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Abstract

Background: Early afterdepolarizations (EADs) are pathological voltage oscillations during the repolarization phase
of cardiac action potentials (APs). EADs are caused by drugs, oxidative stress or ion channel disease, and they are
considered as potential precursors to cardiac arrhythmias in recent attempts to redefine the cardiac drug safety
paradigm. The irregular behaviour of EADs observed in experiments has been previously attributed to chaotic EAD
dynamics under periodic pacing, made possible by a homoclinic bifurcation in the fast subsystem of the deterministic
AP system of differential equations.

Results: In this article we demonstrate that a homoclinic bifurcation in the fast subsystem of the action potential
model is neither a necessary nor a sufficient condition for the genesis of chaotic EADs. We rather argue that a cascade
of period doubling (PD) bifurcations of limit cycles in the full AP system paves the way to chaotic EAD dynamics across
a variety of models including a) periodically paced and spontaneously active cardiomyocytes, b) periodically paced
and non-active cardiomyocytes as well as c) unpaced and spontaneously active cardiomyocytes. Furthermore, our
bifurcation analysis reveals that chaotic EAD dynamics may coexist in a stable manner with fully regular AP dynamics,
where only the initial conditions decide which type of dynamics is displayed.

Conclusions: EADs are a potential source of cardiac arrhythmias and hence are of relevance both from the viewpoint
of drug cardiotoxicity testing and the treatment of cardiomyopathies. The model-independent association of chaotic
EADs with period doubling cascades of limit cycles introduced in this article opens novel opportunities to study
chaotic EADs by means of bifurcation control theory and inverse bifurcation analysis. Furthermore, our results may
shed new light on the synchronization and propagation of chaotic EADs in homogeneous and heterogeneous
multicellular and cardiac tissue preparations.
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Background
Chaos can be defined as an aperiodic long-term behaviour
in a deterministic dynamical system (either a differen-
tial equation or an iterated map/difference equation)
that shows sensitive dependence on the initial condi-
tions [1]. Though biological systems are affected by
intrinsic and external stochastic noise, experimentally
recorded irregular dynamics in the action potential
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(the characteristic membrane voltage response to a
superthreshold electric stimulus) of cardiomyocytes have
still been shown to be of the chaotic nature [2, 3]. More
precisely, it has been observed in [2, 3] that by increasing
the frequency of the stimulating current (or correspond-
ingly by decreasing the pacing cycle length (PCL)), the 1:1
entrainment of the action potential is lost and a sequence
of different m:n rhythms with alterations in the action
potential duration (APD) called AP alternans is obtained
before the dynamics finally become irregular. Using an
iterated map
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APDn+1 = F(APDn,PCL) (1)

derived from the experimentally obtained restitution
curve (APD plotted against the diastolic interval (DI)),
it has been shown that, as the PCL of the stimu-
lus is decreased, the slope of F at the fixed point
APD∗ of Eq. (1) becomes progressively steeper until
∂F(APD∗, PCLcrit)/∂APD = −1 at some critical value
PCLcrit. At this flip bifurcation point PCLcrit the stability
of the fixed point is lost and a period-2 cycle of Eq. (1)
is born. The latter marks the beginning of a cascade of
period-doubling bifurcations, also compare with [4], that
is produced as PCL is further decreased and that finally
leads to chaotic sequences of APD generated by Eq. (1).
This is in accordance with the PD route to chaos in the
general theory of iterated maps [1]. For later reference we
emphasize that [2] studied chaotic APD variations in peri-
odically forced cardiac pacemakers cells (i.e., they show
spontaneous action potential oscillations in the absence
of a stimulus), while [3] studied chaotic APD variations
in periodically forced non-spontaneously active Purkinje
fibre and ventricular muscle cells.
Chaotic early afterdepolarizations (EADs) are a different

type of irregular cardiac action potential dynamics (differ-
ent from chaotic AP alternans) that have been experimen-
tally observed both in periodically stimulated ventricular
cardiomyocytes [5] and more recently in spontaneously
beating human induced pluripotent stem cell derived
cardiomyocytes (hiPSC-CMs) [6–8]. EADs are abnormal
voltage oscillations during the repolarization phase of the
action potential, characterized by one or more periods of
positive voltage slope before the normal repolarization is
completed. While the irregular appearance of EADs has
also been associated with stochastic activities of the ion
channels (that regulate the action potential formation) in
[9], the first mathematical evidence for the chaotic nature
of EADs in dependence of PCL has been given in [5].
Using simulations of a deterministic differential equation
model of ventricular action potential dynamics with a
voltage equation

C
dV
dt

= −
∑

ion
Iion + Isti(t,PCL), (2)

a restitution curve APD = r(DI,PCLcrit), similar to the
one shown in Fig. 2PP, was constructed. This curve was
then used to derive Eq. (1) with F(APD,PCL) = r(PCL −
APD,PCL) due to

DI = PCL − APD. (3)

