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Abstract

Background: Cellular senescence irreversibly arrests growth of human diploid cells. In addition, recent studies
have indicated that senescence is a multi-step evolving process related to important complex biological processes.
Most studies analyzed only the genes and their functions representing each senescence phase without considering
gene-level interactions and continuously perturbed genes. It is necessary to reveal the genotypic mechanism
inferred by affected genes and their interaction underlying the senescence process.

Results: We suggested a novel computational approach to identify an integrative network which profiles an
underlying genotypic signature from time-series gene expression data. The relatively perturbed genes were selected
for each time point based on the proposed scoring measure denominated as perturbation scores. Then, the
selected genes were integrated with protein-protein interactions to construct time point specific network. From
these constructed networks, the conserved edges across time point were extracted for the common network and
statistical test was performed to demonstrate that the network could explain the phenotypic alteration. As a result,
it was confirmed that the difference of average perturbation scores of common networks at both two time points
could explain the phenotypic alteration. We also performed functional enrichment on the common network and
identified high association with phenotypic alteration. Remarkably, we observed that the identified cell cycle
specific common network played an important role in replicative senescence as a key regulator.

Conclusions: Heretofore, the network analysis from time series gene expression data has been focused on what
topological structure was changed over time point. Conversely, we focused on the conserved structure but its
context was changed in course of time and showed it was available to explain the phenotypic changes. We expect
that the proposed method will help to elucidate the biological mechanism unrevealed by the existing approaches.
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Background

Cellular senescence is irreversible exit from the cell cycle
resulting from the limited replicative capacity [1] caused
by telomere shortening [2, 3], DNA damage, and the
epigenetic derepression of several genes such as the
IKK4a/ARF locus [4]. Senescence and aging are complex
processes with multiple causal mechanisms [5]. Recently,
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due to increase of understanding for the senescence
mechanism, it was shown to be a heterogeneous pheno-
type driven by multiple casual mechanisms instead of a
singular state [6]. To understand senescence, an analyt-
ical approach based on systems biology is needed to
reveal the interactions among several multiple effector
programs of the senescence phenotype [7]. Genome-
wide profiling of molecular-level changes during senes-
cence such as changes in gene expression is particularly
important.

A recent study analyzed genome-wide gene expression at
various time points during the establishment of replicative

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-017-0417-1&domain=pdf
mailto:ymyoon@gachon.ac.kr
mailto:blueocean2016@dgist.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Park et al. BMC Systems Biology (2017) 11:36

senescence and revealed senescence stage-specific gene per-
turbations [8]. Analysis of the functional enrichment for
each stage indicated initial perturbation of cell cycle-
related genes and subsequent perturbation of meta-
bolic, inflammatory, and immune-related genes at the
middle stage. At the final stage, genes related to cell
death and cell growth regulation were perturbed. Thus,
genome-wide time-series analysis can reveal the geno-
typic signature underlying senescence.

Time-series gene expression data have been widely
used to explore the molecular-level events during a
phase change such as the senescence process described
above, despite of difficulty of culturing cells to full senes-
cence. Typical analytical methods use co-expression
patterns to identify functional modules or compare pair-
wise time points to capture features of the transition or
to identify temporally regulated gene expression versus
one control sample [9]. Consequently, these approaches
yield results based on individual genes or gene sets with-
out considering the connectivity between them. How-
ever, cellular processes involve the interactions among
several molecules, and these processes can be repre-
sented as a biological network with genes or proteins as
nodes and their relationships as edges. Thus, interac-
tome data of biophysically interacting proteins are espe-
cially useful for analyzing biological processes, but few
attempts have been made to integrate time-series gene
expression and protein-protein interaction (PPI) data,
particularly in senescence and aging.

