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Clostridium butyricum maximizes growth
while minimizing enzyme usage and ATP
production: metabolic flux distribution of a
strain cultured in glycerol
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Abstract

Background: The increase in glycerol obtained as a byproduct of biodiesel has encouraged the production of new
industrial products, such as 1,3-propanediol (PDO), using biotechnological transformation via bacteria like Clostridium
butyricum. However, despite the increasing role of Clostridium butyricum as a bio-production platform, its metabolism
remains poorly modeled.

Results: We reconstructed iCbu641, the first genome-scale metabolic (GSM) model of a PDO producer Clostridium strain,
which included 641 genes, 365 enzymes, 891 reactions, and 701 metabolites. We found an enzyme expression prediction
of nearly 84% after comparison of proteomic data with flux distribution estimation using flux balance analysis (FBA). The
remaining 16% corresponded to enzymes directionally coupled to growth, according to flux coupling findings (FCF). The
fermentation data validation also revealed different phenotype states that depended on culture media conditions; for
example, Clostridium maximizes its biomass yield per enzyme usage under glycerol limitation. By contrast, under glycerol
excess conditions, Clostridium grows sub-optimally, maximizing biomass yield while minimizing both enzyme usage and
ATP production. We further evaluated perturbations in the GSM model through enzyme deletions and variations in
biomass composition. The GSM predictions showed no significant increase in PDO production, suggesting a robustness
to perturbations in the GSM model. We used the experimental results to predict that co-fermentation was a better
alternative than iCbu641 perturbations for improving PDO yields.

Conclusions: The agreement between the predicted and experimental values allows the use of the GSM model
constructed for the PDO-producing Clostridium strain to propose new scenarios for PDO production, such as dynamic
simulations, thereby reducing the time and costs associated with experimentation.
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Background

The rising biodiesel industry has resulted in a major
overproduction of glycerol as a byproduct, which now
threatens the economic viability of this industry [1, 2].
This situation has spurred research into glycerol
utilization as a carbon source [3—-5] and for the generation
of products such as 1,3-propanediol (PDO), a precursor of
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important commercial polymers, such as polyester and
polyurethane [6, 7]. PDO can be biosynthesized from
glycerol by bacteria such as Clostridium butyricum or
Kilebsiella spp. [3, 7]. Clostridium species are the more
attractive alternative because they are safer and achieve
higher yields than Klebsiella [8]. However, industrial PDO
production using bacteria is still limited by insufficient
yields, which presents a serious obstacle to the competi-
tiveness of this process [9-11]. Therefore, strategies such
as fed-batch cultures and random mutagenesis have been
developed, resulting in improvements in PDO production
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of up to 137% and 78%, respectively [11-13]. A more de-
tailed understanding of the metabolic pathways in species
such as Clostridium butyricum could therefore shed light
on a better ways to promote glycerol transformation to
PDO in this organism.

Metabolism studies of glycerol by the anaerobic bac-
terium Clostridium butyricum have generally focused on
its central metabolism, which is composed of oxidative
and reductive branches [14]. The oxidative branch is
mainly related to the production of ATP and reducing
equivalents (NADH), with the formation of acetic and
butyric acids as byproducts. By contrast, the reductive
branch produces PDO while simultaneously regenerating
reducing equivalents by conversion of NADH to NAD
[7, 9, 15]. Bizukojc et al. [16] reported the most detailed
metabolic model for a PDO producer Clostridium strain,
indicating the functioning of 77 reactions and 69 metab-
olites. The model, in addition to the oxidative and re-
ductive branches, also included simplified synthesis
reactions for amino acids, macromolecules, and biomass.
However, at present, metabolic models based on genome
annotation information, also known as genome-scale
metabolic (GSM) models [17, 18], are lacking for
Clostridium butyricum.

A proteomics study of the native Colombian strain
Clostridium sp. IBUN 158B cultured in glycerol [19] has
provided experimental validation of the enzyme expres-
sion involved in PDO metabolic networks in this specie.
The proteome contained 21 enzymes classified as follows:
one from the reductive branch (PDO dehydrogenase),
three from the oxidative branch, eleven from carbohydrate
synthesis, four from amino acid synthesis, and two from
nucleotide synthesis. Gungormusler et al. [20] also used
proteomics for the experimental detection of 262 different
enzymes expressed by Clostridium butyricum 5521 cul-
tured in glycerol. Nevertheless, despite this experimental
information and the computational tools available, the
prediction of PDO production by Clostridium based on its
metabolic behavior is still limited.

One computational tool commonly employed for
metabolic modeling is flux balance analysis (FBA). FBA
allows the use of a steady state assumption of defined
culture conditions to predict the phenotype of one
microorganism based on its GSM model [21-25]. How-
ever, a GSM model expressed as stoichiometric matrix is
an undetermined system, that is, it has more reactions
than metabolites. This creates a situation with infinite
solutions, so an objective function is required to predict
the microorganism phenotype. FBA then becomes an
optimization process in which the constraints are the
culture conditions, mass balances, and thermodynamic
feasibilities [22, 25-28].

