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Abstract

Background: Signal transduction pathways are important cellular processes to maintain the cell’s integrity. Their
imbalance can cause severe pathologies. As signal transduction pathways feature complex regulations, they form
intertwined networks. Mathematical models aim to capture their regulatory logic and allow an unbiased analysis of
robustness and vulnerability of the signaling network. Pathway detection is yet a challenge for the analysis of
signaling networks in the field of systems biology. A rigorous mathematical formalism is lacking to identify all possible
signal flows in a network model.

Results: In this paper, we introduce the concept of Manatee invariants for the analysis of signal transduction
networks. We present an algorithm for the characterization of the combinatorial diversity of signal flows, e.g., from
signal reception to cellular response. We demonstrate the concept for a small model of the TNFR1-mediated NF-κB
signaling pathway. Manatee invariants reveal all possible signal flows in the network. Further, we show the application
of Manatee invariants for in silico knockout experiments. Here, we illustrate the biological relevance of the concept.

Conclusions: The proposed mathematical framework reveals the entire variety of signal flows in models of signaling
systems, including cyclic regulations. Thereby, Manatee invariants allow for the analysis of robustness and vulnerability
of signaling networks. The application to further analyses such as for in silico knockout was shown. The new
framework of Manatee invariants contributes to an advanced examination of signaling systems.

Keywords: Signaling pathway, Mathematical model, Petri net, Transition invariant, Feasibility, Manatee invariant,
NF-κB pathway

Background
Living cells interact with their environment to adapt to
changes and perturbations. The cell needs to control piv-
otal decisions such as cell differentiation, proliferation or
cell death to provide tissue homeostasis. Signal transduc-
tion processes mediate these cellular responses to changes
of environmental and intracellular conditions. The appro-
priate response is orchestrated and processed by a highly
intertwined and complex network of signal transduction
pathways. Alterations of these processes can result in
severe diseases and pathologies [1].
Mathematical models are useful frameworks to capture

signaling systems and to gain insights of the system-wide
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processes. To elucidate and understand the complex regu-
latory mechanisms of signal transduction networks, vari-
ous computational models have been applied. The models
range from small, but detailed, kinetic models to abstract,
large-scale models, which exhibit a coarse-grained view
of the cellular processes. Predominantly, ordinary differ-
ential equation (ODE)-based kinetic modeling has been
applied to quantitatively describe the changes of the
species concentrations in time and the resulting sub-
stance flow. As the availability of kinetic parameters is
often limited, ODE-based modeling is restricted to small
and well-characterized processes, such as the IκB-NF-κB
signaling module [2]. The majority of experiments on sig-
naling pathways provides mainly qualitative information
about the interrelations between the diverse molecular
components of a cell. Qualitative data as, e.g., from knock-
out experiments encourage the application of alternative,
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topology-basedmodeling strategies. The behavior of a sig-
naling network can be examined on an abstract level by
the application of methods such as Boolean networks [3],
interaction graphs [4] and Petri nets (PN) [5]. A Boolean
network describes the interdependencies of the entities
of a system by a set of Boolean functions. An interaction
graph analyzes the network’s topology to reveal the archi-
tecture and regulatory principles of the signaling system.
The Petri net formalism has been successfully applied to
model signal transduction systems, for example, in the
human iron homeostasis process [6], in the gene regula-
tion of the Duchenne muscular dystrophy [7], in the Von
Hippel-Lindau tumor suppressor interaction network [8]
and in the insulin receptor recycling [9, 10].
To investigate the robustness and vulnerability of a sig-

naling network, all possible pathways, i.e., signal flows
from signal reception to cellular response, need to be
determined. The well-established concept of elementary
modes defines sub-processes in metabolic networks that
occur under steady-state conditions [11]. Within the
PN formalism elementary modes coincide with minimal,
semi-positive transition invariants (TI). However, in the
analysis of steady-state processes for signaling networks,
there are crucial differences that need to be considered
for the application of elementary modes or TI. Metabolic
systems occur in homeostasis, while signaling pathways
display a rather transient and time-dependent behavior.
Klamt et al. [4], Behre and Schuster [12] and Schuster
and Junker [13] have successfully applied the steady-state
assumption to signaling networks as well.
A necessary condition for signal transduction mod-

els is to reproduce experimentally measured knockout
behaviour. In silico knockout experiments can predict the
model behavior to perturbations, such as gene knockouts
or inhibitions for drug treatment. A common concept to
examine in silico knockouts for mathematical models is
based on the computation of TI to reveal correct path-
way dependencies. The in silico knockout matrix provides
a valuable visualization of the effects of knockouts for
signaling systems [14].
Signaling systems exhibit specific characteristics of sig-

nal propagation, such as inhibitory relations, crosstalks,
feedback loops and signal amplifications. Signal ampli-
fication is an important mechanism, since the signal
strength is enhanced in signaling cascades. For exam-
ple, a kinase may have several substrates and thereby
catalyzes phosphorylation reactions repeatedly until it
is deactivated again. Another pivotal mechanism of sig-
naling is the feedback loop, which influences upstream
signaling processes either in a positive or negative way.
To gain insights of the biological system, these specific
regulatory features need to be captured in the mathe-
matical model. As a consequence, the network topol-
ogy contains directed cycles that hamper straightforward

application of TI for the detection of complete signaling
pathways.
To explore the basic behavior and perturbations of sig-