Recently, a study reported the construction of an age-
specific integrative gene network with PPI and topo-
logical analysis of the network to reveal the key modules
in aging [10]. To construct a network, differentially
expressed age-specific genes were selected by following
methodology of [11], which had used criterion as
follows; 1.5-fold change, 0.01 FDR. The protein interac-
tions mapped with the selected genes become edges of
the network. As a result, 37 age-specific networks were
obtained and ‘ground truth’ gene set collected by analyz-
ing brain gene expression data was used to demonstrate
whether the networks were significantly related with the
aging process or not. The authors revealed that the glo-
bal topology of the age-specific networks was similar to
each other, whereas the local topologies of several genes
were significantly different. For the topological compari-
son among age-specific networks, the similarity measure
called graphlet degree distribution agreement [12] was
used. It was revealed that the local topologies were
significantly changed with age and those genes were
associated with age.

We proposed a novel approach to investigate the core
modules of a genetic network highly correlated with
phenotypic changes from time-series data. To construct
the network, we integrated a perturbed gene set with
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biophysically validated PPIs recently published [13] and
identified and analyzed the core sub-gene network.
Based on the evidence that continuously perturbed in-
teractions can be used to interpret a gradual phenotypic
change with abrupt changes at the beginning and end
points, we hypothesized that a sub-gene network with a
constant topological structure but gradually altered con-
text (e.g., expression pattern) plays an important role in
phenotypic change. This concept can be applied to study
cellular senescence because several senescence-related
functions, such as the cell cycle, are not enriched at the
abrupt phase; actually, a previous study revealed that cell
cycle remodeling was nearly continuous during senes-
cence [14]. The proposed approach is distinguished from
the previous senescence studies. The previously men-
tioned study [8] did not consider the interactions among
the perturbed genes during senescence and [10] analyzed
the network modules topologically changed during aging.

To test our hypothesis, we applied the proposed method
to two replicative senescence datasets from human diploid
fibroblasts (HDFs) and mesenchymal stem cells (MSCs)
and one independent cancer progression dataset from
human tissue neoplasia. We performed functional enrich-
ment of the identified core sub-gene network and simple
significance tests to confirm whether our findings reflect
changes in gene expression that account for the observed
phenotypic change.

Methods

Data description and system overview

As a proof of concept for our approach, we intensively
used recently published time-series gene expression data
(GSE41714) measured during replicative senescence in
HDFs [8]. This time-series microarray data (GSE41714)
was composed of twelve sequential order of senescence
stages according to the population doubling time includ-
ing young and old phenotypes as the first and last time
points, respectively. The senescence phenotype for each
stage was identified and confirmed by typical determinants
such as increased or decreased reactive oxygen species
(ROS) levels and high or low level of senescence-associated
[B-galactosidase activity. We also used time-series micro-
array data (GSE9593) collected during replicative senes-
cence in MSCs [15]. These data included nine passages
from young to old status. Finally, we employed time-series
microarray data (GSE15299) for elucidating epithelial can-
cer progression [16]. This dataset included four time points
and was selected to test whether the proposed approach
was applicable to processes besides senescence. The series
matrix files of these microarray based data were down-
loaded and if there was no obvious description about
normalization process in GEO, the normalization was
performed. The array platform of these three datasets was
different each other. GSE41714, GSE9593 and GSE15299
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used Illumina HumanHT-12 V4.0 expression bead-
chip, llumina HumanHT-12 V4.0 expression beadchip
and Affymetrix Human Genome U133 Plus 2.0 Array,
respectively.

To identify the connectivity between genes, we down-
loaded a recently published human PPI dataset [13] with
23,124 high-confidence PPIs compiled from systematic
screening with high-throughput yeast two-hybrid and
literature studies and validated using biological assays.
Although the high-confidence PPI set is smaller than the
typical PPI set from the 12D database [17-19], biological
validation allows greater confidence in conclusions based
on these PPIs. The proteins in these PPIs were mapped
into gene symbols using UniPROT [20].

The entire workflow of the proposed method is shown
in Fig. 1. As described above, time-series gene expres-
sion dataset and PPIs are integrated and the structurally
conserved network is identified. Using this network,
phenotypic changes during senescence and cancer pro-
gression are analyzed.

