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Abstract

Background: Co-expression has been widely used to identify novel regulatory relationships using high throughput
measurements, such as microarray and RNA-seq data. Evaluation studies on co-expression network analysis
methods mostly focus on networks of small or medium size of up to a few hundred nodes. For large networks,
simulated expression data usually consist of hundreds or thousands of profiles with different perturbations or
knock-outs, which is uncommon in real experiments due to their cost and the amount of work required. Thus,
the performances of co-expression network analysis methods on large co-expression networks consisting of a
few thousand nodes, with only a small number of profiles with a single perturbation, which more accurately
reflect normal experimental conditions, are generally uncharacterized and unknown.

Methods: We proposed a novel network inference methods based on Relevance Low order Partial Correlation
(RLowPC). RLowPC method uses a two-step approach to select on the high-confidence edges first by reducing
the search space by only picking the top ranked genes from an intial partial correlation analysis and, then
computes the partial correlations in the confined search space by only removing the linear dependencies from
the shared neighbours, largely ignoring the genes showing lower association.

Results: We selected six co-expression-based methods with good performance in evaluation studies from the
literature: Partial correlation, PCIT, ARACNE, MRNET, MRNETB and CLR. The evaluation of these methods was
carried out on simulated time-series data with various network sizes ranging from 100 to 3000 nodes. Simulation
results show low precision and recall for all of the above methods for large networks with a small number of
expression profiles. We improved the inference significantly by refinement of the top weighted edges in the
pre-inferred partial correlation networks using RLowPC. We found improved performance by partitioning large
networks into smaller co-expressed modules when assessing the method performance within these modules.

Conclusions: The evaluation results show that current methods suffer from low precision and recall for large
co-expression networks where only a small number of profiles are available. The proposed RLowPC method
effectively reduces the indirect edges predicted as regulatory relationships and increases the precision of top
ranked predictions. Partitioning large networks into smaller highly co-expressed modules also helps to improve
the performance of network inference methods.
The RLowPC R package for network construction, refinement and evaluation is available at GitHub: https://github.
com/wyguo/RLowPC.
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Background
Over the last fifteen years, there has been a growing
interest in reverse engineering of Gene Regulatory
Networks (GRNs) that aim to infer complex graphs
representing transcriptional regulatory relationships,
directly from gene expression profiles [1–15]. Due to
its low computational complexity as well as lower re-
quirements for the number of samples, co-expression
network analysis has been widely used to infer gene
regulatory networks from high throughput expression
data, such as microarray or RNA-seq data [10, 16–
19]. Typically thousands of genes/transcripts of spe-
cial interest (e.g. differentially expressed) are utilized
to construct the co-expression network in an experi-
ment. Top candidates whose expression correlates
with the gene of interest are usually further examined
to identify novel regulators/targets. Despite this ap-
proach being widely used, there is a general lack of
studies on the precision (the fraction of inferred regu-
latory relationships that are correct) and recall (the
fraction of regulatory relationships that are inferred)
expected.
Considerable effort has been made to evaluate the

performance and robustness of GRN inference
methods. The majority of evaluations were imple-
mented on in silico datasets simulated from reference
networks with sizes up to a few hundred or 1–2000
genes. Numerous studies using a range of network
sizes, time-series data and perturbations have com-
pared different analysis methods. Results are variable
in terms of the top-performing method (Summaries in
Additional file 1: Table S1). A series of studies have
been carried out by the Dialogue for Reverse Engin-
eering Assessments and Methods (DREAM) project,
which generates challenges and organizes contests an-
nually. The DREAM3 challenge presents gene net-
work inference problems based on in silico networks
of sizes ranging from 10, 50 and 100 genes [20–24].
Gene expression data was simulated using these net-
works for the following scenarios: 1) the steady state
of the unperturbed networks, as well as steady state
of the network where every gene is knocked out or
down; and 2) 4, 23 and 46 different time series for the
size 10, 50 and 100 networks respectively, with 21
time points for each time series. For example, for the
network of size 100, there are a total of 1067 gene ex-
pression profiles with different perturbations and
knockout/knockdown experiments available to make
the inference. The inference methods: Scan Bayesian
Model Averaging (ScanBMA), Gene Network Infer-
ence with Ensemble of trees (GENIE3) and Minimum
Redundancy NETworks using Backward elimination
(MRNETB) were the top performers in three different
studies using the DREAM4 challenge time-series data,