In general, predictions using GSM models assume bio-
mass yield maximization as the objective function, based
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on the assumption that cells have evolved to select the
most efficient pathways that achieve the best yields [29].
Nevertheless, predictions with biomass maximization do
not always capture the cellular physiology, and alternative
objective functions have been developed [28, 30-33].
Studies have included error minimization by bi-level
optimization [30, 34, 35], objective function selection by
Bayesian inference [31] or by Euclidian distance
minimization [32], and linear combination of objective
functions [28, 36]. The results, overall, highlight that a cell
does not maximize biomass yield under scenarios like sub-
strate excess, so that one single function is unable to
predict all the evaluated scenarios [28, 32, 33, 37-39].

For these reasons, the initial purpose of the present re-
search was to construct the first GSM model of a PDO
producer Clostridium strain. The biological model
selected was the Colombian strain Clostridium sp. IBUN
13A, a strain isolated by our Bioprocesses and Biopros-
pecting Group. This strain is a natural PDO producer
and has been employed over the last 20 years in several
studies aimed at understanding PDO production, includ-
ing the annotation of its genome [40-42]. Additionally,
as second objective, our intent was to predict the pheno-
typic states of this bacterium during culture in glycerol
and in other substrates using the GSM model and FBA
with the adequate objective function. Our overall aim
was to evaluate the effect of perturbations in the con-
structed GSM model on PDO yield improvements.

Results and discussion

Genome-scale metabolic model iCbu641 reconstruction
and curation

A draft metabolic model for the Clostridium sp. IBUN
13A strain was constructed based on RAST annotation
[41]. The draft was composed of 641 genes, 365 en-
zymes, 671 reactions, and 606 metabolites. GapFind [43]
analysis of the draft model identified 303 blocked metab-
olites, which were reduced to 63 by adding 59 reactions
based on experimental fermentation evidence from
Clostridium butyricum cultured in glycerol [15, 19, 44]
and on curated GSM models from other solventogenic
clostridia [16, 45—52]. The biomass reaction was adapted
from C. beijerinckii GSM [45], which does not account
for the proton formation associated with ATP hydrolysis
during the growth-associated maintenance (GAM), as is
also observed in C. acetobutylicum [49]. This excluded
proton would accumulate in the biomass, thereby pre-
venting stabilization of the biomass charge. By contrast,
the GSM models of C. thermocellum [50], C. ljungdahlii
[52], and C. cellulolyticum [51] include this proton pro-
duction in their biomass reactions. Therefore, the proton
formation was included in the present biomass reaction
to resolve the inconsistency in the elemental compos-
ition of the biomass, as well as the charge balance. The



Serrano-Bermudez et al. BMC Systems Biology (2017) 11:58

elemental composition per C atom, calculated based
only on stoichiometric consumption of precursors, was
therefore CH; 62400 .456N0.216P0.03350.0047-

After curation, elemental balancing, and loop deletion,
the constructed iCbu641 GSM model included 641 genes,
891 reactions, and 701 metabolites. Table 1 summarizes
the main features of the curated metabolic network, and
Fig. 1 shows the pathway distribution of the cytosolic reac-
tions. Comparison with other GSM models of solvento-
genic Clostridium strains showed 11 unique enzymes,
including as PDO dehydrogenase (EC.1.1.1.202) and
glycerol dehydratase (EC.4.2.1.30). These two enzymes
function in lipid metabolism but are associated with the
reductive branch of glycerol metabolism [14].

The iCbu641 metabolic network is the first GSM
model curated for a PDO producing Clostridium strain
[17, 18, 49] (See Additional files 1 and 2 for complete
metabolic model at excel format and SBML format,
respectively). The iCbu641 model also includes all the
enzymes associated with glycolysis and the pentose phos-
phate pathway and most of the enzymes involved in the
TCA cycle. The enzymes from the TCA cycle that were
not included are malate dehydrogenase (EC.1.1.5.4),
succinate-CoA ligase (EC.6.2.1.4 - EC.6.2.1.5) and fumar-
ate reductase (EC.1.3.5.4), which were not detected in the
genome. Therefore, additional experimentation is re-
quired to verify the presence or absence of genes encod-
ing these three enzymes in the genome of Clostridium sp.
IBUN 13A. The model is able to synthesize de novo all
the precursors involved in the biomass reaction (e.g.,
amino acids, nucleotides, fatty acids, teichoic acid, and
cofactors).

Flux distribution prediction using flux balance analysis
with glycerol as substrate

The constructed iCbu64l GSM model and FBA were
employed to predict the flux distribution of Clostridium
butyricum cultured in glycerol. FBA was solved using
linear programming (LP) with biomass maximization as

Table 1 Main features of the iCbu641 metabolic network

Feature Number

Genes 641

Enzymes 365

Total Reactions 891
Cytosolic reactions® 727
Transport reactions 86
Exchange reactions 78

Total Metabolites 701
Blocked metabolites 63

“Includes 17 simplified biomass and macromolecule synthesis reactions [45]
and 59 reactions added in the curation
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an objective function. When compared with the experi-
mental data, FBA predicted a biomass overestimation
and no PDO production (Fig. 2 — Blue lines), giving bio-
mass vield (Yx,s) and PDO yield (Yppoys) errors of 300%
and 100%, respectively [44]. Therefore, taking into
account only biomass yield, we could infer that, experi-
mentally, Clostridium butyricum does not grow opti-
mally in glycerol. This can be explained mathematically,
because the objective function and all constraints (mass
balances and thermodynamic feasibilities) used were lin-
ear. This means that the optimum found is indeed a
vertex of the feasible solution space [38], where no PDO
could be produced.

