suggesting these meta-networks
have a large fraction of common genes. Figure 3b im-
plies that the fraction of edges in the complete edge set
is approximately proportional to the number of edges of
each network.

Ideally, since hsaPPI and Corum are high-confidence
protein-protein interaction networks, almost all of their
nodes and edges should be included in the four large
networks from meta-databases. However, Fig. 3c and d
show that the speculation is true for nodes but not for
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edges. The four meta-networks include almost all nodes
of the two specific networks. However, considerable part
of edges in the two specific networks do not appear in
the four meta-networks, while the fractions of the two
specific networks’ edges in the four meta-networks are
positively correlated with the number of edges in the
meta-networks.

Comparing edges of the four meta-networks (HumanNet,
String, FunCoup and FLN), we found that although the net-
work FLN is much larger than the other three networks, it
does not contain most edges of the first three networks
(Fig. 4a). Considering FLN’s super large size of edges which
may cause considerable differences in magnitude, we fur-
ther compared the first three meta-networks. As shown in
Fig. 4b and ¢, they have 14703 and 101194 common
nodes and edges, respectively. Although the three net-
works have a large fraction of common nodes (taking
90.52%, 81.06% and 88.43% of the total in HumanNet,
String, and FunCoup, respectively), there is quite lim-
ited fraction of common edges (only taking 14.35%,
3.16% and 1.69% of the total in HumanNet, String,
and FunCoup, respectively).

The comparisons suggest that it is necessary to inte-
grate all of these networks to create a network with lar-
ger size and higher confidence.

Network raw-reconstruction and weight prediction

For each of the six weighted gene association networks,
we applied 9 similarity-based link prediction methods to
construct 9 different predicted networks, respectively.
Then we integrated them to obtain a raw-reconstructed
network which owns the same number of edges as the
original network. As Fig. 2 shows, links in the union of
the original and raw-reconstructed networks can be clas-
sified into 3 groups, Old, New and Confirmed. Figure 5
shows the fraction of confirmed links in the 6 original
networks. It can be seen that network Corum, FunCoup
and FLN have much larger part of confirmed links than
the other 3 networks. This is because that these three
networks have much bigger clustering coefficients (See
Table 1), thus more links in the original networks get
higher similarity scores and rank on the top of the list of
node pairs.

To assess the performance of link predictions and evalu-
ate the functional relevance of the raw-reconstructed net-
works, we compared each raw reconstructed network
with its original network against three test sets, TONet,
TRNet, and GONet. The 5 groups of links, i.e., links in
the raw reconstructed network, the original network, Old,
New and Confirmed set, were used as query sets for evalu-
ation. Cross-validation was conducted by checking the
link sets corresponding to one network against two test
sets TONet and TRNet, which were constructed by re-
spectively combining all links in the other 5 original
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networks and the other 5 raw reconstructed networks.
Links in the GO network were used as test set for the
evaluation of functional relevance. A link in a query set is
regarded as validated by one test set if it can be found in
this test set.

As shown in Fig. 6, in most cases, validated links in
raw-reconstructed networks and New groups are more
than or very close to those in corresponding original
networks and Old groups, respectively. In addition, the
confirmed group has the highest percentage of validated
links than the other 4 groups of links of the same net-
work. That the fractions of validated links slightly de-
crease in raw-reconstructed networks of Corum and
FunCoup than in their original networks could be due to
their higher percentages of confirmed links (see Fig. 6).

These comparisons show that links in raw-reconstructed
networks have higher or similar extent of functional
relevance than those in corresponding original net-
works, suggesting that our algorithm could effectively
increase the size of the original gene association net-
works and reduce their noises. It is noted that in some
earlier studies, the raw-reconstructed networks obtained
from their link prediction algorithms were considered as
final de-noised networks [22, 23].