which is composed of five perturbation experiments for size
10 networks and ten perturbation experiments for size 100
networks, each with 21 time points [24–27] (Additional
file 1: Table S1). Besides the DREAM benchmark datasets,
the Bayesian Network (BN), Graphical Gaussian models
(GGMs) and Relevance Network (RN) methods were com-
pared using expression simulations of 100 sample points
for a size 11 network with BN and GGM performing best
[12]. The Algorithm for the Reconstruction of Accurate
Cellular Networks (ARACNE) method had a much better
performance than BN and RN on expression data with
1000 samples simulated from size 100 networks [28] while
MRNET was the top ranked method when compared to
the RN, ARACNE and Context likelihood or relatedness
(CLR) methods on 30 datasets with different network sizes
(from 100 to 1000) and sample sizes (from 100 to 1000)
[29] (Additional file 1: Table S1).
A few studies aimed to evaluate network methods on lar-

ger networks of a few thousand genes. In the DREAM5
challenge, Least Absolute Shrinkage and Selection Operator
(LASSO), CLR and GENIE3 are top performers among
more than 30 network inference methods on a size 1643
network with 805 simulated gene expression profiles, where
a list of regulators (potential transcriptional factors) are
given [30]. Ten network inference methods on size 1000
network from S. Rogers [31], size 300 and 1000 networks
from SynTReN [32] and size 1565 and 2000 networks from
GeneNetWeaver (GNW) [24] were assessed using simu-
lated datasets of 1000, 800, 1000, 1565 and 2000 experi-
ments individually. CLR, GENIE3 and MRNET were the
top performers in this study [33]. Similarly, ARACNE, Gen-
eNet, Weighted Correlation Network Analysis (WGCNA)
and Sparse PArtial Correlation Estimation (SPACE) were
compared using size 17, 44, 83, 231, 612 and 1344 networks
over datasets with 20, 50, 100, 200, 500 and 1000 sample
points simulated from Gaussian distribution [34]. GeneNet
ranked in the first place followed by ARACNE (Additional
file 1: Table S1).
Despite the large number of evaluation studies, none

have explored the normal experimental situation where a
regulatory network is generated which involves hundreds
and thousands of genes with only a small number of pro-
files being available. The assessments in the literature were
based on either small and medium sized networks or data-
sets with a large number of samples. The evaluation con-
clusions were also based on a large amount of simulated
expression profiles which would be difficult to validate ex-
perimentally due to the prohibitive cost or the amount of
work in real experiments [35, 36].
Distinguishing direct regulatory interactions from indirect

associations has been one of the major challenges in gene
regulatory network constructions [2, 21] (see Fig. 1a). Par-
tial Correlation (PC) is one of the methods used as a solu-
tion to distinguish direct from indirect edges of each pair of
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candidates by calculating the correlations after removing the
linear dependencies from the remaining genes (see Fig. 1b).
Othermethods dealing with indirect connections include Par-
tial Correlation coefficient with Information Theory (PCIT),
ARACNE, MRNET and MRNETB. PCIT and ARACNE use
the InformationTheory of Data Processing Inequalitymethod
to remove theweakest gene association in each possible triplet
structure in a network [37]. PCIT uses first order PC (remov-
ing the linear dependencies from the third gene in each pos-
sible triplet) to measure the significance of edge associations
[38], whilst ARACNE usesMutual Information (MI) tomeas-
ure the associations between any two edges in each possible
triplet [28]. MRNET uses a minimum redundancy feature se-
lection method [39], where for each candidate gene in a MI
network, it selects a subset of its highly relevant genes while
minimising theMI between the selected genes [29].MRNETB
is an improved version ofMRNET using a backward selection
strategy starting from assuming that all genes are connected
to the candidates. Less relevant genes are eliminated until the
difference between theMI between a candidate and its neigh-
bours and theMIwithin the neighbours are optimised [27].
Given that the search space for regulatory relationships ex-