Identification of time-specific networks

Before identifying the perturbed gene set, we carry out
quantile normalization for the time-series gene expres-
sion dataset with R. For normalization of the down-
loaded dataset which is series matrix format in GEO, we
used ‘preprocessCore’ library provided by Bioconductor.
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By normalization, we can expect that the average of expres-
sion values and relatively highly expressed genes at certain
time points were adjusted. This gives a similar intensity
distribution for each time point. After normalization,
perturbed gene sets were identified to construct a network
for each time point. In our method, the perturbation score
of a gene at a time point is calculated as follows:

1 M
p(genelj) = e,j—M Z €ik
k=1

where gene;; indicates gene i at time point j, e; indicates
the expression value of the i™ gene at the j™ time point,
and M is the total number of time points. This formula
measures the difference between each expression value
and the average for expression value. The perturbation
score, p(gene;), is calculated for every gene at every time
point, and larger values implied that gene i was relatively
perturbed at time point j. If adjacent time points with
similar phenotypes are grouped, the average perturbation
score for the grouped time points was used.

Only genes with perturbation scores above the thresh-
old (minimum cut-off value for significance of perturb-
ation) are selected for each grouped time point. The
threshold as determined for a given dataset by assuming
the perturbation scores are normally distributed and set-
ting the threshold as the sum of the mean and standard
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Fig. 1 Overall workflow of the proposed method. For each time point, interactions including perturbed genes are identified from protein-protein
interactions, and networks are constructed. The common network across time points is identified and it is validated by performing computational
and functional significance tests
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deviation. Figure 2 depicts a detailed toy example of the
entire analytical flow to identify perturbed genes. First,
the average expression values are calculated for five
genes. Then perturbation score for each gene at each
time point is calculated. For example, the perturbation
score of the third gene at time-point 2 is (0.2-0.45) =
-0.25. Final perturbation scores of the third gene at
merged time-point 1, 2 are calculated as follows; if time
point 1 and 2 can be grouped, the average perturbation
score is—0.2 calculated by (-0.15-0.25)/2. Then this
score is compared with upper and lower threshold
values (0.376 and-0.376, respectively). In this example,
the final perturbation score is 0 because the average per-
turbation score is more than lower threshold and less
than upper threshold. If the final perturbation score of the
gene is not zero, this gene can be included in the per-
turbed gene set for each time point. To construct a time
point-specific network, we identify a set of interactions in-
cluding at least one perturbed gene from the high-
confidence PPI dataset. From these selected interactions
for each time-point, time-specific networks are built.

Identification and analysis of common network

From the identified time-specific networks which have
different size and include different interactions, we de-
tect topologically conserved sub-network across time-
point. As described in the Introduction, we assumed that
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sub-networks with constant topological structures play
important roles in phenotype change. Topological con-
servation for a sub-network refers to its continuous
perturbation with changing phenotype. As mentioned in
the Introduction, we assumed that these network mod-
ules and the transition of their information such as per-
turbation scores were related to phenotypic changes. To
prove our assumption, we calculate the average differ-
ence of perturbation scores between two time points
after identification of common network. For example, in
Fig. 2, if gene 2 and gene 4 are selected as a member of
common network, the average difference of perturbation
scores between time-point;,,q» and time-pointy will be
1.1 which is calculated by (]0.5-(-0.45)| + |-0.775—
0.475])/2. From this calculation, we can determine
whether the variation of perturbation scores and the
state of phenotypic changes are associated or not. To in-
vestigate that perturbation scores were related to pheno-
typic changes, the statistical tests for all possible pairs of
adjacent time points and one additional pair composed
of the first and the last time points was performed.