Finally, it has been argued in [5] that the steep posi-
tive slope of the restitution curve r before the peak (which
translates into a steep negative slope of the map F at the

fixed point APD∗) proves the chaotic nature of the EAD
dynamics.
In this paper, we demonstrate that a steep slope of the

restitution curve r cannot serve as a general explanation
of chaotic EAD dynamics displayed by cardiac APmodels.
Indeed, we will show that chaotic EAD dynamics in Eq. (2)
are possible even if extracted ADP and DI data points
do not form a function r (hence, not even admitting to
speak of a slope). However, the key contribution of our
paper will be novel insight into chaotic EAD dynamics
gained from mathematical bifurcation studies of differen-
tial equationmodels of the form Eq. (2). Using a separation
into fast and slow time scale variables, bifurcation analy-
sis has been previously applied in [10] for the illumination
of EADs in (a variant of ) the periodically driven LR91-
model [11] for ventricular cardiomyocytes. In particular,
it was shown in [10] that the fast subsystem of Eq. (2) fea-
tures a supercritical Hopf bifurcation from which stable
limit cycles emerge until they terminate at a homoclinic
bifurcation of a saddle equilibrium. Then, EAD behaviour
is obtained if the model parameters are set such that
the state trajectory of the full system Eq. (2) temporar-
ily coils around the limit cycle surface spanned between
the supercritical Hopf and the homoclinic bifurcations of
the fast subsystem. Furthermore, the homoclinic bifurca-
tion in the fast subsystem has been introduced in [10] as
the reason for the chaotic EAD dynamics that could be
obtained whenever the PCL was chosen appropriately in
an EAD featuring parameter setting. Further affirmations
of the statement that chaotic EAD dynamics in periodi-
cally triggered action potentials are due to a homoclinic
bifurcation in the fast subsystem of Eq. (2) are given
in [12–15].
Recently, we have shown in [16] that EADs may occur in

action potential models Eq. (2) that do not feature a super-
critical Hopf bifurcation in their fast subsystem. In this
paper, we now demonstrate that a homoclinic bifurcation
in the fast subsystem of Eq. (2) is neither a necessary nor a
sufficient condition for obtaining chaotic EAD dynamics.
We rather argue that a PD cascade of limit cycles in

the full action potential system Eq. (2) paves the way
to chaotic EAD dynamics in a model-independent man-
ner and present examples with models of a) periodically
paced and spontaneously active cardiomyocytes, b) peri-
odically paced and non-active cardiomyocytes as well
as c) unpaced and spontaneously active cardiomyocytes.
Furthermore, we reveal that chaotic EAD dynamics may
coexist in a stable manner with regular action poten-
tial dynamics, where only the initial conditions decide
about the dynamics displayed. The results of our article
on chaotic EAD dynamics in single cardiomyocytes may
shed new light on the synchronization of chaotic EADs
[5, 17] and EAD-mediated fibrillation [18] in cardiac tis-
sue, may open new paths for the control of cardiac chaos
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[19] and may be of relevance within the CiPA-initiative
[20] for a new approach to preclinical drug cardiotoxic-
ity testing with hiPSC-CMs, which considers EADs as a
potential mechanism-based metric for the assessment of
proarrhythmic risk.

Methods
Cardiac action potential models
Modelling of cardiac action potentials with systems
of nonlinear ordinary differential equations (ODEs) (in
which the voltage Eq. (2) is coupled to differential
equations that describe the dynamics of the ion chan-
nel currents Iion) dates back to the work of Denis Noble
[21] on both Purkinje fibre and pace-maker cells. Mod-
ern cardiac AP models for animal [22], human adult
[23] and human induced pluripotent stem cell derived
[24] cardiomyocytes comprise dozens of state variables
and hundreds of model parameters. Typically, the only
explicit time-dependence of cardiac AP models is due to
the stimulating current Isti such that without stimulation,
i.e., Isti ≡ 0, the AP model forms an autonomous ODE
system. Depending on the actual equations and the par-
ticular choice of the model parameters, the autonomous
ODE system may show limit cycle behaviour (then mod-
elling spontaneous beating activity such as in pace-maker
cells) or steady state behaviour (then modelling cells that
show no spontaneous AP activity such as ventricular
cardiomyocytes). Using inverse bifurcation analysis with
sparsity promoting penalization [25, 26], models for spon-
taneously beating cells can be transferred into models for
non-active cells and vice versa. Anyhow, the application
of a periodic stimulus Isti with pacing cycle length PCL
leads to AP models of either periodically paced and spon-
taneously active or periodically paced and spontaneously
non-active cells. In our study we used the following rep-
resentatives for each of the three available classes of AP
models. If the values of the model parameters are not
explicitly mentioned in the text, they were chosen to be
identical to those used in the original publications.

AP Model PP –Periodically paced pacemaker cell As
an example of an AP model of periodically paced and
spontaneaously active cells we chose

C
dV
dt

= −GCad∞(V )f (V − ECa) − GKx(V − EK )

+ Isti(t,PCL),
df
dt

= f∞(V ) − f
τf

, (4)

dx
dt

= x∞(V ) − x
τx

,

as introduced in [12] and subsequently also used in
[16, 27]. In particular, this ODE model of state dimension
n = 3 includes the inward calcium current

ICa = GCad∞(V )f (V − ECa)

with the calcium channel conductance GCa and the
dynamic inactivation variable f, as well as the outward
potassium current

IK = GKx(V − EK )

with the potassium channel conductance GK and the
dynamic activation variable x. In our discussion we used
this model with the original setting τf = 80 and τx = 300
for the relaxation variables [12] and the initial conditions
y0 = (V0, f0, x0) = (−79.46, 0.9989, 0.1153).