pands factorially with the number of genes included in the
network, the precision and recall of regulatory inference

decrease with the increase of the network size. As gene clus-
ters with highly cohesive patterns give rise to high correlations
between all pairs of the genes in that cluster, the top ranked
highly co-expressed genes may also be prone to errors of in-
direct associations. Here, we have developed a new method
named Relevance Low order Partial Correlation (RLowPC),
which is a refinement of top inferred edges by Partial Correl-
ation methods. RLowPC selects top ranked edges from an in-
ferred PC network as a reduced search space for indirect
edges.We evaluated RLowPC alongside PC, PCIT, ARACNE,
MRNET, MRNETB, and CLR on simulated time-series data
and the summaries of the evaluated network inference
methods is shown in Table 1. Precision and Area Under
Precision-Recall curves (AUPR) were used as metrics to show
that RLowPC outperforms the othermethods.

Methods
Relevance low order partial correlation (RLowPC)
The conventional pair-wise PC measures correlations after
linear dependencies on all the remaining genes are re-
moved, the majority of which may not connect to the can-
didates, especially in large networks where the majority of
the genes only have few linked neighbours [40, 41]. Low
order partial correlation methods have been proposed and

a b

Fig. 1 Indirect edge and RLowPCnetwork. aAn indirect association from X1→ X2 could arise from a regulatory structure of X1→ X3→ X2.b RLowPC network
inference. In an RLowPCnetwork, firstly only the top ranked edges are kept in a pre-inferred PC network and then for each pair of genes, only the immediate
neighbourswill be regressed for PC calculation. In this example only the top 6 of 10 edgeswith highest correlations are kept and PC between X1 and X2 is
re-calculated by removing the effects from two immediate neighbouring nodes (X3, X5). The correlation values are represented by the thickness of the edges

Table 1 Summaries of the evaluated network inference methods

Category Methods Cor-based MI-based Ref.

Deal with indirect edges explicitly RLowPC Yes

PC Yes [2, 45]

PCIT Yes Yes [33, 38, 50, 51]

MRNET Yes [29, 33, 39, 50]

MRNETB Yes [27, 29, 33, 50]

ARACNE Yes [28, 33, 50]

Not deal with indirect edges Cor Yes

CLR Yes [33, 48, 50]

Random

Nine correlation-based, MI-based and random network inference methods have been compared and evaluated in this study. The methods are classified into two
main groups: Deal with indirect edges explicitly and Not deal with indirect edges
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utilized in the past to reduce computational complex-
ity without much sacrifice in prediction accuracy. For
example, de la Fuente et al. [42] proposed to calculate
up to second order partial correlations regressing
against all the remaining genes. This method was im-
proved by confining the second order partial correl-
ation calculation only in cases where both zero and
one order PC are non-zero [43]. Our proposed

RLowPC method, firstly, reduces the search space by
only picking the top ranked genes from partial correl-
ation analysis and, secondly, computes the PC by only
removing the linear dependencies from the shared
neighbours in the confined search space, largely ig-
noring the genes showing lower association and
which are less relevant in the pair-wise PC calcula-
tion. The implementation details are shown below:
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For PC and shrinkage PC calculation we have used
ppcor R package [44] and corpcor R package [45],
respectively.

Gene expression data simulation
The main purpose of this study is to evaluate the per-
formance of different network inference methods on
datasets that reflect real experimental setup: large num-
ber of genes in the network with limited sample sizes
and perturbations. Here, to evaluate the proposed
methods comprehensively, large scale gene expression
datasets were generated based on a variety of network
structures using GNW version 3.1 [22, 24]. We used in
silico size 100 networks in DREAM4, extracted size 500
and 1000 networks from a source E.coli network with
1565 nodes and 3758 edges and size 2000 and 3000 net-
works from a Yeast source network with 4441 nodes and
12,873 edges as reference networks. The source net-
works were provided by GNW [22, 24]. The networks
were denoted as GNW100, GNW500, GNW1000,