Statistical support for significance of common network

We investigate an association between phenotypic changes
and variation of perturbation scores with statistical test
based on large-sized random sampling. We assume
‘average differences of perturbation scores from our

Time Points
gene
expression  [time-point;|time-pointy|time-points|time-points| average
Gene; 0.4 0.5 02 0.4 0.275
Gene; 038 07 0.1 0.2 -0.300
Gene; 0.3 0.2 0.4 0.9 0.450
Genes 0.8 0.7 0.1 05 0.275
Genes 0.9 0.1 0.5 0.5 0.500
Perturb Time Points 1
erturbation
p(geneji)=ej; — — Z e
score time-pointi|time-point,|time-points|time-pointy| Y Y Mk:l ik
Gene; 0125 | 0225 | -0475 | 0.125
Gene, -0.500 | -0.400 | 0.400 | 0.500
G 20150 0.250 0.050 0.450 Statistics of perturbation value
Geney 0525 | 0425 | -0.175 | -0.775 Mean 0.000
Genes 0.400 | -0.400 | 0.000 | 0.000 Standard deviation | 56
(SD) )
Thresholdypper
(Mean + SD) 0.376
final time-point group Thresholdiower 0.376
Perturbation (Mean - SD)
time-point time-point; time-points
score e [ ? ifp (genei]-) > thresholdypper
B p(tpj)
Sens] 0 0.475 0 ) ifp (geneij) < thresholdjgyer
Gene, -0.450 0.400 0.500
0 else
Genes 0 0 0.450
Geney 0.475 0 -0.775
Genes 0 0 0
Fig. 2 Identification of temporally perturbed genes. In the time-series microarray, each expression value is converted into a perturbation score. After
establishing a threshold value from these perturbed scores, filtered perturbed scores satisfying thresholding condition are employed to select interactions
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common network and random network are same’ as a
null hypothesis. We tested whether this hypothesis
can be rejected or not. The test is composed of three
steps. As shown in Fig. 3, first, all interactions identi-
fied by the proposed method are collected. From this
collection, the interactions are randomly chosen as
numerous as the proposed method selected. For ex-
ample, if 5 interactions were identified by the pro-
posed method at time point 2, the same-sized 5
interactions are randomly selected from the collection
about this time point. Consequentially, the random
selection only permutes order of time point. Secondly,
across time point, common network is detected from
randomly selected interaction set. Lastly, we calculate
the average difference of perturbation scores between
two time points with this common network. These
three steps are repeated 10,000 times to generate the
distribution. We calculate p-value which indicates
whether we can reject the hypothesis or not. Through
the result of this test, we demonstrate that context
transition explainable phenotypic change can be ob-
served in the conserved network reflecting a time
order, i.e. identified by the proposed method. This
procedure was systematically implemented by using
Java and R.

Page 5 of 13

Results

To demonstrate the effectiveness of the proposed
method, we applied it to three time-series gene expres-
sion datasets: two senescence datasets and a cancer pro-
gression dataset. Although we focused on senescence,
we included the cancer progression dataset to test the
applicability of our method to other types of datasets.
We detected a common network from whole time
point-specific networks and demonstrated how the com-
mon network can explain the phenotypic change for the
three experimental datasets by performing statistical
tests and functional enrichment with KEGG pathway
database and gene ontology database.

To determine a optimal thresholds for identifying per-
turbed genes, we used dataset-specific cut-off values. As
described in Method section, we calculated the mean
and standard deviation for the perturbation scores in
given dataset and found that the perturbation scores
were not normally distributed: the mean was near zero,
and the standard deviation was relatively small. How-
ever, we assumed that the distribution was Gaussian
because the number of perturbation scores was large
enough to apply the central limit theorem. Supporting
Fig. 6 shows the distribution about perturbation scores.
We used p+1lo as a threshold: perturbation scores
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Table 1 Network information about the stage-specific network

Network No. of node  No. of edge  Ratio of the used
interaction (%)
Early stage 1,748 2,602 11.200
Middle stage 650 701 3.017
Advanced stage 302 266 1.150
Very advanced stage 1,085 1,448 6.233
Common network 122 95 0409

Threshold: £0.2046
Total number of used interactions for constructing network: 23,124

above p+ 1o or below p-1c were chosen to construct
each network. The number of genes selected by using p
+20 or g+ 30 as a threshold was too small to construct
networks. The experimental results while changing the
cut-off threshold were shown in supporting Table 4 and
5 of the additional file.