Contrary to FBA predictions, PDO production in Clos-
tridium sp. IBUN 13A is related to dha operon expression
and the enzyme activity of both PDO dehydrogenase
(EC.1.1.1.202) and glycerol dehydratase (EC.4.2.1.30), which
have been experimentally detected in the presence of gly-
cerol as main carbon source [40, 53, 54]. The lack in
predictions can be interpreted biologically based on redox
balance together with the capability of C. butyricum to pro-
duce formic acid and hydrogen (H,) [44]. Clostridium
butyricum is an anaerobic bacterium, so according to the
redox balance, the substrate must act simultaneously as an
acceptor and donor of electrons [55]. However, the afore-
mentioned capability allows to LP optimization predicts
that the substrate could be used mostly as an electron
donor, thereby generating more ATP and biomass. This
prediction is achieved due to the regeneration of reducing
equivalents through formic acid and H, formation, which
would require no substrate as an electron acceptor to pro-
duce reduced compounds such as PDO. In other words, in
the vertex predicted by LP optimization, the substrate is
used mainly as an electron donor due to the formation of
formic acid and H,, and no PDO is produced.

Similar results were observed using glucose as a sub-
strate, where formic acid and H, were overproduced in-
stead of reduced products like butanol or ethanol, which
have been detected experimentally (data not shown)
[56]. Consequently, LP optimization could be considered
as unsuitable for predicting the experimental yields of
Clostridium butyricum, which is capable of producing
formic acid or H,. Nevertheless, LP optimization is com-
monly employed in solventogenic Clostridium strains,
although all of them are able to produce at least hydro-
gen [45, 47, 48, 50, 51]. This lack of prediction could be
solved using experimental constraints of formic acid and
H, secretion in LP optimization; however, no linear
trend was observed, especially in H, secretion [44].

A new objective function of maximizing biomass yield
per flux unit (Equation 1) was therefore employed to im-
prove the FBA predictions. This objective function is
based on the hypothesis that cells operate to maximize
biomass yield while minimizing enzyme usage [32]. This
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Fig. 1 Distribution of cytosolic reactions in the iCbu641 GSM model by functional pathway. Notation (m) Gene-Associated reactions (m) Non

non-linear programming (NLP) optimization is non-
convex, but Schuetz et al. suggested that the predicted
local optimum is indeed the global optimum [32]. In
addition to the new objective function, a non-linear
constraint was employed, which corresponds to the
maximum acetic acid secretion flux and has an allosteric
trend in the function of glycerol uptake flux [44]. There-
fore the constraint was not used during simulations with
other carbon sources, as glucose. This allosteric trend of
acetate production has been previously reported for
Clostridium butyricum cultured in glycerol as a mechan-
ism to control acetyl-CoA/CoA and ATP/ADP ratios
[57]. The new simulations (Fig. 2 — Red lines) predicted
Yx/s and Yppoys errors of nearly 4.5%, and 1.5%, respect-
ively, when compared with the experimental values
obtained under limiting conditions of glycerol (<15 g/L)
[44]. Therefore, the error reduction using NLP predic-
tions suggests the resolution of the redox balance prob-
lems observed in LP optimization caused by the
capability of producing formic acid and H,. It also
suggests that Clostridium butyricum indeed minimizes
enzyme usage and prefers short pathways (PDO

production) to maximize its growth under limiting nu-
trient conditions.

U
R vars W
=

Identical phenotypic predictions were also observed
using both LP and NLP optimizations when the produc-
tion of hydrogen and formic acid were blocked as
additional constraints (data not shown). This validates,
on the one hand, the effect of these products in the lack
of prediction using LP optimization. On the other hand,
NLP optimization indeed predicts global optima, as sug-
gested Schuetz et al. [32].

However, the new objective function overestimated
Yx,s under glycerol-excess conditions (without reaching
inhibition conditions) [44], suggesting that Clostridium
butyricum grows under sub-optimal conditions when
the substrate is present in excess, as is also observed in
E. coli [32]. This behavior is understandable if thermody-
namics is considered. Growth, as with any reaction, is
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thermodynamically feasible if its driving force, expressed
as Gibbs free energy, is negative (AGgown < 0). Growth
Gibbs free energy can be expressed as a function of bio-
mass yield and the Gibbs free energies for catabolism
and anabolism, as shown Eq. 2 [55]. Therefore, an im-
provement in thermodynamic feasibility will be coupled to
biomass yield reduction, as occurs in scenarios such as
substrate competition with other microorganisms [55].
This suggests that a substrate excess condition could
induce the above scenario in order for the organism to
prevail in this environment.

1

AGgrowth = Y y
X/S

AGcambolz’sm + AGunabolism

(2)

The sub-optimal behavior was accounted for in the
objective function of Eq. 1 by the use of a tunable
weighting factor (w) that minimizes both the enzyme
usage and ATP production of the network (Equation 3).
The ATP incorporation in the objective function is based
on experimental results [15, 44] and because a reduction
in ATP production is related to the respective biomass
yield reduction. Therefore, a weight w equal to 1 corre-
sponds to the optimal conditions of Eq. 1. The use of
weight factors has been described by Torres et al, who
added ATP and NADH/NADPH minimization or
maximization to the objective function, which improved
S. cerevisiae growth predictions up to 98% [36, 39]. On
this basis, simulations under excess conditions were
made using a weight factor equal to 0.04 (w = 0.04),
where the average experimental errors were minimal
[44]. The average Yx,;s and Yppoys errors were 5.3% and
2.5%, respectively, as shown Fig. 2 — Green Lines,
confirming the ability of FBA to provide accurate predic-
tions of these results through NLP optimization. How-
ever, this weight factor only applies to Clostridium
butyricum cultured anaerobically in glycerol; additional
experimental data would validate its usage.