GNW2000 and GNW3000. Summaries for data gener-
ation can be found in Table 2. For each size, network
extraction was repeated five times yielding five net-
works with different structures and kinetics for statis-
tical analysis of the results. To generate the time-series,
transcription kinetic models of reference networks were
firstly generated in GNW by removing self-regulatory
interactions and randomly assigning transcription fac-
tor (TF) genes to groups to produce protein binding
complexes. In the time-series simulation procedure,
Stochastic Differential Equations (SDEs) were used to
model the transcription kinetics, gene activation by
protein complexes, gene perturbations, mRNA and
protein production and degradation. One-third of the
genes in each time-series were randomly selected and
perturbed from steady state at the initial time-point.
Perturbations were implemented by varying the activa-
tion strengths in the protein binding simulations to en-
hance or inhibit the downstream expression of target
genes. The perturbations were sustained until the

Table 2 Source network structures and synthetic datasets

Network name TF-gene networks Gene No. Edge No. Network density Data generator Data type Ref.

GNW100 GNW100_1 DREAM4 in
Silico size 100

100 176 0.0356 The TF-gene reference networks
were subsets of source networks
in GNW. In each dataset, 1/3
genes were randomly selected
and perturbed. Each experiment
was sampled at 21 time points. 3
replicates were generated by
adding different amount of
noises. The noises are simulated
by GNW. All the parameter
settings were defaults in GNW.

Time-series data
with multifactorial
perturbation

[22, 24]

GNW100_2 100 249 0.0503

GNW100_3 100 195 0.0394

GNW100_4 100 211 0.0426

GNW100_5 100 193 0.0390

GNW500 GNW500_1 E.coli 500 1365 0.0109

GNW500_2 500 867 0.0069

GNW500_3 500 1107 0.0089

GNW500_4 500 947 0.0076

GNW500_5 500 1272 0.0102

GNW1000 GNW1000_1 E.coli 1000 2337 0.0047

GNW1000_2 1000 2455 0.0049

GNW1000_3 1000 2089 0.0042

GNW1000_4 1000 2171 0.0043

GNW1000_5 1000 2249 0.0045

GNW2000 GNW2000_1 Yeast 2000 4738 0.0024

GNW2000_2 2000 4467 0.0022

GNW2000_3 2000 5055 0.0025

GNW2000_4 2000 5283 0.0026

GNW2000_5 2000 4817 0.0024

GNW3000 GNW3000_1 Yeast 3000 7515 0.0017

GNW3000_2 3000 7998 0.0018

GNW3000_3 3000 7626 0.0017

GNW3000_4 3000 8075 0.0018

GNW3000_5 3000 7333 0.0016

A number of directed network structures were generated from source networks provided by GNW. The network names, gene and edge numbers for each structure are listed
in the table. Network density is defined as the true edges divided by all possible edges. The network structures were used to simulate the time-series datasets using GNW
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middle of the time-series at time point 11 when the ac-
tivation strengths were changed back to initial levels.
A random noise term proportional to production and
degradation was introduced in the SDE model, indu-
cing high noise for activated genes and low noise for
inactivated genes. The coefficient to control the noise
amplitude was set to 0.05. Another random noise,
which was independent to the noise in SDEs, was
added at the final step to the expression data to simu-
late technical variations [46]. The parameters for acti-
vation strengths, production, degradation and noises
were set as defaults in GNW. The time-series gener-
ation were repeated five times yielding five different
time-series with different initial conditions and pertur-
bations. Average results obtained from these time
series as well as five different network structures are
reported in this study. Parameter setting details are
shown in Additional file 1: Figure S3 and Additional
file 2: Configuration file for GeneNetWeaver. Three
biological replicates were generated for each time-
series. By using the replicates, analysis of variance was
carried out to select genes with significant expression
changes across all 21 time-points with p-value cut-off
of 0.001. In each experiment, there are only 63 gene
expression profiles generated from one perturbation
used for the network construction. The repeated gen-
eration of time series data as well as the network ex-
traction are only used for statistical purposes to take
the average and calculate the variations.