naling systems, many approaches have been proposed to
address the challenging issue of pathway analysis. Vari-
ous adaptations of TI and elementary mode analysis have
been introduced. A standard approach for PN is to sub-
stitute bidirectional read arcs by unidirectional arcs to
represent the main direction of the signal flow [15, 16].
Bidirectional arcs represent cycles in the network and
thereby affect the TI analysis. The modification simpli-
fies the description of the molecular processes and may
ignore important regulatory features. Sackmann et al. [17]
have introduced the notion of feasible TI to find complete
pathways in signaling systems. Feasible TI are specific
linear combinations of TI determined via read arcs adja-
cent to place invariants (PI). The concept of feasible TI
is applicable to re-establish a read arc linkage. Neverthe-
less, an algorithm for the computation of feasible TI is
lacking. Behre and Schuster [12] have adapted the concept
of elementary flux modes to signaling routes in enzyme
cascades, in particular for systems consisting of phospho-
rylation and dephosphorylation cascades. Klamt et al. [4]
have introduced interaction graphs and logical interac-
tion hypergraphs to analyze the structure of signaling and
regulatory networks. For interaction graphs, the detec-
tion of paths between pairs of species is equivalent to the
computation of elementary modes.
Furthermore, alternative, graph-based approaches to

analyze signaling pathways have been proposed as well,
such as the theoretical framework for detecting signal
transfer routes by Zevedei-Oancea and Schuster [18]. This
framework applies graph-theoretical breadth-first search
to reveal routes in a network from a specific initial factor
to a determined target and vice versa. The routes detect
dependencies of specific factors on targets. A related
approach for signaling networks, which are represented
as signed hypergraphs and consider composite nodes, has
been presented by Wang and Albert [19]. The introduced
method of elementary signaling modes is an extension
of the simple path analysis and represents a counterpart
to elementary modes. All previous concepts fall short
to reveal the complete combinatorial diversity of signal
flows at steady state in models of signaling systems, which
usually exhibit feedback loops or amplification cycles.
In this article, we adapt the notion of feasible TI [17]

and introduce the concept of Manatee invariants (MI) to
detect complete pathways from signal reception to cel-
lular response. For an introduction to the terminology
of the PN formalism, we refer to the methods section.
In the results section, we define the concept of MI to
obtain feasibility for TI and give the formal definition of
MI. Further, we apply the theoretical framework to the
TNFR1-mediated NF-κB pathway and demonstrate the
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applicability of the concept for in silico knockout exper-
iments. In the supplement, we describe an algorithm for
the construction of MI.

Methods
In this section, we introduce all terms of the Petri net
formalism used in the study based on [20–22].

Petri nets
A Petri net (PN) is a quintuple N = (P,T , F ,W ,m0) with:

• P and T are finite and disjunct sets of places and
transitions, respectively.

• F ⊆ (P × T) ∪ (T × P) is a set of arcs.
• W : F → N defines the weight of each arc.
• m0 : P → N0 is the initial marking.

The directed arcs define pre-places and post-places for
each transition. For a transition t ∈ T , the set Ft =
{p ∈ P | (p, t) ∈ F} denotes its pre-places and the set
tF = {p ∈ P | (t, p) ∈ F} its post-places. The sets
Fp = {t ∈ T | (t, p) ∈ F} and pF = {t ∈ T | (p, t) ∈ F}
define pre-transitions and post-transitions of a place p ∈ P,
respectively. A transition is defined as an output transition
if the transition has only pre-places and no post-places.
Analogously, a transition is defined as an input transition
if it has only post-places and no pre-places.
A read arc is a bidirectional arc and denotes a relation

of a transition to a pre-place that is also its post-place. A
PN is pure if no transition exists, for which a pre-place is
also a post-place, i.e., without read arcs. A PN is ordinary
if the weight of each arc is one.
Tokens are movable objects, which can be assigned to

places. The token distribution is the marking, m, of a PN
and defines a state of the system. The initial state of a sys-
tem is given by the initial marking, m0. For every state of
a system, a place p carries an amount of tokensm(p) ≥ 0.
A transition t ∈ T has concession, i.e., it is enabled or
activated, in a marking m if m(p) ≥ w(p, t) applies for
each pre-place, p ∈ Ft, and the corresponding weights of
the arcs, w(p, t) ∈ W . An enabled transition tj fires by
moving tokens from its pre- to post-places according to
mnew(pi) = mold(pi) + cij. In the incidence matrix C, the
element cij indicates the rearrangement of the tokens on a
place pi if transition tj fires:

cij :=

⎧
⎪⎪⎨

⎪⎪⎩

w(tj, pi) , if pi ∈ tjF ,
−w(pi, tj) , if pi ∈ Ftj,

w(tj, pi) −w(pi, tj) , if pi ∈ Ftj ∩ tjF , and
0 , otherwise.

(1)

Feasibility
A firing of a sequence of transitions σ = (t1, t2, . . . , tn)
results in a shift of tokens �m : P → Z0 with

�m = C x.