APModel PV – Periodically paced ventricular cell As
an example of an AP model of periodically paced and
spontaneously non-active cells we chose

C
dV
dt

= −ICa(V ) − IK (V ) − INa(V ) − I0(V )

+ Isti(t,PCL),
dd
dt

= d∞(V ) − d
ατd(V )

,
df
dt

= f∞(V ) − f
βτf (V )

,

dx
dt

= x∞(V ) − x
γ τx(V )

, (5)

dh
dt

= h∞(V ) − h
τh(V )

,
dm
dt

= m∞(V ) − m
τm(V )

,

dj
dt

= j∞(V ) − j
τj(V )

.

This model was previously used in [10] for the study
of chaotic EADs and is a slightly modified version of the
LR91-model [11] for ventricular cardiomyocytes in which
the intracellular calcium now is set constant. Here, the
currents depending on the dynamic gating variables d, f,
x, h,m and j are

ICa = GCadf (V − ECa)
IK = GKxx̄(V )(V − EK )

INa = GNam3hj(V − ENa),

while I0(V ) summarizes those currents that are not
directly driven by the dynamic gating variables. In our
study we chose the relaxation parameters α = 1, β =
1 and γ = 2.5 (as in Figure 4 of [10]) and the initial
conditions y0 = (V0, d0, f0, x0, h0,m0, j0)

y0 = (−84.5286, 3 · 10−6, 1, 0.3158, 0.9832, 0.0017, 0.995484)
(6)

as also considered in [10].

AP Model UP – Unpaced pacemaker cell As an exam-
ple of an AP model of unforced and spontaneously active
cells we chose Eq. (4) with the setting τf = 18, τx = 100
(from [27], see also [16]) and Isti ≡ 0, and the initial
conditions y0 = (V0, f0, x0) = (−75.16, 0.9984, 0.03976).
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Numerical simulation of action potential models
For the numerical simulation of the AP models PP (paced
pacemaker), PV (paced ventricular) and UP (unpaced
pacemaker) we used the MATLAB [28] solver ode15s for
stiff ODE systems with the relative tolerance option set to
10−12. All models were simulated for a time span of 2000 s.
Then, the first 500 s were discarded in order to eliminate
possible transient effects, such that only the remaining
1500 s of the simulations were used for the analysis.

Numerical bifurcation analysis of AP models
Due to the nonlinearities involved, cardiac AP mod-
els Eq. (2) may show a variety of complex dynamical
behaviour. Bifurcation analysis [29, 30] is the study of the
dynamical repertoire and its dependence on the model
parameters. Bifurcations are qualitative changes in the
dynamics as model parameters are varied, and the param-
eter values at which they occur are referred to as bifurca-
tion points. In the bifurcation analysis of the AP models
PP, PV and UP we used the potassium channel conduc-
tance GK as the primary bifurcation parameter and, for
models PP and PV, the pacing cycle length PCL as the sec-
ondary one. The bifurcation diagrams of the AP models
PP, PV and UP were obtained by means of the numer-
ical continuation packages matcont [31] and auto-07p
[32]. Continuation is the technique of following a par-
ticular solution (such as a fixed point or a limit cycle)
of an autonomous system as the continuation parame-
ter changes. One advantage of continuation is that both
stable and unstable solution branches can be calculated
while bifurcations of fixed points and limit cycles can
be simultaneously detected. For the application of this
technique to the non-autonomous models PP and PV,
the latter were transformed into autonomous models of
increased state dimension. To this end we introduced the
two-dimensional dynamical system

du1
dt

= u1
(
1 − u21 − u22

) − 2π
PCL

u2,

du2
dt

= u2
(
1 − u21 − u22

) + 2π
PCL

u1, (7)

that admits an asymptotically stable periodic orbit [33],
and appended it to Eq. (2) with the setting

Isti = A

1 + exp
[
5 · 106

{
(1 − u1) cos

(
dπ
PCL

)
− u2 sin

(
dπ
PCL

)}] .

(8)

Here, A and d denote the amplitude and the duration of
the step pulse, see the Additional file 1 for further details.
The stable branches of the bifurcation diagrams were

cross-checked and partially complemented (in case of a
numerical continuation failure) by a parametric sweep,

i.e., by numerical simulations of Eq. (2) that were repeated
for a variety of different parameter values.