Evaluation of the network inference methods
Besides the methods mentioned earlier, we also included
Pearson correlation, which has been the most commonly
used method to identify correlated gene pairs, as well as
random guessed network, which serves a baseline for
network inference performances. We also included the
CLR method, which although not partial correlation-
based, has been shown to perform well in several studies
[30, 33, 47–49]. We divided the methods under investi-
gation into two groups. Group one includes all the
methods that deal with indirect edges explicitly, which are
RLowPC, PC, PCIT, ARACNE, MRNET and MRNETB.
Group two are the methods which do not deal with indir-
ect edges explicitly and they are CLR, Pearson correlation
and random guessed networks. For MI-based methods,
such as ARACNE, MRNET, MRNETB and CLR networks,
we have used the minet R package with default parameters
[50]. The MI matrices of the methods were approximated
using Pearson correlation directly from continuous time-
series data [27, 49]. The PC matrices were calculated by a
shrinkage approach using corpcor R package [45]. The
Boolean PCIT adjacency matrices were calculated using
PCIT R package [38, 51], which was used as a weight to
Pearson correlation networks [33]. For the RLowPC

method, the top (1500, 2000, 3000, 5000, 8000) weighted
edges of inferred PC networks in GNW100, GNW500,
GNW1000, GNW2000 and GNW3000 datasets were se-
lected as search space for indirect edges. Details for tools
used in the network inference analyses can be found in
Table S2 in Additional file 1. In each inferred network,
the top 1000 edge predictions was used to calculate True
Positive (TP), False Positive (FP), True Negative (TN)
and False Negative (FN) by comparing to the reference
networks. The precision (TP/(TP + FP)) and pAUPR
(partial plot of Area Under Precision against Re-
call = TP/(TP + FN)) values were calculated by picking
the top ranked edges. pAUROC (partial Area Under the
Receiver-Operating curve) was also calculated and the
results were shown in the Supplementary material. All
the evaluation of network inference methods was based
on undirected network structures and the self-regulation
edges were removed.

Results
RLowPC significantly improves the precision and recall in
top predictions
Figure 2 illustrates the average pAUPR values, which are
the partial Area Under Precision against Recall of the
top 1000 predictions, for the different methods for dif-
ferent network sizes. Firstly, all methods except one case
for ARACNE, outperformed the random guessed net-
work, which proves the utility of such co-expression
network analysis methods. Secondly, the performances
of all methods are quite consistent across different net-
work sizes. Within Group One, RLowPC consistently
performs better than all of the other methods, with
MRNET/MRNETB being the next best. Within Group
two, CLR clearly outperforms the most commonly
employed Pearson correlation method. The differences
of pAUPR values between different methods were deter-
mined using a Student t-test in pairs between RLowPC
and the other eight methods (Fig. 2). Results show that
the RLowPC method is able to improve the pAUPR
among the top edges significantly compared to other
methods except for a few cases. The pAUROC show
similar results (Additional file 1: Figure S1).
We further divided the top 1000 predictions into

groups of top 1–100, 101–500 and 501–1000 (Fig. 3).
The plots indicate that, once again, the precision of
RLowPC method outperformed all others, regardless of
which group within the top 1000 genes were selected for
investigation. MRNET, MRNETB and CLR again showed
slightly better performance than PC, PCIT and ARACNE
and correlation methods. It is noteworthy that the preci-
sions of all the methods are extremely low in large net-
works. For example, the precision median of RLowPC in
the GNW3000 networks is around 0.006, which
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indicates that in the top 100 predictions, only 0.6 (0.6%)
edges are true predictions.