The vector x : T → N0 gives the number of occurrences
of transition tk in the firing sequence σ by the component
xk = #tk . In PN, the vector x is the Parikh vector of the
sequence σ and is denoted by σ .
A sequence of transitions σ = (t1, t2, . . . , tn) is called to

originate from amarking,m, if themarking enables the fir-
ing of each transition of the sequence. The p-th transition,
tp, of the sequence, σ , must have concession after firing
the transitions of the prefix (t1, t2, . . . , tp−1) of sequence
σ . This condition has to be true for each p = 1, 2, . . . , n.
The Parikh vector, σ , of a sequence σ that originates from
the initial marking m0 is called feasible in the marking
m0. The set LN (m) collects all firing sequences that orig-
inate from a marking m of a PN, N. The Parikh vector of
each sequence σ = LN (m) is feasible in the markingm. A
marking m′ is reachable from a marking m0 if a sequence
σ ∈ LN (m0) exists with m0

σ→ m′. A Parikh vector x is
called realizable in themarkingm if a markingm′ is reach-
able that makes x feasible, i.e., a sequence σ ∈ LN (m′)
exists such that x = σ . A Parikh vector x that is not feasi-
ble in a marking m0 may become feasible for a reachable
marking m′. In this case, x is realizable, but not feasible,
for the marking m0. A Parikh vector that is feasible in the
markingm0 is always realizable in the markingm0 as well.

Invariants
A transition invariant (TI) of a PN is defined as a Parikh
vector x : T → N0 that fulfills the equation

�m = C x = 0. (2)

A TI is denoted as true or semi-positive if x has no negative
component, x ≥ 0. The set of transitions, whose corre-
sponding components in x are positive, is called support
of x and is denoted by supp(x). If the greatest common
divisor of its non-null elements is one, a TI is called canon-
ical. The set of canonical TI of a PN can be infinite. To
obtain finite sets, we introduce the set of minimal TI.
A TI, x, is minimal if no other TI, x′, exists such that
supp(x′) ⊆ supp(x). Any TI can be generated from lin-
ear combinations of minimal TI. The set of minimal TI
is unique and finite. In the following, we consider mini-
mal, semi-positive TI and call them TI. A PN is covered
by TI (CTI) if each transition occurs in at least one TI.
For a Parikh vector x of a sequence σ that fulfills Eq. (2),
we define realizable TI and feasible TI. A Parikh vector x
is a realizable TI in N if a sequence σ ∈ LN (m′) exists
with σ = x and a reachable marking m′ with m′ σ→ m′
[21]. The term feasible TI is a special case of realizable TI
[17]. A Parikh vector x is a feasible TI in N if a sequence
σ ∈ LN (m0) exists with σ = x andm0

σ→ m0.
Equivalently, the equation

CT y = 0 (3)
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defines minimal place invariants (PI). A PI, y ∈ N
|P|
0 , y ≥ 0,

characterizes a token conservation rule for a set of places.
The set of places, whose corresponding components in
y are positive, is called support of y and is denoted by
supp(y). For further definitions and applications of PN
theory, we refer to [5, 20–23] and for algorithms for the
computation of invariants and the reachability problem,
see [24–26].

Results and discussion
Concept of Manatee invariants
Signal transduction systems exhibit cyclic regulations,
such as feedback loops, which cause cyclic structures
in network models. A common example of a cycle in
signaling cascades emerges in amplifications such as
enzyme-catalyzed reactions, i.e., reactions that restore the
enzyme’s activity. The catalytic reaction describes a recy-
cling of the enzyme and may be represented by a reaction
motif like the Michaelis-Menten reaction scheme. Such a
recycling step has an impact on the biological relevance
of TI. The PN in Fig. 1a describes an enzyme-catalyzed
reaction motif. The network is free of PI (PI-free) and
CTI, TI1 =(syn S, bin, rel, deg P) and TI2=(syn E, deg
E). TI1 describes the inflow of substrate S, its binding to
the enzyme E, forming the intermediate E:S complex and
the production of P under release of E. TI2 captures the
synthesis and degradation of enzyme E.
The TI of an enzyme-catalyzed reaction such as in

Fig. 1a covers, on the one hand, the recycling of the

E

S E:S complex Pbin relsyn S deg P

syn E deg Ea

b
E

S E:S complex Pbin relsyn S deg P

Fig. 1 Petri net (PN) of a Michaelis-Menten reaction scheme. a The PN
describes the synthesis and degradation of an enzyme E, which
catalyzes the conversion of the substrate S to the product P. The
network has two transition invariants (TI), TI1 =(syn S, bin, rel, deg P)
and TI2=(syn E, deg E), and therefore is covered by transition invariants
(CTI). It has no place invariant (PI). b The TI1-induced network, which
covers the process of the conversion of S to P, exhibits a PI, which
describes the regaining of the enzyme E, either bound in the E:S
complex or as the free enzyme E

enzyme, TI1, and, on the other hand, its synthesis and
degradation, TI2. Transition syn E, which synthesizes
enzyme E, is not part of TI1 because the coupling of tran-
sition syn E to TI1 would result in an accumulation of
the enzyme. An accumulation contradicts the definition
of TI to describe processes at steady state. In signaling
systems, synthesis or activation of enzymes is usually reg-
ulated by upstream signaling events. The enzyme may
need to be activated by upstream processes in the first
place, before it is able to catalyze any downstream reac-
tions. Both the upstream processes of enzyme activation
and the catalyzed downstream reaction may be covered
by TI. However, due to the condition of minimality inher-
ent to TI, the TI that covers the upstream processes and
the TI of the downstream reaction remain uncoupled.
This is also the case for the small example in Fig. 1a. TI2,
which captures the upstream process of the synthesis of E,
remains uncoupled from the downstream process covered
by TI1, which is dependent on E.
The small network in Fig. 1a demonstrates an interre-