To measure the accuracy of weight prediction, for
each of the six networks, we then calculated the Pearson
correlation coefficient (PC) and the mean-squared error
(MSE) between the vectors of predicted and original
weights for links both in raw-reconstructed network and
original networks. Table 2 shows that all the Pearson
correlation coefficients are larger than zero and all the
p-values are much smaller than 0.05, indicating the
statistically significant positive linear correlation be-
tween the weights in all six cases. All the MSE values
are rather small, suggesting a high consistence be-
tween the normalized scores and weights similar to
the Pearson correlation coefficients. That Corum has
a minimum MSE, furthermore, indicates its high pre-
diction accuracy.
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Network final reconstruction
For each of the six networks, we combined links in Con-
firmed set with validated links in Old and New sets to
build the final reconstructed network. In this way, links
in each final reconstructed network have at least two ev-
idences for existence. These evidences are links from all
the other 5 original networks and their raw-
reconstructed networks, as well as network GO. We
used eq. (12) to get link weights of the final recon-
structed network by integrating similarity scores calcu-
lated by eq. (11) (called topological scores) with original
link weights of the network (called functional scores).
We listed the number of links in the 6 original networks
and their final reconstructed networks in Table 3. It can
be seen that, by reconstruction, link numbers in the 5
smaller networks get increased, while only the largest net-
work FLN becomes smaller. This is because that the Old
and New groups in the smaller networks are more likely
to be found in other networks, which makes these net-
works enlarge. Similarly, the Old and New groups in the
largest network have small probably to be found in other
much smaller networks, which makes this network shrink.
To explore the change of the link weight distributions
in the networks, we depicted the distributions of link
weight for the 6 original networks and their final recon-
structed networks in Fig. 7. For all the networks, the
semi-log scale plots for the distribution functions of link
weight are decreasing curves, suggesting that large
fractions of edges in these networks own small link
weights. That is, only small fractions of gene associa-
tions have high confidence scores. Among the six ori-
ginal networks, FLN’s edge weight distribution curve
locates the lowest and decreases most sharply. This
phenomenon suggests that although network FLN has
much more links than the other networks, a great frac-
tion of them has low confidence score. In fact, its link
weights of about 90% links are smaller than 0.05. The
network hsaPPI only includes high confidence links, in
which the lowest confidence score is 0.75. Thus its dis-
tribution curve locates the highest. From Fig. 7 (b) we
can see that the hsaPPI’s final reconstructed network
increases some low-confidence links and still keeps a
large fraction of high-confidence links. Figure 7 also
shows that the edge weight distribution curves of the
final reconstructed networks almost keep the same
order and tendency as the original networks. This sug-
gests that our reconstruction did not significantly
change the weight distribution features of the networks.
To see if the final reconstructed networks have higher
confidence than their corresponding original networks,
we compared edges between original networks and final
reconstructed networks from different perspectives (See
Fig. 8). By mapping each network’s edges to the union of
original/final reconstructed edge set respectively, we
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found that the fraction in the final reconstructed net-
works increases obviously (Fig. 8a). As shown in Fig. 8b
and ¢, in all cases, after reconstruction, significantly
more edges of the two specific small networks hsaPPI
and Corum appear in the four meta-networks. Figure 8d
shows that the fractions of common links of the three
meta-networks HumanNet, String, and FunCoup have
increased significantly in our final reconstructions.
These comparisons suggest a higher confidence of our
reconstructed network compared with the originals.

In summary, by reconstruction, common information of
the 6 final reconstructed networks increase significantly,

Table 2 The result of weight prediction of five networks

suggesting the reliabilities of all networks be enhanced
compared to their original networks. Therefore, it is
reasonable and of great necessary to integrate the 6 final
reconstructed networks to get a bigger union network.

Integration of different final reconstructed networks

We combined the links in the 6 final reconstructed net-
works to create the final integrated network (FINet) and
calculated link weight of this network by eq. (13). This
FINet has 20,091,321 links, which is much more than
any of the first 5 original networks and slightly less than

Network hsaPPI Corum HumanNet String FunCoup FLN
MSE 0.0680 0.0508 0.0879 0.1779 0.1631 0.1050
Pearson correlation coefficients 05392 04070 04827 04965 05798 0.5627
p-value 482 x 107°% 0 0 0 0 0
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Table 3 Number of edges in original and final reconstructed networks

Network hsaPPI Corum HumanNet String FunCoup FLN

# links in OriNet 13,880 34,146 476,399 2,165,537 4,044,929 22,388,609
# links in FRNet 18,846 37,390 664,131 2,560,045 4,057,603 18,178,219
Change of increase percentage 35.78% 9.50% 3941% 18.22% 0.31% —1881%

the biggest network FLN. See the Additional file 2 for
the data of FINet.