Clustering before network inference could improve the
precision and recall in top predictions
Given that precision and recall is very low among the
top predictions for all methods for large networks, we
explored whether precision can be improved by dividing
the large networks into smaller highly cohesive clusters.
Using the time-series data generated for GNW3000 as
described above, all genes were clustered into non-
overlapping co-expressed modules using the R package
Weighted Correlation Network Analysis (WGCNA) with
default settings [52, 53]. Then, network inference and
evaluation were carried out separately and individually

in each module. Essentially, WGCNA was used to break
a big network into smaller non-overlapping subnet-
works, at which point we carried out the network infer-
ence and evaluations within these smaller networks with
the same time-series data. The pAUPR values were aver-
aged across all the modules and it did not include genes
that do not fit in any module (grey module). Similar to
the simulation settings above, the clustering and evalu-
ation procedures were repeated for five network struc-
tures, where five different time-series data were
simulated for each structure. The average results were
obtained. The average pAUPR values and precision dis-
tribution of the top 1000 predictions are presented in
Fig. 4. Compared with the results of GNW3000 in Figs.
2 and 3, all methods evaluated have improved when the

Fig. 2 Comparison of pAUPR values for different methods and different network structures. Each bar in the plots represents mean of pAUPR
values from the top 1000 edge predictions. Error bars represent standard error. The differences of pAUPR values between different methods were
determined using a Student t-test in pairs between RLowPC and the other eight methods. P-values are shown on the top of the bars if it is less
than 0.05
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WGCNA method was used. This can be seen with the
scale of average pAUPR values which increased from
1.0 × 10−5 to 1.0 × 10−3 (Fig. 4a), while the average pre-
cision of the top 1000 predictions has changed from
3.1 × 10−3 to 5.7 × 10−3 when the WGCNA method is
used (Fig. 4b). The pAUPR value of RLowPC method is
again significantly better than PC, PCIT, ARACNE, cor-
relation and random networks. In the groups of top 1–
100 and 101–500, the precision of RLowPC is better
than the other eight methods and in top 501–1000 it is
only better than PC, PCIT, correlation and random net-
works. The superior performances of RLowPC when the
WGCNA method is used are also observed on the
pAUROC plots (Additional file 1: Figure S2).

Discussion
The performance of different network inference methods
varies according to network structures, data quantity
and quality, and methodologies. The insufficiency of
sampling and the high complexity of regulation kinetics
prevent precise predictions of large gene regulatory
networks. As a large regulatory network is often under-
determined using a small number of samples, there ex-
ists multiple plausible solutions, which cannot be dis-
tinguished by the information presented in the sample.
This uncertainty in the inference of gene regulatory
networks has been termed in some studies as “infer-
ability” [54, 55]. Although our study mainly focuses on
the network inference methods, special attention

Fig. 3 Precisions within different groups of the top 1000 predicted edges. The top 1000 predicted edges are divided into three
groups, top 1–100, 101–500 and 501–1000. Each bin depicts the precision distribution of the method matched to the group and the
network structures
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should be paid to generate the most informative data
when trying to construct the accurate and comprehen-
sive underlying GRNs.
The co-expression based methods capture the rela-

tionships between genes which are perturbed directly
or indirectly. Therefore, the multifactorial intervention
on the regulators, as discussed in [30], or hub genes ra-
ther than on target genes will generate expression data
that is more informative for regulatory inference. Re-
sults presented here are based on the time-series data
corresponding to one perturbation simulation to reflect
more typical experimental conditions. When there are
more experiments available with different sets of genes
being perturbed, the inference accuracy tends to in-
crease with the increased number of gene expression

profiles available [35, 56]. Our data also show that the
precision median increases as the experiment size in-
crease (Fig. 5a). Using RLowPC, a precision of 0.014 is
achieved in one experiment, while using PC on 10 ex-
periments only leads to a precision of 0.012. Thus refin-
ing the top inferred edges using RLowPC is more
effective in improving precision than generating data
for nine more experiments.
With the number of possible edges growing factorially

with increasing number of genes, the sparsity issue in
large networks also becomes more prevalent. We ob-
served that precision of the network inference methods
increases with the increase of the network density (thus
the decrease of network sparsity) as shown in Fig. 5b.
Several types of methods have been explored to alleviate