Multiple time scale analysis of APmodels
Often, cardiac AP models Eq. (2) have state variables with
time derivatives of much smaller magnitude than those
of other variables. Then, multiple time scale analysis [34]
can be used to study the flow of the full system Eq. (2)
by splitting the variables into slow and fast ones and by
analyzing the corresponding slow and fast subsystems of
Eq. (2). One underlying rationale is that the trajectory of
the full system under certain conditions evolves along the
bifurcation scaffold built by the fast subsystem in which
the slow variables serve as bifurcation parameters. In par-
ticular, the multiple time scales approach was followed
in [10] to discuss the genesis of EADs. More precisely,
the authors first eliminated the sodium current INa from
Eq. (5) (as of minor relevance for the AP repolarization
phase) in order to arrive at an APmodel with state dimen-
sion n=4. Then, considering the potassium gating variable
x as much slower (and also eliminating the stimulating
current Isti), the fast subsystem

C
dV
dt

= −GCadf (V − ECa) − GKxx̄(V )(V − EK ) − I0(V ),

dd
dt

= d∞(V ) − d
ατd(V )

,

df
dt

= f∞(V ) − f
βτf (V )

(9)

was derived in which x acts as a model parameter. Finally,
a bifurcation analysis of Eq. (9) for the setting α = 0.1
and β = 1.1 and with x as the continuation parameter
revealed that Eq. (9) features a supercritical Hopf bifurca-
tion followed by a homoclinic bifurcation to a saddle fixed
point. While the Hopf bifurcation was considered in [10]
to be necessary for the genesis of EADs in the full sys-
tem Eq. (5), the homoclinic bifurcation was introduced as
the reason for the occurence of chaotic EAD dynamics in
Eq. (5) under an appropriate periodic stimulation.
While, with respect to chaotic EADs, our paper suggests

to rather explore the full AP dynamics of Eq. (2) than fast
subsystems, we also studied for the sake of comparison the
fast subsystem

C
dV
dt

= −GCad∞(V )f (V − ECa) − GKx(V − EK ),

df
dt

= f∞(V ) − f
τf

(10)

of the cardiac AP models PP and UP, then again with
the slow variable x as the bifurcation parameter. The sub-
model Eq. (10) was previously used in [16] in order to
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demonstrate that a supercritical Hopf bifurcation in a fast
subsystem is actually not necessary for EAD genesis.

Calculation of Lyapunov exponents
Cardiac AP models Eq. (2) may feature both regular and
chaotic EAD dynamics. In order to test whether a given
trajectory is actually chaotic, we calculated the largest Lya-
punov exponent λ from the simulated voltage time series
data using the TISEAN package [35]. The central idea is
to consider a trajectory on the presumably chaotic attrac-
tor and to pick a point sn1 in the state space. Then, a
second point sn2 in close distance δ0 = ‖sn1 − sn2‖ is cho-
sen, and the separation of the two trajectories over time is
measured in terms of

‖sn1+
n − sn2+
n‖ ≈ δ0eλ
n.

A positive value of λ corresponds with an exponentially
fast growth of the initial perturbation δ0 and means that
the respective trajectory is chaotic.

Calculation of restitution curves
As considered in [5] and [12] as an alternative to the
S1-S2-protocol, we derived the restitution curves directly
from the simulated voltage traces. To this end, all time
points at which the voltage crosses the threshold value Vth
were recorded during the simulations using the MATLAB
event option of the ODE solver. Action potential dura-
tions APDs were then calculated as the time spans during
which the voltage lies above Vth, while diastolic intervals
DIs were constructed as the time spans with voltage values
below Vth. Finally, pairs of DI and subsequent APD were
built and plotted as APDn+1 vs. DIn. Our motivation for
the use of this direct method was its straightforward appli-
cability to both paced and spontaneaously active models
without the need of introducing perturbations to the lat-
ter. For the sake of completeness, we also applied the
S1-S2-protocol, see the Additional file 2.

Results
Simulations of chaotic EADs via the numerical integra-
tion of Eq. (2) have so far only been reported [5, 10, 12]
for the case of a periodic stimulation by an external cur-
rent Isti, see Figs. 1PP and 1PV for examples. However,
studying drug induced EADs in spontaneously beating
human induced pluripotent stem cell derived cardiomy-
ocytes, we found that chaotic EADs may also form in
simulations of AP models without periodic stimulation,
see Fig. 1UP. Note that a comparable high number of
small oscillations during EAD-like activity has been exper-
imentally observed in [36]. As the occurence of chaotic
EADs of the type shown in Fig. 1PP (i.e., the AP is only
triggered by the external current after full repolarization)
has been attributed in [5, 12] to the steep slope of the
APD restitution curve, see Fig. 2PP, we first wondered

Fig. 1 Simulation of Chaotic EADs. Numerical simulations of EADs
using the deterministic AP models PP, PV and UP as outlined in the
methods section. Model simulations were carried out for a time span
of 2000 seconds, plots show short sections long after possible
transients are gone. Positive largest Lyapunov exponents λ of the
time series confirm the chaotic nature of the EADs. PP) Chaotic EADs,
λ = 4.7s−1, for the periodically forced pacemaker cell model PP with
GK = 0.04 mS/cm2 as previously shown in [12]. For Isti we chose
periodic step pulses with PCL = 1.075s, step duration d = 0.002s and
step amplitude A = 42 μA/cm2. PV) Chaotic EADs, λ = 5.4s−1, for the
periodically paced ventricular cell model PV with GK = 0.282 mS/cm2