7
wd 2, 2] 4+ (1-w) [Vazp prod?]

Max we(0,1) (3)

We further validated the necessity of employing the
weight factor at sub-optimal conditions of glycerol by
comparing both predicted phenotypes with the results
reported by Zeng [15]. Zeng found that the directionality
of the reaction catalyzed by ferredoxin reductase
(EC.1.18.1.2 or EC.1.18.1.3) changes if glycerol is in limi-
tation or in excess. Under the limiting condition, ferre-
doxin reductase consumes reducing equivalents and
produces more H, and less PDO than is observed under
the excess condition, where ferredoxin reductase
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produces reducing equivalents. Consequently, Zeng
quantified ferredoxin reductase directionality by calcu-
lating the ratio between hydrogen and reduced ferre-
doxin formed (a,/rs). The experimental ratios are 1.1
and 0.4 under limiting and excess glycerol conditions,
respectively. Similarly, the ratios predicted by FBA are
1.46 and 0.40 at optimal and sub-optimal conditions, re-
spectively. Therefore, the predictions for both conditions
agree with the reported values and validate the utility of
the weight factor in predicting glycerol cultures.

We also compared the flux prediction for the 365 en-
zymes present in iCbu641 with the experimental expres-
sion of the 286 enzymes detected by Gungormusler et al.
in the proteome of the Clostridium butyricurn DSM
10702 strain cultured under limiting glycerol conditions
[20]. An analysis of the 174 common enzymes using flux
couple finding (FCF) revealed 80 enzymes that were
partially or fully coupled to growth and 67 enzymes that
were directionally coupled to growth [58]. The re-
maining 27 enzymes were blocked and were therefore
excluded from the comparison. These 27 enzymes could
be blocked due to a lack of gene annotation or exclusion
from biomass synthesis (e.g., terpenoid synthesis). Ter-
penoids have been detected in the cell walls of Clostrid-
ium strains and may arise as a stress response to the
acids formed during culture [59]. The terpenoid pathway
could be unblocked if these metabolites are added to
biomass synthesis, but their concentration levels first
need accurate quantification [59].

Assuming a qualitative correlation between the expres-
sion and flux for the 147 enzymes included in the com-
parison, FBA was able to predict the expression of 123
of them (83.7%). The remaining 24 non-predicted en-
zymes correspond only to directionally coupled growth
and most of them (21 enzymes) are involved in carbohy-
drate metabolism and the synthesis of nitrogenous com-
pounds (amino acids and nucleotides). The absence of a
prediction for these enzymes could be due the presence
of alternate pathways and isozymes, as is the case for
asparagine synthase (EC.6.3.5.4), isocitrate dehydrogen-
ase (NADP) (EC.1.1.1.42), and glycerol-3-phosphate
dehydrogenase (EC.1.1.1.94), where the alternative en-
zymes are asparagine synthetase (EC.6.3.1.1), isocitrate
dehydrogenase (NAD) (EC.1.1.1.41), and glycerol kinase
(EC.2.7.1.30), respectively. Another possible cause is the
inability of FBA to predict regulation mechanisms [60],
as is the case for the enzyme pyruvate phosphate
dikinase (EC.2.7.9.1), which is involved in the gluconeo-
genesis pathway but appears to act in the place of pyru-
vate kinase, consuming AMP instead ADP [61, 62].
Other enzymes, such as nicotinate phosphoribosyltrans-
ferase (EC.6.3.4.21) or pyrimidine nucleoside phosphor-
ylase (EC.2.4.2.2), show a lack of prediction because they
are involved in RNA or DNA fragment recycling [63].
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Finally, 1,4-alpha-glucan branching enzyme (EC.2.4.1.18)
or starch synthase (EC.2.4.1.21) were not predicted as
they are part of granulose synthesis, a process that is not
included in the biomass reaction. Granulose is a poly-
saccharide employed as carbon source during sporula-
tion; therefore, it is produced during exponential
growth [64]. (See Additional file 3 for complete prote-
omic comparison results).

Flux distribution prediction using FBA and other carbon
sources

The robustness of iCbu641 was further tested by com-
paring the experimental and simulated data using other
substrates at optimal conditions, Eq. 1. We first com-
pared the FBA predictions and experimental yields of
Clostridium butyricum W5 cultured in glucose [56], as
shown in Table 2. We observed an accuracy of nearly
97% for predicting the biomass yield using this substrate,
confirming the ability to predict not only glycerol
cultures but also glucose cultures. All the reported ex-
perimental yields also agreed with their respective pre-
dicted feasible ranges calculated using flux variability
analysis (FVA).