a

b

Fig. 4 Evaluation of network analysis methods within co-expression modules by WGCNA on GNW3000 networks a Barplots of average pAUPR for
different methods. Error bars represent standard errors of the pAUPR values across the top 1000 predictions. A Student t-test was carried out to
determine the significance of the difference of pAUPR values between RLowPC and the other eight methods. P-values are shown on the top of
the bars if it is less than 0. b Box plots of precisions in different groups of top 1000 edge predictions. The means of precision within modules by
WGCNA (0.0057) and before clustering using WGCNA (0.0031) are shown as red and blue dashed lines
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this problem including using network inference methods
that allow imposing sparsity constraints [31, 57, 58] or
leveraging on multiple datasets on other species that are
evolutionary connected [59], or incorporating prior in-
formation, such as genetic maps [60], pathways, tran-
scription factor binding, protein-protein interactions,
gene ontology, epigenetics, literature, as well as func-
tional association databases to increase the efficiency
and reduce the search space by focusing on the top
weighted edges [61]. RLowPC method also uses a two-
step approach to select on the high-confidence edges
first. Thus there is enrichment of true regulatory rela-
tionships for the second step of the inference, which ex-
plains the improvement of gene regulatory inference
performances. Similarly clustering using WGCNA also
groups highly correlated and connected genes together,
which we see an increase of proportion in the true regu-
latory relationships. This has a similar effect on the net-
work inference performances.
AUROC and AUPR curves have been popular matri-

ces in the evaluation of network performances [21, 30,
33, 34]. AUROC measures the area under the curve be-
tween true positive rate/recall, which is calculated as
(TP/(TP + FN)) and false positive rate, which is calcu-
lated as (FP/(FP + TN) = FP/N). As in big sparse net-
works, the negatives (N) greatly exceed the positives
(P), thus false positive rate is less discriminative when
the network inference methods have very different
abilities to largely reduce the false positive predictions.

In the meantime, AUPR measures the area under the
curve between precision and recall. Precision, which is
calculated as (TP/(TP + FP) = 1-FP/(TP + FP)), cap-
tures the impacts of TP or FP in the evaluation of big
networks. Studies have shown that AUPR is more in-
formative than AUROC in evaluation on datasets
where the TP and TN is imbalanced. Large sparse net-
works are typical cases [62, 63]. As the purpose of this
study is to focus on the utility of co-expression net-
work inferences methods to prioritize the novel regula-
tory genes pairs for experimental validation from the
top ranked edges, we mainly focused on partial AUPR
curve to evaluate the accuracies and power of the net-
work inference methods on the top weighted edges,
which is more relevant than using the entire area
under the curve [64, 65].
One parameter required by the RLowPC method is a

number to define the search space for indirect edge re-
duction. For large networks, a reduction space larger
than the size of the top weighted edges under investiga-
tion should be applied but has to take into account the
computational search space and time required. Table 3
lists the average computational time for different sizes of
search space. A useful prior may be to enrich the reduc-
tion space with true gene connections. For example,
cluster analysis and functional annotation using other
experimental data or regulatory databases could be car-
ried out before network inference to investigate the
functions and modules of interest.

a b

Fig. 5 Other factors that influence the precision for network inference a Boxplots on the precision of PC and RLowPC methods inferred from
datasets with 1, 2, 3, 5, 10 and 20 experiments with different perturbations. b relationships between the average precisions of all network
inference methods used in this study and network density. The network names shown on the plot can be found in Table 2

Table 3 Average computational time of different sizes of reduction space using RLowPC

Top weighted edges 1500 2000 3000 5000 8000 10,000 50,000 100,000

Time 4.71 6.69 11.42 22.62 42.00 54.39 12.97 53.09

Units secs secs secs secs secs secs mins mins

The computational time is calculated based on Dell, Windows 7, 64-bit Operating system with 16.0GB RAM and Intel(R) Core (TM) i7–4790 CPU @ 3.60GHz
3.60 GHz processor
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Conclusions
In this paper, we present analysis of the evaluation of
different regulatory network inference methods with
special emphasis on large scale gene regulatory networks
with limited sample size. We developed a new method,
RLowPC, which improves the precision and recall in the
top weighted PC network structures. We evaluated all
methods on time-series datasets with only one perturb-
ation for various sizes of networks using a small number
of samples, which reflect better the high throughput
gene expression data usually generated in laboratory
experiments. We also demonstrated that clustering large
co-expression networks into functional and informative
co-expressed modules, improved the precision and recall
of the regulatory inference.
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