as previously reported in [10]. For Isti we chose periodic step pulses
with PCL = 0.7s, step duration d = 0.002s and step amplitude A = 30
μA/cm2. As opposed to A), stimulation of the cell also takes place
before full repolarization. UP) Chaotic EADs, λ = 2.7s−1, for the
unforced pacemaker cell model UP with GK = 0.039218 mS/cm2.
Note that simulated chaotic EADs have previously only been
published in context of periodic forcing

if this argument may also apply to chaotic EADs of the
types shown in Figs. 1PV (external stimulation also before
full repolarization) and 1UP (no external stimulation at
all). Having derived the corresponding APD restitution
curves, see Figs. 2PV and 2UP, we realized that they
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Fig. 2 Restitution Curves obtained from Chaotic Voltage Traces. Plots
of the action potential duration APDn+1 vs. the diastolic interval DIn as
obtained directly from the simulated voltage traces. PP) APD
restitution curve corresponding to Fig. 1PP as previously shown in
[12] and similar to the APD restitution curve presented in [5]. There,
the steepness of the slope of the curve has been identified as the
reason for obtaining chaotic APD variations, see our discussion of the
map Eq. (1). As the cell is only stimulated after full repolarization, the
same restitution curve is obtained when using Eq. (3) for the
determination of DI. PV) APD restitution corresponding to Fig. 1PV,
not previously published. As opposed to PP, the location of the data
points no longer justifies to consider the relation (APD,DI) as a
single-valued function. Consequently, a map Eq. (1) for the analysis of
the chaotic EAD dynamics cannot be constructed. Using Eq. (3) one
would obtain negative values of DI due to stimulations before full
repolarization. UP) APD restitution corresponding to Fig. 1UP, which
even further deviates from PP than PV. Again, the scattered location
of (APD,DI) data points prevents to analyze the chaotic EAD dynamics
via Eq. (1). As PCL is not involved, Eq. (3) is not applicable

strongly deviate from their previously published counter-
parts as exemplified in Fig. 2PP. In particular, due to the
lack of continuity and differentiability properties the “APD
restitution curves” of Figs. 2PV and 2UP do not allow to
define maps Eq. (1) for the iteration of APD and hence do

not contribute to the understanding of the chaotic EAD
types shown in Figs. 1PV and 1UP.
In our attempt to find a common explanation for the

chaotic EAD dynamics observed in Figs. 1PP, 1PV and
1UP, we next focused on the hypothesis featured in
[10, 12–15] according to which chaotic EADs have their
source in a saddle-homoclinic bifurcation in the fast
AP subdynamics. While in [10] the homoclinic bifurca-
tion occurs after a supercritical Hopf bifurcation, our
analysis of the fast subystems of models PP and PV
shows that in these examples the homoclinic bifurca-
tion is rather accompanied by a subcritical Hopf bifur-
cation of which only unstable limit cycles emerge, see
Figs. 3PP and 3PV. However, the bifurcation analysis
of the fast subsystem Eq. (10) of the AP model UP
reveals that in this case a homoclinic bifurcation is not
involved at all, see Fig. 3UP. It has been previously shown
in [16], that the reason for the occurence of EADs in
model UP is a saddle-focus fixed point whose unsta-
ble manifold causes small scale oscillations of growing
amplitudes. Since the AP model UP still features chaotic
EADs, see Fig. 1UP, it is demonstrated that a homo-
clinic bifurcation in the fast AP subdynamics is in fact
not a necessary condition for the occurence of chaotic
EADs.
Neither the EAD-theory based on the steepness of AP

restitution curves nor the EAD-theory based on homo-
clinic bifurcations in fast AP subsystems can attribute the
chaotic EAD dynamics of Figs. 1PP, 1PV and 1UP to a
common cause. In particular, none of these theories can
shed light on the chaotic EAD dynamics of model UP,
as it neither admits a steep AP restitution curve nor a
homoclinic bifurcation in the fast subsystem. For gain-
ing insight, we hence decided to perform a bifurcation
analysis of the full AP system of the model UP with the
potassium channel conductance GK as the continuation
parameter. While in principle also other model parame-
ters could be chosen for the continuation, the choice ofGK
is motivated by the strong focus of the established drug
safety guidelines on potencies to block potassium cur-
rents. The corresponding bifurcation diagram of Fig. 4UP
shows that, starting from an area of low GK values that
do not admit spontaneous oscillatory activity but only
attraction towards fixed points, stable limit cycles of com-
paratively small amplitudes emerge from a supercritical
Hopf point as the value of GK is increased. At the period
doubling point PD1, the single-period oscillation loses its
stability and splits into stable double-period oscillations.
As GK is further increased, further period doublings PD2,
PD3, PD4 and PD5 are numerically detected. Figure 5
illustrates corresponding periodic trajectories with single,
double, fourfold and eightfold period before the motion
becomes chaotic. Furthermore, the chaotic nature is also
present after the transition from the small amplitude
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Fig. 3 Bifurcation Diagrams of Fast AP Subsystems. PP) Bifurcation
diagram of the fast subsystem Eq. (10) of model PP with the
potassium gating variable x as continuation parameter. The solid and
dashed black lines denote stable and unstable fixed points of Eq. (10).
At the subcritical Hopf bifurcation H, unstable limit cycles emerge
that subsequently terminate at a saddle-homoclinic bifurcation HC.
The red dashed lines show the maximum and minimum voltage
values of the unstable limit cycles. PV) Bifurcation diagram of the fast
subsystem Eq. (9) (appended by the equations for h,m and j from
Eq. (5)) of model PV, α = 1 and β = 1, with the potassium gating
variable x as continuation parameter. The solid and dashed black lines
denote stable and unstable fixed points. At the subcritical Hopf
bifurcation H, unstable limit cycles are born that turn into stable ones
at a saddle node of cycles bifurcation before they terminate at a
saddle-homoclinic bifurcation HC. The red dashed lines show the
maximum and minimum voltage values of unstable limit cycles, the
red solid lines show the extreme voltage values of stable limit cycles.
UP) Bifurcation diagram of the fast subsystem Eq. (10) of model UP
with the potassium gating variable x as continuation parameter. The
solid and dashed black lines denote stable and unstable fixed points
of Eq. (10) that annihilate each other at saddle-node bifurcations. As
opposed to PP) and PV), neither a Hopf nor a homoclinic bifurcation
does exist, and neither stable nor unstable limit cycles are detected.
Still, model UP features chaotic EAD dynamics, see Fig. 1UP