lation of TI that cannot be ignored for the analysis of
signal transduction networks. Biologically, both TI are
interrelated, since the functionality of TI1 depends on the
synthesis of E in TI2. These findings for TI of enzyme-
catalyzed reactions also occur in other cyclic regulations,
such as feedback loops. Consequently, for networks with
cyclic structures, TI are unable to discover all pathways in
terms of sequences of reactions in a network, which cor-
respond to independent processes of signal propagation
in a signaling system. The coupling of biologically interre-
lated TI that represent complete pathways motivated the
concept of Manatee invariants (MI).
We adapted the notion of feasible TI of Sackmann

et al. [17]. TI that meet the property to be feasible in the
initial marking describe an entire biological pathway best
assuming that the initial marking corresponds to the phys-
iological state of an unstimulated cell. A TI is feasible in
a given input condition or initial marking if all transitions
of the TI can fire in sequential order. For a detailed defi-
nition of feasibility, see the method’s section. We propose
MI as linear combinations of TI to attain feasibility.
The concept of MI is best explained for the small PN in

Fig. 1a. The catalyzed conversion of the substrate S to the
product P in TI1 is blocked when no enzyme E is present
in the system. Consequently, TI1 is only feasible if at least
one token is assigned to the place E in the initial mark-
ing. Alternatively, the enzyme E can be produced by firing
of transition syn E of TI2. The linear combination of TI1
and TI2 is therefore also feasible in the zero initial mark-
ing, i.e., no tokens are assigned to any places in the initial
marking.
PI have an important impact on the feasibility of TI,

since the associated places need to be provided with a suf-
ficient amount of tokens. Let us consider the network in
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Fig. 1b. This network represents the TI1-induced network
of the PN in Fig. 1a. The TI-induced network covers all
places and arcs between the transitions of the TI.Whereas
the complete network in Fig. 1a is PI-free, the TI1-induced
network in Fig. 1b exhibits a PI, PI1=(E, E:S complex),
which describes the recycling of the enzyme E. The lin-
ear combination y1 = TI1 + TI2 induces a network that
matches the network in Fig. 1a and therefore is PI-free.
We defineMI as linear combinations of TI that fulfill the

following property. The MI-induced network, given by its
transitions, all their pre-places and all arcs in-between, is
free of PI, except for the PI of the complete PN.We call the
MI pure if theMI-induced network is PI-free and impure if
the network contains a PI of the complete PN. Therefore,
the pure MI of the PN model in Fig. 1a are y1 = TI1 +
TI2 and y2 = TI2. Note that, TI2 is feasible in any initial
marking, and the TI2-induced network is PI-free.
The construction of MI is motivated by the correlation

between the feasibility of TI and the existence of PI in
TI-induced networks. We assume a PN with a minimal
marking, i.e., tokens are assigned only to places belonging
to a PI. For PI within the TI-induced network, no tran-
sition of the TI can provide tokens to the places of the
PI. Thus, post-transitions of the places of the PI are only
enabled if the transitions not belonging to the TI, pro-
vide tokens to the places of the PI. Consequently, the TI
is not feasible in the minimal initial marking. Therefore,
to attain feasibility, the TI need to be coupled to the pro-
cesses that provide tokens to the PI in the TI-induced
network. MI interrelate the corresponding TI and thus
constitute a network that is PI-free. Evidently, a PI within
the TI-induced network that is simultaneously a PI of the
complete PN cannot be dissolved by any coupling to other
TI. We assume that PI of the complete PN were assigned
with tokens in the initial marking, but any PI within the
TI-induced network needs to be provided with tokens by
upstream processes of other TI.

Definition of Manatee invariants
We extended the concept of TI and defined the MI within
the PN formalism. We assumed a PN model of the molec-
ular processes of a signal transduction system. These
processes should be able to operate in a stable equilib-
rium. The resources that are required for signal trans-
duction should either be produced by the system itself
or have to be provided by the environment. In terms of
PN theory, the network should be CTI, pure and PI-free.
The following definitions and methods were worthwhile
also for other cases, but were motivated by the advan-
tages of their application to PN that are CTI, pure and
PI-free.

Definition 1:TI-induced network.
Let XTI be the set of TI of the PN, N = (P,T , F ,W ,m0).

For Y ⊆ XTI , the TI-induced network is given by NY =
(P′,T ′, F ′,W ,m0) with

• T ′ = ⋃
x∈Y supp(x),

• P′ = ⋃
t∈T ′ Ft and

• F ′ = ((P′ × T ′) ∪ (T ′ × P′)) ∩ F .

The nodes of the TI-induced network,NY , comprise the
transitions of the support, supp(x), of the TI, x, in Y and
all pre-places, Ft, of these transitions. The arcs of NY are
all arcs between the transitions and places in NY that are
also arcs in N.

Definition 2: PI-free TI-set (TI-set).
For a PN, N, let XTI and XPI denote the set of TI and the
set of PI, respectively. Let Y ⊆ XTI be a (sub-)set of TI of
N.NY is the TI-induced network of Y, and YPI denotes the
set of PI of NY . We call the set of TI, Y, a PI-free TI-set iff

⎛

⎝
⋃

x∈YPI
supp(x)

⎞

⎠ \
⎛

⎝
⋃

x∈XPI

supp(x)

⎞

⎠ = ∅. (4)

In the following, we will use the term TI-set as a syn-
onym for PI-free TI-set. Apart from the PI of the original
PN, the TI-induced network is free of additional PI. For
a PN that is CTI, the set of all TI is a TI-set because
condition (4) is fulfilled with YPI = XPI .