To verify the functional relevance of the links in the
FINet, we compared this network and the union net-
work of original networks (OUNet) with the GO net-
work (GONet). Specifically, we first mapped edges of
FINet and OUNet to GONet to identify their overlapped
links with GONet, respectively. Then we calculated aver-
age shared GO terms of the node pairs corresponding to
the overlapped links. As Table 4 shows, compared with
the OUNet, the FINet has much more links in GONet,
while the average shared GO terms of node pairs corre-
sponding to these links do not decrease significantly.
This result suggests that links in the final integrated net-
work exhibit high functional relevance. Therefore, our
algorithm could effectively enlarge and de-noise the gene
association networks.

Assessment of the reconstructed networks in the context
of disease gene prediction

One important application of gene association network
is to be used as a background network in the prediction
of disease genes [51, 55—60]. This is due to an observa-
tion that genes associated with the same disease tend to

be close with each other in the network. To assess the
reliability of our methods, here we conducted network-
based disease gene prediction using different networks
as background networks.

First, we tested the performance of our final recon-
structed networks (FRNet) of the four meta-networks in
the prediction of disease genes. Ref. [23] proposed a ran-
dom walk with resistance (RWS) algorithm to predict
missing links of a network and reconstruct a PPI net-
work by taking out the same number of node pairs with
the highest similarity scores as in the original network,
which is equivalent to our raw reconstructed network
(RRNet). For each meta-network, respectively utilizing
the original network (OriNet), its FRNet and RRNet
obtained by our method and its RRNet got by RWS al-
gorithm (RWS-RRNet) as background network, we con-
ducted disease gene prediction in these networks. We
performed leave-one-out cross validation using our first
disease gene set, which includes 1197 distinct disease
genes corresponding to 110 different diseases. For each
disease, we successively took out one disease gene and
used the rest of the genes as input to predict this one.
Eq. (17) was applied to calculate a disease association
score for each gene in the network and ranked them

Log10 value of occurrence frequency
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decreasingly. Finally, we pooled all the test cases to-
gether and calculated the fraction of the tested disease
genes ranked above various rank cutoffs.

As shown in Fig. 9, for each of the four meta-networks,
its FRNet is significantly superior to both of its corre-
sponding RRNets in disease gene prediction, supporting
our strategy that further builds a final reconstructed net-
work from the original and raw reconstructed network by
cross-validation. The final reconstructed network rectifies
the shortcoming of raw reconstructed network which dis-
cards quite large part of original links and adds many new
links. For each of the three smaller networks (HumanNet,
String and FunCoup), its FRNet also exhibits better

Table 4 Comparison of OUNet and FINet with GONet

Network OUNet FINet
Number of overlapped links 4.255,042 5,400,858
Average shared GO terms of node pairs 421 4133

for overlapped links

performance than the network itself (OriNet), implying
that the enlarged network includes more meaningful in-
formation. Only exception is that FLN’s FRNet shows
poorer performance than itself. We think this is because
that the FRNet of this largest network becomes much
smaller than the original network, thus much information
gets lost. In addition, when comparing the two raw recon-
structed networks, it appears that our raw reconstructed
networks (RRNet) and RWS-RRNet networks respectively
perform better in half of the networks. This suggests that
these two different link prediction algorithms have good
performance in different networks.

Then, similarly, using the same disease gene set and
leave-one-out cross validation method, we test the per-
formance of our final integrated network (FINet) in
comparison with the four original meta-networks (Human
Net, String, FunCoup and FLN). As Fig. 10 shows, the
FINet performs better than HumanNet and FunCoup but
poorer than String and FLN. Notably, the performances of
FounCoup and HumanNet are much poorer than String
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and FLN, although the size of FounCoup is about twice of
String. Thus we guess that the poorer performance of
FINet is probably caused by networks HumanNet and
FunCoup, which exhibit poor performance.

To verify our conjecture, we used our workflow (Fig. 1)
to construct two FINet networks by integrating String
with FLN, HumanNet with FunCoup and named them as
FINetl and FINet2, respectively. In Fig. 11 we compared
the performance of these FINet networks with their corre-
sponding original networks. It shows that the performance
of the FINet networks is between the good and the poor
component networks and much closer to the good one.
These results validate our conjecture and suggest that the
performance of the final integrated network could be re-
duced by networks which have much poorer performance.