Significance test in HDF senescence and cancer
progression dataset

Table 1 summarizes the identified time-specific networks
and their common network in the replicative senescence
dataset (GSE41714) [8]. Twelve time points based on the
population doubling time were grouped into four stages
according to the senescence phenotype. The network
size was different at each stage, and the proportion of
selected interactions was less than 11.2% in general; the
common network comprised only ~0.409% of all used

Page 6 of 13

high-confidence PPIs. We assumed that this network
might act as a key module for inducing phenotypic
changes despite its small size. Figure 4 shows the iden-
tifed common network.

With the common network, we investigated a statis-
tical significance comparing all possible adjacent stages.
As shown in Table 2, among three possible adjacent
comparisons, only the second comparison (middle-ad-
vanced) was significant. From this result, we could
suggest that phenotypic change between middle and ad-
vanced stages was relatively more influential than other
transitions. Actually, it was reported in the previous
study [8] that the results of functional analysis in early
and middle stage were similar each other. These two
stages were highly related with cell cycle and metabolic
process. Similary, the results of functional analysis in ad-
vanced and very advanced stage were similar. Previous
study [8] reported these two stages were related with cell
death and NFKB cascade functions. In addition, we per-
formed the significant test for comparison between early
and very advanced stage, which indicate the first and
last, respectively. The p-value was almost zero for this
comparison. The phenotypic changes between the first
and last stage was understandably obvious since young
cell turned into old cell. This result demonstrated that
context transition of the conserved network can reflect
and explain the phenotypic changes. Surpporting Fig. 3
shows the four distributions of average difference of
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Fig. 4 Visualization of common network of HDF senescence dataset
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Table 2 The result of statistical significance test to compare perturbation scores between two time points on senescence dataset

Comparing time points AP from our AP from random sampling P-value
approach (mean) (mean) (standard deviation)

Early — Middle 0326 0309 0.062 3.679E-01

Middle - Advanced 0.655 0.205 0.075 3.159E-93

Advanced - Very advanced 0.180 0.165 0.048 3.081E-01

Early — Very advanced 0.940 0.501 0.092 2.725E-60

We performed statistical test with a significance level of 0.05. In two (early-middle, advanced-very advanced) among three adjacent comparisons, the difference of
perturbation score was not significant. However the difference of perturbation score at the comparison between early and very advanced time points was

strongly significant

perturbation scores from random samplings for each
comparison. In additon, we carried out multiple com-
parison tests with final perturbation scores of the se-
lected genes for each time-point using ANOVA and
TukeyHSD method in R. In this experiments, we identi-
fied that the early and very advanced time point was
most significantly different. Supporting Table 6 shows
this results.

We investigated how perturbation scores of the com-
mon network are changed during transition and whether
this changes have direction to the increase or decrease. As
shown in Fig. 5, we could find two representative patterns
from changing profile of perturbation scores. Up and
down fluctuation of these two patterns were almost op-
posed, mutually. We observed that relatively up-regulated
genes in early stage were gradually decreased along with

going to very advanced stage. On the contrary, relatively
down-regulated genes in early stage were gradually in-
creased along with senescence.