Definition 3: pure/impure TI-set .
Let Y be a TI-set ofN, and YPI denotes the set of PI ofNY .
We call the TI-set Y of N pure, iff

⋃

x∈YPI
supp(x) = ∅ (5)

and impure otherwise.

For a PI-free PN, the conditions (4) and (5) become
equivalent. The number of TI-sets, n, of a given PN is
finite with an upper bound of n ≤ 2|XTI | −1, where |XTI | is
the cardinality of the set of TI of the PN.We introduce the
term of aminimalTI-set as theminimal basis to construct
TI-sets as unions of such minimal TI-sets.

Definition 4:minimal TI-set.
LetM be the set of all TI-sets of a PN. A TI-set, Y ∈ M, is
minimal, iff

∀A,B ∈ M, A �= Y , B �= Y : A ∪ B �= Y .

Note that, the union of any two TI-sets is a TI-set, and
hence, it is sufficient to consider unions of two TI-sets to
prove that a minimal TI-set is unique and not a union of a
finite number of other TI-sets.
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Definition 5:Manatee invariant (MI).
Let Y be a minimal TI-set of a PN. An integer linear
combination

y =
∑

x∈Y
cx x

with cx ∈ N
+ is a Manatee invariant (of Y ). We call the

Manatee invariant, y, pure if the TI-set Y is pure and
impure otherwise.

Because anMI is a linear combination of minimal TI, an
MI is not necessarily a minimal invariant. The number of
MI is infinite. We define a finite set of MI asminimal MI.

Definition 6:minimal Manatee invariant.
Let Y be a minimal TI-set of a PN. AnMI, y = ∑

x∈Y cx x,
isminimal if either

• (type a) ∀x ∈ Y : cx = 1, or
• (type b) y is feasible in the initial marking,m0 = 0,

and no other MI y′ = ∑
x∈Y c′x x with c′ ≤ c is

feasible in the initial marking.

Preferably, we would like to compute MI of type b,
i.e., MI that are feasible in any initial marking. However,
the computation of MI of type b may not be possible
because the PN either is not PI-free or contains a motif
that restrains the feasibility. Exemplarily, Additional file 1:
Figure S2 depicts a pure MI that is not feasible inm0 = 0,
i.e., the MI is of type a. In the following, we consider only
minimal MI. For a description of an algorithm for the
construction of MI, we refer to Additional file 1.

Case study: The NF-κB signaling pathway
We applied the theoretical framework of MI to a model of
the TNFR1-mediated NF-κB pathway. Figure 2 illustrates
the biological processes of the NF-κB pathway. The full
protein names are given in the list of abbreviations in the
declaration section.
TNFR1 is a membrane receptor, which mediates

immune responses triggered by the cytokine TNFα.When
TNFR1 is activated, various adaptor proteins, TRADD,
RIP1, TRAF2 and E3 ligases, cIAP1, cIAP2, are recruited
and form the receptor signaling complex (RSC). The E3
ligases catalyze the formation of ubiquitin chains on RIP1
to form a scaffold for the effector kinases, TAK1 and IKK.
The activated kinases, TAK1 and IKK, induce the activa-
tion of the transcription factor, NF-κB, by targeting the
inhibitor of the transcription factor, IκB, for degradation.
Released NF-κB can promote gene expression of proin-
flammatory proteins. The signaling pathway is negatively
regulated mainly via two feedback loops that eventually
terminate the signal transduction. On the one hand, the

Fig. 2 Scheme of TNFR1-mediated NF-κB activation. Following the
ligation of cytokine TNFα to its receptor TNFR1, the receptor
oligomerizes at the membrane and undergoes a conformational
change to expose its death domain to the cytosol. Adaptor protein
TRADD binds to the death domain and recruits RIP1. TRAF2 binds and
recruits in turn E3 ligases, cIAP1 and cIAP2, which catalyze the
formation of polyubiquitin chains on RIP1. These polyubiquitin chains
serve as a scaffold for the kinases, TAK1 and IKK, to get recruited to
the receptor signaling complex (RSC). Organized in proximity, the
kinases cross-phosphorylate, and subsequently IKK phosphorylates
the inhibitor of NF-κB, IκB, to target it for proteasomal degradation.
The transcription factor, NF-κB, is released and translocates into the
nucleus due to the exposed nuclear localization signal (NLS). In the
nucleus, the transcription factor initiates the gene expression of
several target genes. Among them are proteins that regulate NF-κB
activation and terminate signal transduction. IκB gets restored in the
cytosol, binds the transcription factor in the nucleus to form the
inhibitory complex and shuttles it back into the cytosol. A20 is a
deubiquitinase, which hydrolyzes the ubiquitin chains and targets
RIP1 with K48-linked ubiquitin molecules for proteasomal
degradation. The degradation of ubiquitin chains and RIP1 results in
the dissociation of the RSC and eventually terminates signal
transduction

inhibitor, IκB, gets restored to terminate NF-κB activ-
ity and on the other hand, deubiquitinase A20 promotes
the dissociation of the RSC to return to the physiological
state of an unstimulated cell. For reviews of the signaling
processes, we refer to [27–29].
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PNmodel
Figure 3 illustrates the PN model of the NF-κB signal-
ing pathway. The model comprises the main signal flow
of receptor activation, RSC formation and transcription
factor activation. The regulation of transcription fac-
tor activity, along with initiation of gene expression and
coordinated termination by feedback loops were also
incorporated in the model. As this model serves as
a case study, we restricted the model to the internal
regulatory processes of the signaling pathway. Crosstalks
or alternative cellular responses were not considered.
Additional file 1: Tables S1 and S2 list all places
and transitions of the PN model and their biological
meaning as proteins or protein complexes and reac-
tions, respectively. We developed and analyzed the model
applying the open-source software MonaLisa [30]. We
provide the file of the PN model in Additional file 2.
The MI were computed by the algorithm described in
Additional file 1.