Junghare et al. [65] also evaluated biomass and hydro-
gen production of Clostridium butyricumm TM-9A using
different carbohydrates. Our comparison of the experi-
mental yields with the predicted yields obtained through
FBA is shown in Table 3. The trends in the predicted
Yx,s agree with the experimentally obtained values,
showing smaller yields for pentoses and the highest yield
for the trisaccharide raffinose, while the yields using
monosaccharides were lower than those obtained using
disaccharides. However, some differences are observed
between the experimental and predicted values. First, ri-
bose and xylose had considerably higher experimental
than predicted yields. Second, the experimental yield for
cellobiose was much lower than the predicted yield. Fi-
nally, although the simulations predicted the same yields
for arabinose and ribose, their experimental yields dif-
fered. The first case could be a result of an incomplete
curation of iCbu641 related to pentose consumption;
therefore, more experimental information is needed. The

Table 2 Comparison of the experimental and simulated yields
(mol/mol) of Clostridium butyricum W5 cultured in glucose [56]

Product Experimental Yield Predicted feasible range
Biomass 0.0270 0.0279 (0.0228-0.0330)
Acetate 0.172 0.574 (0-1.053)

Lactate 0.566 0.179 (0-0.773)

Butyrate 0.295 0.114 (0-0454)

H, 1.325 0.661 (0.046-1.345)
Ethanol 0.043 0.215 (0-0.714)
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Table 3 Comparison experimental and simulated yields (mol/mol) of
Clostridium butyricum TM-9A cultured in different carbohydrates [65]

Carbohydrate  Experimental Yields Predicted Yields
Ys Yhoss YSs Feasible range Yyy/s

Arabinose 2.5% 0.067 6.7% 0.204-1.101
Ribose 25.3% 0.843 6.7% 0.236-1.100
Xylose 32.3% 0.589 11.1% 0.327-1.406
Mannose 30.8% 0.668 36.2% 0.046-1.346
Fructose 32.2% 0.848 37.2% 0.092-1.374
Galactose 35.9% 0.864 29.1% 0478-1.711
Cellobiose 35.9% 0.945 59.9% 0.141-2.468
Trehalose 65.7% 1.612 72.3% 0.030-2.485
Sucrose 74.9% 1.494 70.1% 0-2.323
Raffinose 100.0% 2716 1000%  0-3.141

?Biomass yields were normalized based on the raffinose value

second and third cases could be due to miscalculation of
the experimental yields of arabinose and cellobiose, since
these substrates were not consumed completely, as can
be inferred from their pH reports [65]. The last can
point to the possibility that Clostridium was not well
adapted to these substrates and may have needed to
undergo more generations to reach its optimal growth
[33]. The hydrogen yields (Yyo/s) showed experimental
values that were mostly within their respective predicted
feasible ranges. The only unpredicted Y5 corre-
sponded to arabinose, which supports the necessity of
complementing iCbu641 for consumption of pentoses.
Consequently, iCbu641 has the capacity to be employed
to predict Clostridium butyricum growth using different
carbohydrates as substrates.

We also assumed a qualitative correlation between the
enzyme flux and mRNA expression and compared FBA
predictions and experimental transcriptomics results for
the C. butyricum strain CWBI 1009 cultured in glucose
[66]. Of the 288 enzymes shared by both systems, 51
were blocked according FCF analysis and excluded from
comparison. Among the remaining 237 enzymes, FBA
predicted the activity of the 123 enzymes as partially and
fully coupled to growth and 56 enzymes directionally
coupled to growth, for a total of 179 predicted enzymes
(75.5%). Similar to the proteomics comparison, the last
58 non-predicted enzymes were also directionally
coupled to growth, and their lack of prediction is con-
sistent with the reasons mentioned in the proteomics
comparison. However, the lack of prediction of enzymes
involved in thiamine production is highlighted, which is
because this cofactor is not included as a biomass pre-
cursor. A similar situation happens with holo-ACP syn-
thetase (EC.2.7.8.7), an enzyme involved in the CoA
hydrolysis required to synthetize acyl carrier proteins
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(ACPs) [67]. (See Additional file 3 for complete tran-
scriptomic comparison results).

Qualitative comparisons between proteomic and tran-
scriptomic data require the assumption that enzymes are
active, but this depends on different factors, like post-
translational modifications, allosteric control, etc. [68].
Such factors are also a problem even when quantitative
omics data are used in mathematical approaches that are
employed to predict phenotype states [69]. However,
qualitative proteomic and transcriptomic comparisons
with FBA predictions have been previously reported
using E. coli K12 by Lewis et al. [70], who found predic-
tions for up to 82% of the evaluated enzymes, and most
of the unpredicted ones were isozymes, in agreement
with our results.

Finally, the knockout mutant of Clostridium butyricum
W5 obtained by ClosTron technology [71] was employed
to evaluate the ability of iCbu641 to predict yields after
perturbations in GSM. This mutant has butyric acid pro-
duction blocked; its experimental yields are shown in
Table 4. The wild type strain yields were predicted using
FBA, while the mutant strain yields were obtained using
regulatory on/off minimization (ROOM) [72]. ROOM
was employed because it is better at predicting mutant
phenotypic states when compared to other approaches,
like minimization of metabolic adjustments (MOMA)
[39]. This is because the ROOM approach seeks to
maintain both the metabolic network and gene expression
stabilities, as determined experimentally [72]. Simulations
predicted an increased yield of ethanol using the mu-
tant strain, and this was experimentally detected
(Table 4). A biomass yield (Yx/s) reduction was also
predicted for the mutant strain. By contrast, the
experimental reduction of hydrogen vyield in the
mutant was not predicted; however, this is not conclusive
since the FVA ranges of the wild type and mutant strains
did agree with their experimental values.