motion with a failed repolarization to the large ampli-
tude motion of AP type, with one representative given by
the chaotic EAD dynamics displayed in Fig. 1UP, before
the AP type motion turns into periodic EAD dynamics
(followed by, not shown, periodic AP dynamics and finally

an attraction towards a steady state after another Hopf
bifurcation). For projections of the trajectories onto the
V -x-plane of the state space, see the Additional file 3.
Having associated the chaotic EAD dynamics of the

model UP with the period-doubling route to chaos in
ODE systems [30], we wondered if this phenomenon,
numerically and experimentally observed in many other
biological and physical systems including neuronal activ-
ity [37, 38], may also underlie the chaotic EAD dynamics
in the non-autonomous models PP and PV. Transform-
ing the latter into autonomous systems using Eqs. (7) and
(8), we hence performed a numerical bifurcation anal-
ysis again with GK as the continuation parameter. The
resulting bifurcation diagrams, displayed in Figs. 4PP and
4PV, reveal that also in the case of model PP and PV, the
value of GK corresponding to the chaotic EAD dynamics
shown in Fig. 1 in fact lies in close vicinity to a cas-
cade of period doubling bifurcations. For illustrations of
the corresponding periodic trajectories we refer to the
Additional file 4.

Discussion
Chaotic EAD dynamics in AP models Eq. (2) have
been previously observed in the case of periodic pacing
[5, 10, 12] but have been attributed to either the steep-
ness of APD restitution curves or the existence of homo-
clinic bifurcations in fast AP subdynamics. While none of
these results is able to explain the chaotic EAD dynamics
observed in the unforced APmodel UP, our study suggests
the existence of a cascade of period doubling bifurca-
tions of limit cycles as a model-independent explanation
for chaotic EAD dynamics both in forced and unforced
cardiac AP systems of the ODE type. We emphasize
that period doubling bifurcations, though then observed
in iterated APD maps Eq. (1) rather than in mechanis-
tic cardiac AP models Eq. (2), have so far only been
linked with chaotic APD alternans [2–4] (which con-
stitutes a type of cardiac arrhythmia that is different
from EADs).
The results of this study were obtained by means of

bifurcation analysis applied to AP models Eq. (2) based
on numerical continuation using the software packages
matcont [31] and auto-07p [32]. In the context of EADs-
research, numerical continuation was previously only
applied to fast subsystems of Eq. (2), see [10, 16]. Though
the analysis of fast subsystems can illuminate EAD gen-
erating mechanisms during a single AP [10, 16], its capa-
bility to study the occurence of EADs over a time span
covering several APs may be limited as the conditions for
a separation into fast and slow state variables [34] may not
be met in the long term. In that regard, the proper con-
sideration of the stimulating current in Eq. (9) or Eq. (10),
which certainly constitutes a very fast component of the
system, might be one hurdle to be taken. In contrast,
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Fig. 4 Bifurcation Diagrams of Full AP Systems. The red dashed lines show the maximum and minimum voltage values of the unstable limit cycles of
the full AP systems that were detected, the red solid lines correspond to stable limit cycles. In PP), PV), UP), the blue markers depict the beginning
of a cascade of period doubling bifurcations of stable limit cycles, in PPz), PVz), UPz) the blue markers show the PD bifurcations of a particular
cascade in close vicinity to the GK value resulting in the chaotic EAD dynamics of Fig. 1. PP) Bifurcation diagram of model PP with the potassium
conductance GK as continuation parameter (Isti chosen as for Fig. 1PP). PV) Bifurcation diagram of model PV with the potassium conductance GK as
continuation parameter (Isti chosen as for Fig. 1PV). UP) Bifurcation diagram of model UP with the potassium conductance GK as continuation
parameter. The solid and dashed black lines denote stable and unstable fixed points of model PP. At the supercritical Hopf bifurcation, stable limit
cycles of small amplitudes emerge that go through a cascade of PD bifurcations, depicted by the blue markers, before they turn into limit cycles of
large amplitudes that correspond to periodic EAD dynamics. In between lies an area that features both periodic and chaotic dynamics, including
chaotic EAD dynamics as shown in Fig. 1UP. PPz) Zoom into the PD area of PP), PVz) zoom into the PD area of PV), and UPz) zoom into the PD area
of UP), all in neighborhood of the GK values corresponding to the chaotic EAD traces shown in Figures 1PP-1UP. This suggests that the PD points
numerically detected are part of an infinite PD cascade leading to chaotic EADs