The PN is composed of 31 transitions, 29 places and
69 arcs. The PN is pure and ordinary. The initial marking
provides a token on each of the places of the gene of A20,
Gen_A20, and gene of IκB, Gen_IκB. Note that, Gen_A20
and Gen_IκB are places belonging to PI1 and PI2, respec-
tively, see Additional file 1: Table S3. The PI concerns parts
of gene expression and corresponds to the conservation of
the genes of A20 and IκB. The PN has four TI and fulfills
the CTI property, see Additional file 1: Table S4.
The trivial TI1 is highlighted blue in Additional file 1:

Figure S3. TI1 consists of two transitions describing the
process of NF-κB synthesis and degradation. TI1 is fea-
sible in the initial marking, since transition SynNF-κB
assigns tokens to the place, NF-κB, which are consumed
by transition DegNF-κB. Therefore, all transitions of TI1
are enabled.
TI2 captures the process of TNFR1 activation and RSC

formation coupled with gene expression of the deubiqui-
tinase A20 and dissociation of the RSC promoted by A20.

A20

Ubi 

RSC_ub:TAK1:IKK:A20  

Bin2

RSC_ub:TAK1:IKK  

Bin1

NF- B:I B  

TNF

SynIKK 

I B_p

TNFR1

SynTAK1 

TNFR1:TNF:TRADD:RIP1:TRAF2:cIAPs  

SynTNFR1 

TRADD

NF- B_n:Gen_I B 

SynTRADD 

Gen_I B 
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TNFR1:TNF 

Gen_A20

SynTNF 

NF- B_n:Gen_A20 

RSC_ub 

RSC_ub:TAK1:IKK:NF- B:I B  
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IKK

Bin8
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TAK1

I B
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Bin11

I B_n
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Exp NF- B:I B_n
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RIP1

SynRIP1 
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TNFR1:TNF:TRADD:RIP1  
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NF- B_n 
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SyncIAPs 

NF- B

Imp1

SynNF- B

DegNF- B
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SynI B

Fig. 3 PN of TNFR1-mediated NF-κB signaling capturing the processes depicted in Fig. 2. The PN consists of 31 transitions, 29 places and 69 arcs.
The initial marking assigns a token to each of the places, Gen_A20 and Gen_IκB, to provide tokens to the places of the PI of the network (Additional
file 1: Table S3)
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Thereby, TI2 describes the processes of the A20 feedback
loop. TI2 is highlighted red in Additional file 1: Figure S3.
TI2 is not feasible in the initial marking because gene
expression of A20 is blocked without transcription fac-
tor NF-κB located in the nucleus. The initial marking
does not assign any tokens to the place of nuclear NF-κB,
NF-κB_n, and thus, neither transition Bin8 nor transition
SynA20 can ever be enabled. The TI2-induced network
has two PI, PI1 and a PI comprising the places NF-κB_n
and NF-κB_n:Gen_A20. Only PI1 of the complete net is
provided with tokens in the initial marking.
TI3 captures the processes of the IκB feedback loop with

IκB gene expression, binding of IκB to NF-κB and subse-
quent activation of NF-κB by the RSC complex targeting
IκB for degradation. In Additional file 1: Figure S3, TI3
is colored green. TI3 is not feasible in the initial mark-
ing because, e.g., the gene expression of IκB is blocked
without NF-κB located in the nucleus. Since the place
NF-κB_n is not provided with any tokens in the initial
marking, transitions Bin9 and SynIκB are never enabled.
The TI3-induced network exhibits four PI, which corre-
spond to the activation and inhibition of NF-κB in the
cytosol, the recycling of nuclear NF-κB, the recycling of
the gene of IκB during gene expression of IκB and the
release of RSC during NF-κB activation, respectively. The
initial marking assigns tokens for the gene of IκB, whereas
three PI remain insufficiently provided with tokens.
Additional file 1: Figure S4 depicts the PN and highlights

TI4. TI4 captures the processes of NF-κB regulation, i.e.,
the activation of NF-κB by kinases of the RSC complex
and IκB degradation along with NF-κB-dependent initi-
ation of the gene expression of IκB, which gets restored
in the cytosol and translocates into the nucleus to shut-
tle NF-κB back into the cytosol. TI4 is not feasible in
the initial marking, since, e.g., the activation of NF-κB is
dependent on the kinases, TAK1 and IKK, of the RSC,
but the place RSC_ub:TAK1:IKK carries no tokens in the
initial marking. The TI4-induced network has three PI,
which correspond to the conservation of NF-κB in the
cytosol and the nucleus, the recycling of the gene of IκB
and the recycling of the activated RSC, respectively.
All three TI that are not feasible, TI2, TI3 and TI4,

exhibit cycles in their induced networks. The cycles
emerge from feedback loops or amplifications, such as
the amplification during gene expression initiation or the
repeated activation of NF-κB by the kinases of the RSC.