Furthermore, we applied the proposed method to the
cancer progression dataset (GSE15299) [16] and performed
same experiments as mentioned above. Table 3 shows a
summary of the identified networks for each stage. The net-
work size was different at each stage, and the proportion of
selected interactions was less than 10.2% in general; the
common network comprised only ~0.12% of all used inter-
actions. Figure 6 shows the identified common network.
We investigated a statistical significance from all possible
neighboring stages including a comparison between the
first and last stage. As shown in Table 4, statistical test was
also performed, we revealed that only one comparison be-
tween Day20 and Day 35 was not signficant.
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Table 3 Network information for cancer progression dataset
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Table 4 The result of statistical significance test to compare

Network No.of node  No.ofedge  Ratio of the used perturbation scores between two time points on cancer
interaction (%) progression dataset
Day 0O 1462 2355 10.184 Comparing AP from our AP from random sampling P-value
time points approach (mean) (mean) (standard deviation)
Day 5 390 383 1.656
Day 0-Day 5 0738 0637 0126 2041E-02
Day 20 393 427 1.847
Day 5-Day 20 0715 0289 0119 3.240E-25
Day 35 534 626 2.707
Day 20-Day 35 0277 0279 0.104 9.692E-01
Common network 42 28 0121 Day 0-Day 35 1315 0743 0148 3792E-29

Threshold: £0.4205
Total number of used interactions for constructing network: 23,124

To capture the progression of invasive neoplasia, the
author made an Ras-inducible human model which can be
changed epidermal tissue to squamous cell carcinoma [16].
In this experiments, hyperplasia and disordered tissue polar-
ity were observed that between day 5 and day 10, and fully
manifest invasive phenotype was culminated by day 25 to
30. Therefore, until day 20, phenotype was rapidly changed
and after day 25, the fully changed phenotype was observed.
Owing to this phenotypic change, the average difference of

Fig. 6 Visualization of common network of cancer progression dataset

We performed statistical test with a significance level of 0.05. In one (Day 20 - Day
35) among three adjacent comparisons, the difference of perturbation score was not
significant. However the difference of perturbation score at the comparison between
Day 0 and Day 35 time points was strongly significant

perturbation scores between day 20 and 35 was not signifi-
cant compared to random case. We demonstrated that the
common network constructed by our approach reflects this
phenotypic changes. The P-value of comparision between
the first and last day was 3.792E-29, which is considerably
significant. As shown in Fig. 7, we also observed that the
profile of perturbation scores in the common network could
support the result of significant test.

Functional enrichment in HDF senescence and cancer
progression dataset

Through abovc experiments, we computationally ana-
lyzed common network in time-dependent gene expres-
sion profile. In addition to the computational validation,
we performed two types of functional enrichment test
on the common network. Fisrt, we performed gene
ontology based enrichment using BINGO [21] plugin in
Cytoscape [22]. Secondly, we carried out pathway
enrichment test using KEGG database. Because the iden-
tified common network had small size and simple
topology, we used the entire common network as an
input of functional enrichment test.

On HDF senescence dataset, top 10 pathways and gene
ontology terms (P-value < 0.01) were listed in Table 5. As
expected, among several pathways, cell cycle and cancer
related pathway were significantly enriched. In gene ontol-
gies, response to several stimulus, cell proliferation and
development related processes were importantly enriched.
These processes were regarded as an important roles in
senescence. On cancer progression dataset, we also se-
lected top ten enriched pathways and gene ontology
terms. The result was described in Table 6. In KEGG path-
ways, bladder cancer pathway was enriched. In gene on-
tologies, cancer progression associated term was enriched
such as anatomical structure development.

Additional analysis with MSC senescence dataset

We performed statistical test and functional enrichment
for MSC senescence dataset. The detailed results were
described in the Additional file 1 with supporting Table 1,
2 and 3 and supporting Figs. 1 and 2. The distribution of
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Table 5 On the common network from HDF senescence dataset,
the list of top 10 terms of functional enrichment test with KEGG
pathway and Gene Ontology database. (P-value < 0.01)