the advantage of studying the dynamical behaviour by a
bifurcation analysis of the full AP model Eq. (2) is that its
long term behaviour defined by stable and chaotic attrac-
tors can be captured and tracked as model parameters are
continuously varied. Besides of the detection of bifurca-
tions such as Hopf, saddle node of cycles, homoclinic or
period doubling bifurcations, another benefit of bifurca-
tion analysis with numerical continuation is that unstable
(i.e., non-attracting) dynamical structures of Eq. (2) can
be revealed. While the interpretation of the unstable limit
cycles illustrated in Fig. 4 goes beyond the scope of this
study, the relevance of unstable structures in the con-
text of AP modelling is highlighted in [39], in which the

existence of an unstable chaotic invariant set suggests
that the excitability of a membrane to fire an AP may be
more complex than a smooth hypersurface that divides
subthreshold and suprathreshold membrane potentials.
The transition between two chaotic states (chaotic low

amplitude dynamics of failed repolarization and chaotic
EAD dynamics) observed in the model UP, see Figs. 4 and
5, is reminiscent of the transition between chaotic spiking
and chaotic bursting [37] in an unforced Hindmarsh–
Rose model of neuronal activity. Still, a difference is the
sharp change in amplitude of the neighboring stable limit
cycles in Fig. 4UP as opposed to the comparatively same
levels of amplitudes in neuronal spiking and bursting
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Fig. 5 Period Doubling Route to Chaotic EADs of Model UP. Evolution of voltage trajectories of model UP as the channel conductance GK is
increased along the period doubling cascade PD1, PD2, PD3, ... A) Single period with GK = 0.039155 mS/cm2 and GK < GK1 . B) Double period with
GK = 0.039175 mS/cm2 and GK1 < GK < GK2 . C) Fourfold period with GK = 0.039188 and GK2 < GK < GK3 . D) Eightfold period with GK = 0.039189
mS/cm2 and GK3 < GK < GK4 . E) Chaotic motion of failed repolarization with GK = 0.039205 mS/cm2. F) Chaotic EADs behaviour with
GK = 0.039218 mS/cm2

reported in [37]. Such sharp transitions in stable limit
cycle amplitudes as observed in the unforced model UP
are also evident in the bifurcation diagrams of the period-
ically forced cardiac AP models PP and PV, see Figs. 4PP
and 4PV. However, the chaotic EAD traces displayed in
Figs. 1PP and 1PV are obtained with parameter values
of GK that lie far away from these transitions but rather
close to different cascades of period doubling bifurcations.
A common feature of the unforced and the periodically
forced models of this study is that the corresponding PD
cascades are all of the supercritical type and seem to obey
Feigenbaum’s law [30]

lim
n→∞

GKn+1 − GKn

GKn − GKn−1
= 0.214169..., (11)

where GKn is the parameter value of GK corresponding to
the n-period doubling PDn.

A further exploration of the bifurcation diagram of the
model PV reveals that the PD cascade is accompanied by
a stable branch of limit cycles, indicated by the solid line
in Fig. 6a at V ≈ −82.7 mV. This branch corresponds to
limit cycles of periodically driven regular action potentials
as displayed in Fig. 6b and demonstrates the coexistence
of regular AP dynamics with the EAD affected limit cycles
of the PD cascade for a certain range of potassium chan-
nel conductancesGK . Consequently, regular AP dynamics
may also coexist with chaotic EAD dynamics if GK is cho-
sen beyond the cascade-limit of periodic behaviour, see
Figs 1PV and 6b which are obtained with the same value
of GK and identical periodic forcing but with the two
different initial conditions Eq. (6) and

y0 = (−82.598, 0.9742, 0.0023, 0.9803, 0.0035, 0.9706, 0.4809).
(12)
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Fig. 6 Coexistence of Chaotic EADs and Normal Periodic AP Dynamics. A Zoom into the PD cascade area of Fig. 4b, but now also depicting a solid
red line at V ≈ −82.7 mV that represents the minimum voltage values of stable limit cycles corresponding to normal periodic AP behaviour. B
Display of the normal periodic AP orbit obtained with the same parameter setting as for the chaotic EAD dynamics of Fig. 1PV but with the different
initial condition Eq. (12)