Manatee invariant analysis
We applied the concept of MI to the NF-κB pathway
model. The computation yielded three MI, see Additional
file 1: Table S5. The trivial TI of synthesis and degradation
of NF-κB, TI1, is the smallest MI, MI1. The MI1-induced
network is free of any PI and hence, MI1 is pure and
feasible in the initial marking.

MI2 is composed of all four TI, TI1,TI2,TI3 and TI4,
and covers the complete PN. MI2 describes the complete
TNFR1-mediated NF-κB signaling pathway, from recep-
tor ligation to transcription factor activation and initiation
of feedback loops that eventually terminate signal trans-
duction and restore the physiological state of an unstim-
ulated cell. TheMI2-induced network has two PI, PI1 and
PI2, of the complete PN, henceMI3 is impure and feasible
in the initial marking.
MI3 combines the trivial TI, TI1, with two non-trivial

TI, TI2 and TI4. Additional file 1: Figure S5 highlights
MI3. Aside from the direct binding of IκB to NF-κB
in the cytosol (transition Bin12), the MI2-induced net-
work describes the complete PN. MI3 covers the pro-
cesses of TNFR1 stimulation and subsequent formation
of RSC, which leads to the activation of NF-κB and NF-
κB-dependent gene expression to terminate signal trans-
duction via two feedback loops. Alternatively to the direct
formation of the inhibitory complex of NF-κB and IκB in
the cytosol, free NF-κB translocates into the nucleus to
initiate the gene expression of IκB. Subsequently, restored
IκB translocates into the nucleus, binds to NF-κB and
shuttles the inhibitory complex into the cytosol. TheMI2-
induced network has two PI, PI1 and PI2, and therefore,
MI3 is impure and feasible in the initial marking.
The MI reflected the complete combinatorial diversity

of signal flows of the PN model. MI2 and MI3 cover
complete pathways of TNFR1 signal transduction and
subsequent signal termination along with restoration of
the initial physiological state. The two MI distinguish
for the two processes to form the inhibitory complex of
NF-κB and IκB and describe distinct, biologically reason-
able processes of NF-κB activation. While TI are suitable
to determine feedback loops or other cyclic regulatory
features in networks, MI are necessary to detect all the
pathways, in which these feedback loops are involved.

In silico knockouts
For further analysis of the NF-κB pathway model, we
examined in silico knockouts based on MI. We studied
the perturbation of the system for the knockouts of all
proteins that constitute the signaling pathway. Figure 4
shows the resulting in silico knockout matrix. To study
the influence of a knockout on certain proteins or pro-
tein complexes, the in silico knockout analysis adds output
transitions to the respective species [14]. Additional file 1:
Figure S6 shows the PN model of the NF-κB pathway
with the required additional output transitions grayed out.
For a detailed description of in silico knockout analysis,
we refer to Scheidel et al. [14]. Each row of the matrix
represents the knockout of a protein, e.g., by deletion of
an input transition that represents the synthesis of the
protein. A column represents a protein or protein com-
plex that may be affected by the respective knockout. The
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Fig. 4 In silico knockout matrix of the PN in Fig. 3 based on Manatee
invariants (MI). The rows of the matrix represent a certain protein
knockout, while the columns represent the proteins or protein
complexes that may be affected by the respective knockout. A red
entry denotes a negative effect for the protein complex, whereas a
green entry denotes no effect. The effects that were obtained only for
MI-based analysis compared to the TI-based computation are labeled
by an asterisk

entries of the matrix are either green or red. A green entry
denotes a place that has a pre-transition in anMI, whereas
a red entry denotes a place in the PN that has no pre-
transition in an MI. Biologically, a green entry indicates
that, e.g., a protein complex can still be formed despite
the knockout, while a red entry indicates that the complex
cannot be formed.
The rows of the in silico knockout matrix shown in

Fig. 4 exhibit two to eleven red entries. The knockout of
the deubiquitinase A20 yields two red entries for protein
A20 and A20 associated to the RSC complex, A20 and
RSC_ub:TAK1:IKK:A20, respectively. All other complexes
of the network are unaffected by a knockout of A20, which
is in accordance to the known biological behavior, since
A20 deubiquitinates the ubiquitin chains within the RSC
[31]. The rows of TNF and TNFR1 have the highest num-
ber of eleven red entries, followed by TRADD and NF-κB
with ten entries each. Therefore, the knockout results
indicate a high impact of TNF-α, TNFR1, TRADD and
NF-κB. The receptor TNFR1 and ligand TNF-α have the
strongest impact on the system’s behaviour as the pathway
is triggered by the receptor binding [32]. The knockout of
TRADD, the adaptor protein of the stimulated receptor,
has a high impact on the downstream system’s behavior
as well. Also NF-κB, the target transcription factor of the
signaling pathway, has a strong influence on the function-
ality of the network. The knockout of NF-κB affects the
initiation of the feedback loops of A20 and IκB, while
the formation of the RSC is unaffected. In the network, the

synthesis of IκB and A20 is dependent on NF-κB activ-
ity, therefore, the knockout results match the pathway’s
behavior.
The matrix in Fig. 4 is a valuable representation for

the effects of knockouts. The knockout results were intu-
itive and in accordance with expected signaling pathway
dependencies. For comprehensive models, the influence
of proteins and the detection of dependencies within the
pathway may become more complex. In these cases, the
in silico knockout can verify whether themodel can repro-
duce experimentally measured knockout behavior, and
predictions of the in silico knockout can be tested in
further experiments.
The validity of the results of the in silico knockout