Category Term -Logig
(P-value)
KEGG pathway Cell cycle 8292
Pathways in cancer 7.553
Small cell lung cancer 6.699
p53 signaling pathway 6.301
Focal adhesion 6.000
Prostate cancer 5.398
Arrhythmogenic right ventricular 3824
cardiomyopathy (ARVC)
Melanoma 3.032
Hypertrophic cardiomyopathy (HCM) 2678
Dilated cardiomyopathy 2523
Gene Ontology response to endogenous stimulus 11.780
(Biological Process) regulation of cell proliferation 11.513
negative regulation of cell proliferation 11.209
response to hormone stimulus 10919
organ development 10.213
response to organic cyclic substance 10.052
negative regulation of epithelial cell 9.901
proliferation
response to steroid hormone 9.870
stimulus
response to organic substance 9.744
system development 9.547

average difference between all pairs of two time point used
in our test was shown in Additional file 1 (supporting
Figs. 3, 4 and 5). The information of the identified
common networks from three datasets was listed in
Additional file 2.

Identification of regulatory module from common
network

Time point-specific gene networks can be more important
than the common network in most analyses. However,

Table 6 On the common network from cancer progression
dataset, the list of top 10 terms of functional enrichment test with
KEGG pathway and Gene Ontology database. (P-value < 0.01)

Category Term -Logig
(P-value)
KEGG pathway Bladder cancer 2469
Gene Ontology organ development 11.150
(Biological Process) system development 10.105
anatomical structure development 10.069
anatomical structure morphogenesis 9.562
regulation of glucan biosynthetic 9.138
process
regulation of polysaccharide 9.138
biosynthetic process
regulation of glycogen biosynthetic 9.138
process
response to chemical stimulus 9.099
response to endogenous stimulus 9.073
regulation of polysaccharide metabolic 8.988

process
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our approach aids in elucidating temporal changes in
biological functions. Thus, our approach is appropriate for
investigation of continuously affected molecular effectors
such a cell cycle in replicative senescence. To demonstrate
this hypothesis, we performed additional experiments and
described the result herein.

We attempted to trace temporal changes in the pattern
of perturbation scores for the cell cycle specific common
network. To identify this common network from HDF sen-
escence dataset, we only used and focused on 207 known
cell cycle-related genes which are annotated in the gene
ontology database. We identified a common network com-
prising 14 nodes and 13 edges as shown in Fig. 8. Among
the 207 cell cycle-related genes, only 14 continuously af-
fected senescence while maintaining a constant topology
and displaying gradual and directional changes in perturb-
ation score values. During aging, we identified genes known
to be up- and down-regulated [23-25] during senescence
with similar regulations in our analysis. For example,
KIF20, a cell cycle controller, was down-regulated in senes-
cence status by activation of p16 via the Rb/E2F pathway
[23]; CRABP2 was strongly down-regulated with increased
passage number in human amniotic fluid-derived stem cells
and might act as a negative regulator to limit cellular senes-
cence [24]; and CCNDI, another well-known cell cycle
regulator, is down-regulated in HDF senescence [25].

As has been demonstrated by several previous studies
[23-25], variation of the perturbation score values in the
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identified common network was generally consistent with
expectations for cellular senescence. Interestingly, the
gene expressions at the young and senescence stage were
completely opposed. Based on this result, we propose that
the identified common network can switch cell cycle ac-
tivity between young and senescence status. Alternatively,
transcription factors (TFs) that regulate genes in the iden-
tified common network could act as the switch.

In this study, we focused on the former assumption
because there may be regulatory relationships among
genes of the network. We attempted to identify the
regulatory relationships for the identified common
network using PathwayStudio 9.0 software (Ariadne
Genomics; Rockville, MD, USA) to build a pathway of
directed interactions among genes in common network
(Fig. 9a), omitting six orphan genes. We included two
types of regulation: ProtModification and DirectRegula-
tion. ProtModification indicates a regulator that modifies
the target molecule through phosphorylation, glycosyla-
tion, etc., and DirectRegulation indicates direct physical
interactions that can influence target activity.