Modeling scenarios with PDO yield increment

Three scenarios were evaluated to predict an increase in
Ypposs using iCbu641. The first strategy was to use
ROOM to predict single and double mutants through in
silico enzyme deletion. The 145 enzymes associated with
reactions directionally coupled to growth at culture
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conditions, as reported by Comba et al. [19], were con-
sidered in the analysis. Enzymes fully or partially
coupled to growth were not considered, since their dele-
tions would affect the culture time and therefore
increase the fermentation costs. A total of 18 enzymes
catalyzed at least two reactions that could block growth
if simultaneously deleted, including dihydrodipicolinate
reductase (EC.1.17.1.8) or proline oxidase (EC.1.5.1.2).
Similar results were obtained for the 22 double enzyme
deletions, such prephenate dehydrogenase (EC.1.3.1.12)
and prephenate dehydrogenase (NADP) (EC.1.3.1.13) or
shikimate dehydrogenase (EC.1.1.1.25) and quinate/shi-
kimate dehydrogenase (EC.1.1.1.282). Most of the single
and double deletions enhanced the Yppo,s by up to 1%
in relation to the wild type strain. One of the best
mutant predicted had simultaneous deletion of lactate
dehydrogenases (EC.1.1.1.27 and EC.1.1.1.28), which in-
creased Yppos only to nearly 1.2% (See Additional file 4
for complete mutant prediction results).

Single knockout mutants obtained from Colombian
strain Clostridium sp. IBUN 158B [73] to improve the
PDO production were used for validation. This is a dif-
ferent PDO producer strain, but research shows that the
native strains currently sequenced share at least 99% of
the genome (Article in preparation). Therefore, no sig-
nificant differences were expected between the metabolic
models of 13A and 158B, supporting the use of these
mutants in validation. The inactivated enzymes were hy-
drogenase (AhydA-420 s), lactate dehydrogenase (AldhA-
508 s), and 3-hydroxybutyryl-CoA dehydrogenase (Ahbd-
414 s), corresponding the lack of production of hydrogen,
lactic acid, and butyric acid, respectively. Montoya [73] re-
ported that these three mutants were viable, as shown
Table 5; however, he cultured only two of them due lack
of time during his doctoral research. The biomass yield
predictions for the mutants were overestimated, although
a trend was predicted. This overestimation could be due
to smaller glycerol uptake fluxes for the mutants, which
would result in inadequate biomass yield normalization;
however, the lack of measurements limits the elaboration
of better comparisons.

The experimental values for PDO yields agreed with
the predicted range, validating the ROOM simulations.
Moreover, the FVA of the wild type strain indicated a

Table 4 Comparison experimental and simulated yields of wild type and mutant strains of Clostridium butyricum W5 cultured in

glucose [71]
Product Experimental yields Simulated yields (FVA range)

Wild strain Mutant strain Wild strain (FBA) Mutant strain (ROOM)
Ha 1.25° 0.69 0661 (0.046-1.345) 0.694 (0-1.787)
Ethanol 0.18 331° 0.215 (0-0.714) 0.680 (0-1.069)
Biomass® 100% 99.2%° 100% 95.0%

#Values calculated from information reported by Cai et al. [71]
bYields reported as percentages based on the wild type strain
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Table 5 Comparison experimental and simulated yields of wild
type and mutant strains of Clostridium sp. IBUN 158B cultured in
glycerol [73]

Strain Experimental yields Simulated yields (FVA range)
Y?(/S YPDO/S Yi/S YP’DO/S

Wild strain -~ 1000 £ 8% 0.538 £ 0.047 100%  0.588 (0.479-0.656)

AhydA-420's 467 £ 9% 0465+ 0031 758% 0610 (0478-0.721)

AldhA-508 s 616+ 3% 0579 + 0021 989%  0.595 (0.489-0.659)

Ahbd-414 s Not available ® 952%  0.572 (0.448-0.656)

“Biomass Yields were normalized based on the wild type strain value
PData not measured experimentally by Montoya [73]

PDO maximum flux that was 11.6% higher than the flux
predicted by FBA; therefore, none of the mutants would
show an increase in the PDO yield greater than this value
without affecting biomass yield. This validates the single
and double mutant predictions and suggests that mutant
elaboration by knockout is an inadequate strategy for im-
proving PDO vyields. Similar results were obtained using
Optknock, with up to 3 deletions [35, 74|, where the max-
imum PDO vyield predicted was 0.712 deleting hydrogen
and butanol production. This agreed with the ROOM pre-
dictions shown in Table 5 and indicated a biomass yield
reduction of nearly 28%. The Optknock maximum PDO
yield value was 17.4% higher than the predicted value
under glycerol limitation, but it was only 0.4% higher than
the predicted value under glycerol excess, which reinforces
that blocking reactions are useless. This can be under-
stood by considering that PDO is a primary metabolite
and its production is associated with growth [10, 75].