This is similar to the coexistence of periodic spiking and
chaotic bursting reported for a non-forced spontaneously
active neuron model in [40], then attributed to a bifurca-
tion of a saddle-node periodic orbit. Hence, even though
the fast subsystem of model PV features a homoclinic
bifurcation, the latter is not sufficient for the occurence
of chaotic EAD dynamics as in addition to the model
parameters also the initial conditions need to be properly
set. This coexistence is of relevance both for numeri-
cal and experimental studies of cardiac action potentials
which typically are based on the assumption that after
a sufficiently long transient the (one and only) “steady
state” periodic behaviour is observed independently of the
pacing history.
Other than channel conductances such as GK , the

dependency of cardiac AP dynamics on the pacing cycle
length PCL of the stimulating current Isti is of high rel-
evance for studies of cardioelectrophysiology. Typically,
the action potential duration APD is derived from voltage
traces that are simulated or experimentally recorded for
a discrete sequence of different values of PCL, see [23].
Our transformation of the periodically forced and hence
non-autonomous AP model Eq. (2) into an autonomous
AP model of extended state based on Eqs. (7), (8) offers
a complementary method for studying the impact of PCL

on the dynamic repertoire of the cardiac APmodel. In par-
ticular, the numerical bifurcation analysis based on a limit
cycle continuation allows for a continuous PCL screening
and ensures that critical PCL points or intervals are not
missed as they possibly would be in case of only a discrete
PCL sampling. As an example, Fig. 7 shows corresponding
bifurcation diagrams for the model PV with PCL as the
continuation parameter. As with the continuation of GK ,
both the period doubling route to chaos and the coexis-
tence of two stable periodic orbits for one and the same
parameter value can be detected. Furthermore, the spread
of additional PD bifurcations over a wide range of PCL
suggests that the PD-route to EAD chaos is a non-local
phenomenon in periodically driven AP models, which is
in accordance with the observation of APD chaos over a
wide range of PCL in the parametric sweep studies of APD
[5, 12].
We end this section with some limitations of our study.

Our study focuses on the generation of chaotic EADs in
ODE models Eq. (2) that represent the behaviour of single
cardiomyocytes. Clearly, our work needs to be extended to
PDE models of cardio-electrophysiology in order to take
into account the coupling between cells and spatial AP
wave propagation. Furthermore, we have not incorporated
stochastic effects which also may have an impact on the



Kügler et al. BMC Systems Biology  (2017) 11:42 Page 11 of 13

Fig. 7 Bifurcation Diagram of Full AP System with PCL as Continuation Parameter. A Bifurcation diagram of model PV with the pacing cycling length
PCL as the continuation parameter. Here, the channel conductance GK , the current step amplitude A and the step duration d were chosen as for
Fig. 1PV. The red dashed and solid lines show the maximum and minimum voltage values of unstable and stable limit cycles. Blue markers depict
several PD bifurcations of limit cycles spread across a wide range of PCL values. B Zoom into the PD area of A) in neighborhood of the PCL value
corresponding to the chaotic EAD trace shown in Fig. 1PV. Again, the detection of serveral PD bifurcations that seem to obey Eq. (11) suggests that
the period doubling route to chaotic EADs is on hand. The upper solid branch depicts the minimum voltage value of stable limit cycles that
correspond to regular periodic AP orbits, once again demonstrating the coexistence of chaotic EAD dynamics and periodic AP dynamics in model PV

bifurcation repertoire of dynamical systems. Finally, the
discontinuities in the bifurcation diagrams due to a failure
of the numerical continuation and the unraveled unstable
limit cycle branches require further analysis to extract the
full information about the dynamical repertoire of Eq. (2).
Note, however, that our bifurcation approach led to the
discovery of chaotic EADs in unforced cardiac AP models
and furthermore offers an explanation via the PD route to
chaos then also uniformly applicable to chaotic EADs in
forced cardiac AP models.

Conclusions
EADs are pathological voltage oscillations during the
repolarization phase of the AP of cardiomyocytes and are
considered as potential triggers of cardiac arrhythmias
in context of both ion channel diseases and drug car-
diotoxicity testing. In this study, we have contributed to
the theory of EAD dynamics by attributing their chaotic
appearance to cascades of period doubling bifurcations
of limit cycles in deterministic AP models. As demon-
strated in this article, the detection of PD cascades via the
numerical continuation of limit cycles is possible both for
paced and unforced cardiac AP models and serves as a

strong indicator of chaotic EAD dynamics that then take
place in immediate vicinity in the parameter space. Hence,
the automatically executable detection of PD cascades in
the full AP dynamics defines a parameter-to-output map
F : p → PD(p) which might allow to formulate and
solve associated inverse bifurcation problems [25] that
address the avoidance or the control [19] of chaotic EAD
dynamics in cardiomyocytes. Furthermore, PD cascades
might serve as classifiers of proarrhythmicity that provide
improved risk prediction in comparison with purely sim-
ulation based and unspecific markers such as APD90 or
AP upstroke velocity. Also, the incorporation of drug-ion
channel interaction models [41] into Eq. (2) such as, e.g.,
simple pore block

G = 1
1 + D

IC50

would allow to conduct the bifurcation analysis directly
with respect to drug concentration D or IC50 of the ion
channels of interest. In that regard, the findings of this
study might be of relevance for the currently unfolding
CIPA initiative to redefine the drug safety paradigm [20].
Though the latter considers mathematical modelling and
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simulation of cardiac APs as one of its three pillars (next to
ion channel studies and experiments with hiPSC-CMs), it
seems to so far ignore the potential of bifurcation analysis
for the illumination of arrhythmic and chaotic behaviour
in dynamical systems.
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