analysis correlates with the property of MI to describe
complete signal flows. The advantage of the application
of MI can be conveniently determined in comparison to
an in silico knockout analysis based on TI. The asterisks
in Fig. 4 indicate red entries that turn green for the cor-
responding analysis based on TI, see Additional file 1:
Figure S7. The in silico knockout matrix based on TI
distinguished for 26 entries from the MI-based matrix.
Surprisingly, TI-based analysis did not observe any effects
for the NF-κB knockout, even NF-κB itself was unaf-
fected by the knockout of its synthesis. The essential role
of the target trascription factor, NF-κB, is well known,
and many processes in the system are controlled by NF-
κB activity [27]. Furthermore, the knockout matrix for TI
indicated that the knockout of the proteins that consti-
tute the RSC had no effect on the activation of NF-κB as
well, e.g., the knockout of IKK had no effect for the forma-
tion of complex RSC_ub:TAK1:IKK:NF-κB:IκB. However,
the phosphorylation of IκB can be triggered only by the
activated kinase, IKK, bound to the ubiquitinated RSC
[33]. Therefore in the model, all RSC proteins, including
the kinases TAK and IKK, were necessary to initiate the
phosphorylation and degradation of IκB. The TI-based
analysis was unable to detect these pathway dependencies
properly, and the results were misleading concerning their
biological interpretation.
For in silico knockouts, the dependencies and relations

of pathway components need to be captured correctly.
The signal flows of a network reflect these dependen-
cies best. TI or MI that are feasible in the initial marking
define signal flows in the network and capture the pathway
dependencies most appropriately. For TI that were not
feasible, such as TI4, we obtained misleading results for
the in silico knockout. TI4 in Additional file 1: Figure S4
covers processes related to NF-κB regulation and exhibits
cyclic network structures of feedback loops and amplifica-
tions. ConsideringTI4, a knockout of transition SynNF-κB
did not affect the TI, and the knockout matrix based on
this TI observed no effects for NF-κB knockout. Anal-
ogously, MI3 depicted in Additional file 1: Figure S5,
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comprising TI1, TI2 and TI4, would be affected by the
knockout of transition SynNF-κB. The valuable concept of
MI attains the feasiblility by combination of interrelated
TI to capture pathway dependencies of cyclic regula-
tions to upstream or downstream processes. Thereby, only
MI were able to derive the correct effects for in silico
knockouts.
We proposed the concept of MI as a new method to

compute functional pathways in PN models of signaling
networks, even for signaling systems with amplification
cycles or feedback loops. We showed that the applica-
tion of MI as a precursor for further analysis like in silico
knockouts is beneficial for the investigation of signal-
ing networks. The detection of functional pathways in
network models is elementary for many other rigorous
network analysis approaches as well. For example, also the
examination of crosstalks is dependent on a correct signal
flow detection to determine shared processes of different
signaling pathways. To evaluate the correctness of a sig-
nal transduction model and for a profound investigation
that allow to postulate new hypotheses about its dynamic
behavior, the computation of all possible signal flows is of
great advantage.
Since the concept of MI is based on TI, it takes into

account the steady-state assumption and causal relations
of the components to determine signal flows in a network
model. The proposed algorithm reveals all possible signal
flows, which need to be considered for network analy-
sis. An alternative simulation approach would be able to
find the identical variety of signal flows in a model at
least in the limit of an infinite number of simulation runs.
However, the mathematical approach reveals the mini-
mal solutions of all possible signal flows in a model. The
mathematical concept of TI is an established precursor
for further analyses, such as, e.g., maximal common tran-
sition sets [5], minimal cut sets [34] and T-clusters [35],
which can be easily applied to MI as well.
A limitation of the rigorous analysis of all pathways

in terms of MI is the complexity of the computational
task. In worst case, the computation of TI requires expo-
nential space [26]. Since the computation of MI requires
the computation of TI, the computation of MI is also at
least EXPSPACE-hard. The computation of MI depends
on size, structure and complexity of the network and may
become infeasible for some network models due to the
combinatorial explosion of the search space.

Conclusions
Characteristic and intrinsic regulation motifs of sig-
nal transduction like amplification reactions or feedback
loops cause cycles in the topology of a network model.
These cycles hamper the straightforward application of
TI analysis for the detection of all possible signal flows,
since cyclic, minimal TI usually do not reflect the entire

pathways. In this article, we introduced the concept of
MI, which aims to detect all signal flows from signal
reception to cellular response including cyclic regula-
tions. We adapted the concept of feasible TI. MI combine
interrelated TI that are disconnected due to cyclic net-
work structures with the objective to attain feasibility.
Specific linear combinations of TI interrelate cyclic reg-
ulations to linked upstream or downstream processes,
reflecting all signal flows from signal reception to cel-
lular response. We presented an algorithm for the con-
struction of MI to compute the combinatorial diversity
of pathways from causal dependencies of reactions in
a model.
We demonstrated the applicability of the concept of

MI for a PN model of the TNFR1-mediated NF-κB sig-
naling pathway. Exemplarily, we elucidated the benefit
of MI application for in silico knockout studies. MI-
based knockouts revealed correct effects for all pro-
tein knockouts of the network, whereas a TI-based
analysis failed to detect essential interdependencies of
network components. We suggest that other network
analysis techniques can also benefit from the concept of
MI to obtain biologically relevant conclusions. We pre-
sented MI as a straightforward approach for the detec-
tion of signal flows to advance modeling and functional
pathway analyses, in particular of signal transduction
networks.
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