The second strategy evaluated was perturbation in the
biomass composition by simultaneous random variation
of stoichiometric coefficients of 44 precursors and 8
macromolecules. This strategy was evaluated since mod-
ifications in the culture media can affect biomass com-
position, such as accumulation of lipids during nitrogen
starvation or protein accumulation with excess of nitro-
gen in the culture medium [76]. Normal distributions
with relative standard deviations of 30% were employed
for all stoichiometric coefficients considered in the
perturbation. Figure 3 shows the Yy/s and Yppo/s correl-
ation values, indicating low correlation with the precur-
sors (fatty acids, amino acids, nucleotides, polar lipids
and cofactors) but a higher correlation with macromole-
cules, especially proteins (the main biomass component,
accounting for 86.7% on a molar basis). This could
suggest that a low protein content in the cell could
improve Yy,s and reduce the Yppo,s, due their nega-
tive and positive correlations, respectively. However,
the relative standard deviations obtained for Yy,s and
Ypposs were 3.2% and 0.45%, respectively, meaning
that the model is sufficiently stable to perturbations
in biomass composition. These predictions suggest
that changes in culture media aimed at modifying
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biomass composition and enhancing PDO yields
would be unnecessary. However, modifications in the
culture media could reduce PDO yield, as Dabrock
et al. found using iron in excess [77].

The third strategy evaluated was to use two substrates
simultaneously: glucose and glycerol. Glucose is used as
carbon source, while glycerol is used to maintain redox
balance, therefore generating higher Yppo,s values than
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obtained using glycerol as single substrate [78]. Figure 4a
shows the experimental values and FVA ranges, which
suggest that the cell operates at optimal conditions to pro-
duce PDO when glucose is present in the medium. This
validation allowed an evaluation of the Yppg,s at different
glucose and glycerol uptake fluxes, as shown Fig. 4b,
which shows no PDO production (Yppo,s = 0) in the ab-
sence of a glycerol uptake flux. The results also show the
complete transformation of glycerol to PDO (Yppo/s = 1),
using ratios of at least 0.375 between uptake fluxes of
glucose and glycerol. Therefore, these predictions permit
the proposal that co-fermentation is the best alternative
for improving biomass and PDO yields. However, a priori
prediction of the molar ratio between these substrates that
could allow these flux ratios is difficult.

Conclusions

We generated iCbu641, the first curated genome-scale
metabolic model for a PDO producer Clostridium strain.
During iCbu641 validation, we solved flux balance ana-
lysis using LP optimization; however, according to the
experimental data, the model predicted errors of nearly
300% for biomass yield and failed to predict PDO pro-
duction. Therefore, NLP optimization was employed in
FBA simulations, and the new objective function maxi-
mized biomass yield per flux unit [32]. The validation
allowed prediction of appropriate growth and PDO pro-
duction of cultures under glycerol limitation, but it still
overestimated the experimental yields of cultures under
glycerol excess. Thus, sub-optimal growth predictions
under glycerol excess were achieved through a second
NLP optimization, where ATP minimization was added
to objective function. Therefore, both objective functions
were able to predict Clostridium butyricum growth and
PDO production under limiting and excess glycerol
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conditions. Additional validations were developed using
proteomics and transcriptomics data, as well data from
knockout mutants, which allowed verification of the ac-
curacy of predicting perturbations of iCbu641. All vali-
dations were completed using experimental data from
different Clostridium butyricum strains and suggested
that iCbu641 is an agnostic GSM model at the state
steady, but the differences may be observed during dy-
namic predictions.

Subsequently, perturbations in the metabolic network
and biomass composition were proposed to increase the
PDO vyield predictions. However, these perturbations pre-
dicted no significant increments. We also evaluated
glucose-glycerol co-fermentation as a strategy to improve
PDO yields. We found that a ratio of glucose and glycerol
uptake fluxes greater than or equal to 0.375 would allow
the complete conversion of glycerol to PDO; however, ex-
perimental analysis is needed to find the molar ratio that
allows the achievement of this flux ratio. Finally, predic-
tions of PDO production in state steady cultures using
iCbu641 allows the proposal of this GSM model for pre-
dicting dynamic cultures (i.e. batch and fed-batch fermen-
tations) capable of increasing PDO production, thereby
minimizing the need for direct experimental efforts.

Methods

Genomic scale metabolic model iCbu641 reconstruction
The draft genome was obtained for the Colombian-
native strain Clostridium sp. IBUN 13A, isolated and
stored by the Bioprocesses and Bioprospecting Research
Group from the Institute of Biotechnology of the Uni-
versidad Nacional de Colombia. This draft genome was
previously sequenced and annotated and is available in
GenBank with the accession no NZ_JZWG00000000.1
[41]. The strategy used for initial manual curation was
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reverse engineering proposed by Senger and Papoutsakis
[47]; automated curation was also employed using
GapFind and GapFill [43]. The GSM models of the
solventogenic Clostridium strains C. acetobutylicum
[46-49], C. thermocellum ATCC 27405 [50], C. beijer-
inckii NCIMB 8052 [45], C. ljungdahlii ATCC 55383
[52], and C. cellulolyticum H10 [51] were used as a data-
base for the curation. The resulting network is based on
KEGG nomenclature, whereas the SEED database [79]
was used in mass and charge balances at pH 7. Finally,
thermodynamically infeasible loops were eliminated ac-
cording to the methodology of Schellenberger et al. [80].

The values for growth-associated maintenance (GAM)
and non-growth—associated maintenance (NGAM) were
reported for Clostridium acetobutylicurn ATCC 824 by Lee
et al. and are 40 mmol-ATP-g"! and 5 mmol-ATP.g “h™",
respectively [46]. An allosteric model was also included as
an upper bound constraint for the acetic acid secretion flux
in the function of glycerol uptake flux. This trend was ob-
tained using the experimental data reported by Solomon
et al. [44] and Papanikolaou et al. [81]. The kinetic model
was expressed as a logistic function, with 0.158 and
11.5-mmol-g™" h™" as initial and maximum values, respect-
ively, and —0.0879-gh-mmol " as the accumulation rate, as
shown in Eq. 4.