Interestingly, we observed a feedback loop composed
of the replicative senescence related genes: CDK6,
CCND1, CDKN1A, and CDKN1B (Fig. 9a). In the ob-
served regulatory network, including the feedback loop,
CDK6 was the most important node because it acted as
a hub and could be the genesis of the loop. It has been
known that CDK6 regulates DNA replication in G1 and
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Fig. 8 Visualized dynamic change of the perturbation scores in the identified common network limited to cell cycle-related genes
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reported to switch cell cycle status from G1 phase to S
phase [26]. Furthermore, high expression of CDK6 can
form a transcription complex and induce the expression
of tumor suppressor p1l6 [27]. It has been reported that
pl6 is significantly related with molecular mechanism of
senescence [28].

In our feedback loop (Fig. 9b), the subunit regulators
of CDK6 (CCND1, CCND2, and CCND3) were down-
regulated in young status; thus, these four proteins were
simultaneously down-regulated in young status. How-
ever, expression of CDK6 was increased upon senes-
cence. Along with this expression alteration of CDKS,
CDK6 could inhibit CDKNI1B by negatively regulating
its phosphorylation. CDKN1B translation is also reduced
during G1 arrest [29], and CDKN1B down-regulation
could inhibit CCND1, which is also positively influenced
by CDKNI1A. Thus, CDK6 may be consistently up-
regulated by CCND1 during senescence, allowing main-
tenance of full senescence status. Much of this process

has been previously reported [30-32], but our method
allowed identification of the regulatory relationship
among them with a more integrated view, and we note
that our approach yielded a result reflecting the senes-
cence process.

In addition, we investigated TFs which can control this
regulatory relationship. We used recently published compu-
tational method, iRegulon [33]. Among the results which
have high enrichment score (NES>0.3), we selected TFs
inferred by TRANSFAC database widely used to search TFs.
Then, we filtered TFs targeting on CDK6. As a result, we
can identified seven TFs; STAT5A, ARID3A, POU4F3,
DLX5, ZNF35, LMX1A, PAX2. Among them, STAT5A and
ARID3A have been revealed to be related with cell cycle
process [34, 35]. PAX2 has been reported to be mechanistic-
ally associated cancer cell proliferation [36]. Through this
result, it is possible that the identified regulatory relationship
and the related TFs can be regarded as strong candidate
which controls cell cycle phase replicative senescence.
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Discussion

We analyzed whether the expression levels of four genes
constructing above feedback loop are corresponding to
the regulatory loop or not using an independent dataset.
We used recently published gene expression profile on
the replicative senescence in normal human diploid
fibroblasts [37]. In this dataset, young and old status was
defined as being less than 40 population doublings and
more than 70 population doublings, respectively. The
relative gene expression level was measured by compar-
ing young and old status. Through analysis of this pro-
file, as shown in Fig. 10, we observed that expression
pattern of the independent dataset follows the changing
relation of the identified regulatory feedback loop ac-
cording to senescence. Based on the analysis, we care-
fully expected that the identified regulatory module can
be a part of cell cycle modulation, if we limited to HDF
cell. We are planning to apply our method to tissue level
gene expression profile in order to identify a module
controlling aging process.

Conclusions

In this study, we proposed a novel approach to identify
gene networks that are significantly correlated with pheno-
typic changes from time-series data. In this process, we in-
tegrated a recently published PPI dataset with time-series
gene expression data to produce informative interactions
among genes. Networks were validated with statistical tests
and functional enrichment. To demonstrate the suitability
of the proposed method, we used three different real data-
sets for cellular senescence and cancer progression. The
identified networks were appropriate to explain the pheno-
typic changes. In our future work, we plan to carry out per-
turbing experiments with the identified TFs to demonstrate

whether they can contribute to changing phenotype
by affecting expression level of CDK6 and its looping
member or not.

Additional files

Additional file 1: The experimental results with MSC senescence
dataset (DOC 708 kb)

Additional file 2: List of the identified common network information
(XLSX 30 kb)
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