An application of the final integrated network: prediction
of obesity associated genes

To further test the effectiveness of the final integrated
network, we conducted disease gene prediction in the case

of obesity, respectively using FINet and the 4 original
meta-networks (HumanNet, String, FunCoup and FLN) as
background network. Using the 24 known obesity associ-
ated genes from the OMIM as seeds, we applied eq. (17) to
predict other disease genes. The other 373 genes from the
literature were used as test genes. The numbers of seed
and test genes appearing in different background networks
are listed in Table 5. Except HumanNet, the other 4
networks include same number of seed genes. However,
the number of test genes appearing in these networks is
different. FINet and FLN include more test genes than the
other networks, suggesting that they are more informative.

We treated all genes in the background network as
candidate genes and assigned scores to them by eq. (17)
for prioritization. Then we ranked the genes in each
background network decreasingly according to their
scores. Based on the rank, we could predict the top &
ones as associated with the disease obesity. In Table 5,
we listed different prediction results for the test genes
with different s-values (1, 30, 100, and150). It can be
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Fig. 10 Performance comparison of disease gene prediction based on
our final integrated network (FINet) and the four original meta-networks
(FLN, FunCoup, String and HumanNet)

seen that, the first ranked gene is obesity associated gene
when applying FINet, FLN and HumanNet as back-
ground network. Meanwhile, the numbers of validated
disease genes at different rank cutoffs by String, FLN
and FINet are similar and much higher than that by
HumanNet and FunCoup, suggesting their much better
performance than the other two networks.

To further examine the ability of these three networks
FINet, FLN and String in identifying unknown disease
genes, we checked the possibilities that their un-
validated genes in the top 100 ranks are also disease
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genes. Considering that more records of loci information
about one specific gene in the PubMed suggest a higher
probability that the gene is associated with diseases,
we searched these genes in the PubMed using their
gene symbol and “obesity” as keywords. Finally, we
got the number of records for collected information
about gene loci.

We set number of Pubmed records about a gene’s loci
as high record and compared the numbers of the re-
cords with 50. We also calculated the average number of
all un-validated genes for these three networks. It can be
observed from Fig. 12a, b and c that the numbers of
genes with at least 50 records are 7, 9, 8 for String, FLN,
and FINet, respectively. The average number of records
for FINet is higher than that for String and lower than
FLN (Fig. 12d). These results imply that FINet holds a
better performance for identifying unknown disease
genes than String, suggesting its high practicability and
effectiveness.

Conclusion

To expand and de-noise the known human gene associ-
ation data, we proposed a workflow to construct a
weighted human gene association network (named
FINet) based on six existing networks, hsaPPI, Corum,
HumanNet, String, FunCoup and FLN. First, for each
network, we conducted link prediction to predict its
possible missing links and identify potential spurious
edges using 9 weighted similarity indices. We then com-
bined the 9 link prediction results to obtain a raw-
reconstructed network. By cross-checking the links in
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Table 5 The numbers of seed and test genes in the 5 background networks and validated genes at different cutoff

Network HumanNet String FunCoup FLN FINet
# seed genes 22 23 23 23 23

# test genes 351 352 348 356 355
# validated genes at rank cutoff 1 1 0 0 1 1

# validated genes at rank cutoff 30 8 25 3 26 24

# validated genes at rank cutoff 100 21 65 4 63 62

# validated genes at rank cutoff 150 35 79 5 79 83

original and raw-reconstructed networks against the
other networks and the test network GONet constructed
from GO database, we next built a final reconstructed
network for each network. At last, all final reconstructed
networks were integrated to construct a final integrated
network (FINet). To validate its applicability, we utilized
this network as background network to conduct disease
associated genes prediction.

This FINet has much more links than any of the first 5
original networks and slightly less links than the largest
network FLN. Thus we have enlarged most of the ori-
ginal networks. Compared with original networks, the
common information among the final reconstructed net-
works increase notably, suggesting that the final recon-
structed networks are of better reliability. Mapping links
in the final integrated network to GO confirms their

lower than 50 records.) d the average number of records
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high functional relevance. In addition, our final inte-
grated network presents good performance in disease
gene prediction, which indicates its reliability and appli-
cation significance. Our workflow presented here could
be an insightful framework for integrating and refining
existing gene association data.

Additional files

Additional file 1: The Integration of Weighted Human Gene Association
Networks Based on Link Prediction. Table S1. The seed genes associated
with obesity obtained from OMIM. Table S2. The test genes for obesity
associated genes prediction. Figure S1. The adjustment of parameter a
in quasi-local similarity indices by link prediction accuracy measured by
precision. (DOCX 57 kb)

Additional file 2: data of our final integrated network FINet. (TXT 374277 kb)
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