11.5%0.158* ¢(~0:0859 Vetseeot)
11.5 + 0. 158* (e(—0.0859*vglyceml) _ 1)

Vacetic acid<
(4)

Flux balance analysis

The dynamics of the mass balance of metabolite x; in-
volved in N reactions is described in Eq. 5, where Sj; is the
stoichiometric coefficient of metabolite i in reaction j, and
v; is the flux value in which this reaction occurs [25, 80].
Now, assuming a steady state, Eq. 5 can be expressed for
M metabolites; however, since N > M, the prediction of
fluxes v; can be achieved using FBA, which maximizes or
minimizes an objective function Z (Equation 6). The con-
straints of this function are the mass balances for the M
metabolites and the upper v;***, and lower v;”i” bounds of
the N fluxes v; [28, 31]. Additionally, feasible ranges of
fluxes predicted by FBA are calculated using FVA. Since
the objective functions employed are non-linear, the ob-
jective function value Z calculated with FBA has to be re-
laxed by 5%, as suggested Mahadevan et al, Eq. 7 [82].
The mutant phenotypes were predicted using the ROOM
approach, Eq. 8, where b; is the binary number of reaction
j [72]. Also, v,l;wﬂd and v}, are the lower and upper confi-
dence limits of wild type flux j. § and € are relative and ab-
solute tolerance ranges, respectively.
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(8)

Experimental validation
The experimental validation used two robustness ana-
lyses, as reported by Price et al. [83]: the former for the
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growth rate (p) and the latter for PDO secretion flux
(vppo), both according to the glycerol uptake flux
(VGiyceror): The robustness analyses were made using
different objective functions for both glycerol limited
and glycerol excess conditions. The objective function
employed under glycerol limitation was biomass
maximization per enzyme usage. Under glycerol excess,
the biomass was maximized, while both enzyme usage
and ATP production were minimized, where ATP produc-
tion corresponds only to thermodynamically feasible reac-
tions able to produce ATP. According to KEGG

nomenclature, these reactions are R00156, R00158,
R00200, R00315, R00332, R00512, R00570, R00722,
RO1512, RO1547, R01665, R01688, R01724, R02090,
R02093, R02094, R02098, R02326, R02331, R03005,

R03035, R03530, and R03920. The predicted values were
compared with the experimental values reported for the
Clostridium butyricum DSM 5431 strain cultured in gly-
cerol limited and glycerol excess conditions [44].

The prediction capability of enzyme expression was
also evaluated by comparing the enzymes present in
both metabolic model iCbu641 and the experimental
proteome of the strain Clostridium butyricumm DSM
10702 cultured in glycerol [20]. The enzymes in the
model were classified as blocked or directionally,
partially or fully coupled to growth using FCF, according
to the methodology reported by Burgard et al. [58].
Blocked enzymes were excluded from the comparison;
this comparison assumed that all the expressed enzymes
were active and catalyzed some reaction. Therefore, the
enzyme expression could be: a) predicted when the flux
of some of the reactions catalyzed by such enzyme is dif-
ferent to zero; b) not predicted when all the fluxes of re-
actions catalyzed by the enzyme expressed in the
proteome are equal to zero.

Validation was also obtained using data from experi-
mental cultures of Clostridium butyricum strains in sub-
strates other than glycerol, such as glucose [56] and
other carbohydrates [65]. The transcriptome reported by
Calusinska et al. [66] for strain C. butyricum CWBI
1009, was also used for validation; this organism had
been cultured in glucose using batch fermentation with
uncontrolled pH. The mRNA detected in the transcrip-
tome coded a total of 913 enzymes (532 unique and 381
redundant), where values at the exponential growth
phase were used in a similar way to those from the
proteomic data.

In silico perturbations of the metabolic model

Regulatory on/off minimization (ROOM) [72] was em-
ployed as a strategy for prediction of the phenotypic states
of mutants by knockout of enzymes directionally coupled
to growth. In total, 145 single mutants were evaluated.
Double deletion was also studied by simultaneously
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blocking two enzymes, excluding enzymes previously de-
tected as essential in the single deletion; this led to evalu-
ation of almost 7900 double mutants.

We also made perturbations in the biomass composition
expressed by the variation of stoichiometric coefficients of
8 macromolecules, 7 fatty acids, 20 amino acids, 8 nucleo-
tides, 3 polar lipids, and 6 cofactors. FBA was performed
using different compositions randomly generated using
normal distributions with standard deviations equivalent
to 30% the values used in GSM model iCbu641. A total
number of 10,000 simulations were made, where 965 of
them were excluded because at least one of the concentra-
tions was negative. Coefficients of correlation were calcu-
lated for biomass and PDO yields using the remaining
9035 biomass precursor combinations.

Technical implementation

FBA, FVA, and ROOM were computer simulated using
GAMS (General Algebraic Modeling System, GAMS
Development Corp., Washington, DC) software V.24.2.2
r44857 for Linux. Linear and Nonlinear Programming
(LP and NLP) were developed with solver CONOPT
v3.15 N, and Mixed Integer Programming (MIP) was de-
veloped with solver CPLEX 12.6.0.0. Data were analyzed
using Microsoft Excel® 2010.
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